

MOSFET – Power, Single, N-Channel, TOLL

60 V, 0.9 mΩ, 422 A

NTBLS001N06C

Features

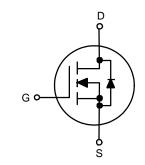
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- Lowers Switching Noise/EMI
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Power Tools, Battery Operated Vacuums
- UAV/Drones, Material Handling
- BMS/Storage, Home Automation

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parar	neter		Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	60	V
Gate-to-Source Voltage	€		V_{GS}	±20	V
Continuous Drain Current R _{θJC} (Note 2)	Steady	T _C = 25°C	I _D	422	Α
Power Dissipation $R_{\theta JC}$ (Note 2)	State	$T_C = 25^{\circ}C$	P _D	284	W
Continuous Drain Current $R_{\theta,JA}$ (Notes 1, 2)	Steady State	T _A = 25°C	I _D	51	А
Power Dissipation $R_{\theta JA}$ (Notes 1, 2)	State	T _A = 25°C	P _D	4.2	W
Pulsed Drain Current	$T_A = 25^\circ$	$T_A = 25^{\circ}C$, $t_p = 10 \mu s$		900	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +175	°C
Source Current (Body Diode)			I _S	236	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 39 A)			E _{AS}	760	mJ
Lead Temperature Soldering Reflow for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State (Note 2)	$R_{\theta JC}$	0.53	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	36	

^{1.} Surface–mounted on FR4 board using a 1 in² pad size, 2 oz. Cu pad.

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
60 V	0.9 mΩ @ 10 V	400 A
	1.4 mΩ @ 6 V	422 A

MO-299A TOLL CASE 100CU

ORDERING INFORMATION

Device	Package	Shipping [†]
NTBLS001N06C	MO-299A (Pb-Free)	2000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

Table 1. ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Conditions		Min	Тур	Max	Units
OFF CHARACTERISTICS		•		•			
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	I _D = 250 μA, \	/ _{GS} = 0 V	60			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	$V_{(BR)DSS}/T_J$	I _D = 562 μA, re	ef to 25°C		26		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 60 V,	T _J = 25°C			10	μΑ
		$V_{GS} = 0 \text{ V}$	T _J = 125°C			100	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _O	_{GS} = 20 V			100	nA
ON CHARACTERISTICS (Note 3)	•			•			
Gate Threshold Voltage	V _{GS(th)}	$V_{GS} = V_{DS}, I_{D}$	= 562 μΑ	2.0	2.8	4.0	V
Negative Threshold Temperature Coefficient	V _{GS(th)} /T _J	I _D = 562 μA, re	ef to 25°C		9.9		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I	_D = 80 A		0.75	0.9	mΩ
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 6 V, I _E	_O = 56 A		1.09	1.4	mΩ
Forward Transconductance	9 _{FS}	V _{DS} = 5 V, I _E	O = 80 A		290		S
Gate-Resistance	R_{G}	T _A = 25°C			0.6		Ω
CHARGES & CAPACTIANCES	1			·			1
Input Capacitance	C _{iss}	V _{GS} = 0 V, V _{DS} = 30 V, f = 10 kHz			11575		pF
Output Capacitance	C _{oss}				5973		pF
Reverse Transfer Capacitance	C _{rss}				76		pF
Total Gate Charge	Q _{G(tot)}	$V_{GS} = 10 \text{ V}, V_{DS} = 30 \text{ V},$ $I_{D} = 80 \text{ A}$			143		nC
Threshold Gate Charge	Q _{G(th)}				31		nC
Gate-to-Source Charge	Q _{gs}				54		nC
Gate-to-Drain Charge	Q _{gd}				13		nC
Total Gate Charge	Q _{G(tot)}	$V_{GS} = 6 \text{ V}, V_{DS} = 30 \text{ V},$ $I_{D} = 80 \text{ A}$			52		nC
SWITCHING CHARACTERISTICS, V _{GS} = 10	0 V (Note 3)						1
Turn-On Delay Time	t _{d(on)}	$V_{GS} = 10 \text{ V, } V_{I}$ $I_{D} = 80 \text{ A, R}$	_{DS} = 30 V,		34		ns
Rise Time	t _r	I _D = 80 A, R	$_{\rm G}$ = 6 Ω		53		ns
Turn-Off Delay Time	t _{d(off)}				119		ns
Fall Time	t _f	1			91		ns
DRAIN-SOURCE DIODE CHARACTERISTI	cs			•			
Forward Diode Voltage	V_{SD}	I _S = 80 A, V _{GS} = 0 V	T _J = 25°C		0.79	1.2	V
	,	I _S = 80 A, V _{GS} = 0 V	T _J = 125°C	1	0.66		V
Reverse Recovery Time	t _{rr}	$V_{GS} = 0 \text{ V, dI}_{S}/d_{t}$	= 100 A/μs,	1	120		ns
Charge Time	t _a	I _S = 56	5 A		60		ns
Discharge Time	t _b				60		ns
Reverse Recovery Charge	Q _{rr}	1			322		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Switching characteristics are independent of operating junction temperatures

TYPICAL CHARACTERISTICS

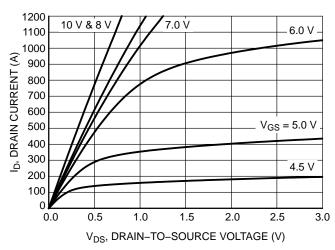


Figure 1. On-Region Characteristics

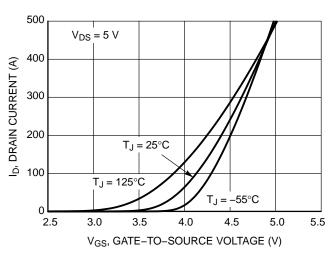


Figure 2. Transfer Characteristics

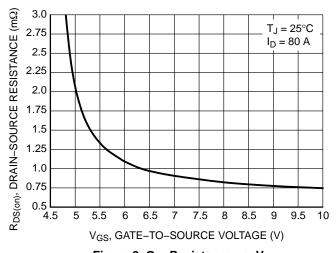


Figure 3. On–Resistance vs. V_{GS}

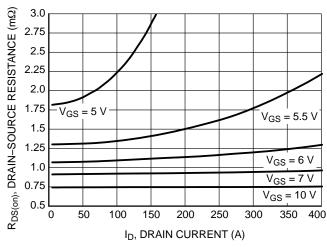


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

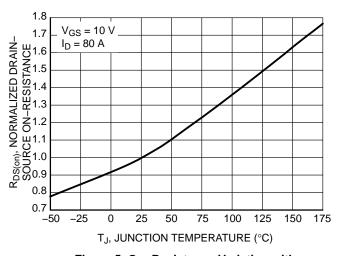


Figure 5. On–Resistance Variation with Temperature

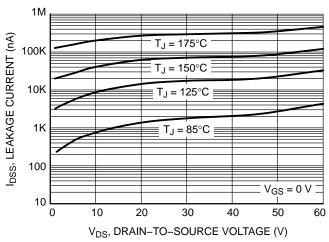


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

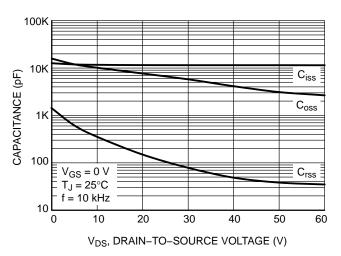


Figure 7. Capacitance Variation

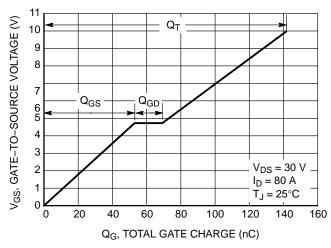


Figure 8. Gate-to-Source Voltage vs. Total Gate Charge

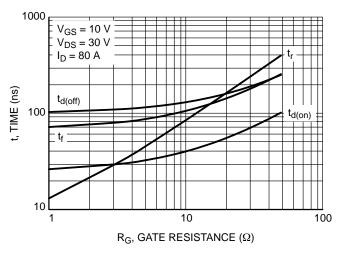


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

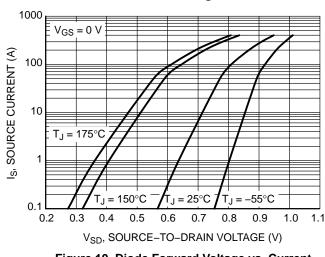


Figure 10. Diode Forward Voltage vs. Current

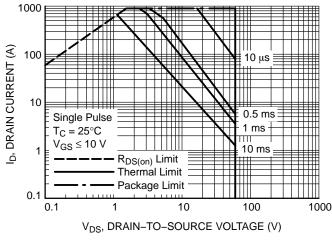


Figure 11. Maximum Rated Forward Biased Safe Operating Area

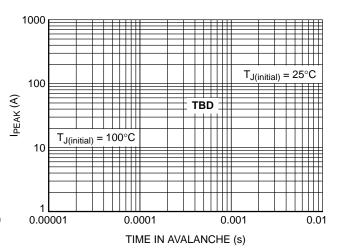


Figure 12. Peak Power

TYPICAL CHARACTERISTICS

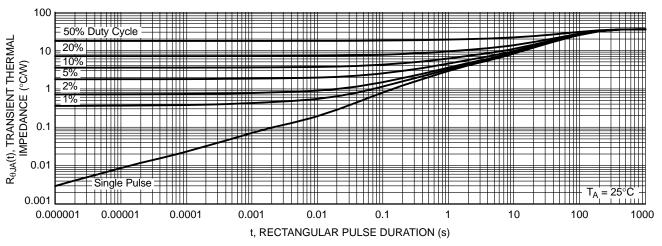


Figure 13. Thermal Response (Junction-to-Ambient)

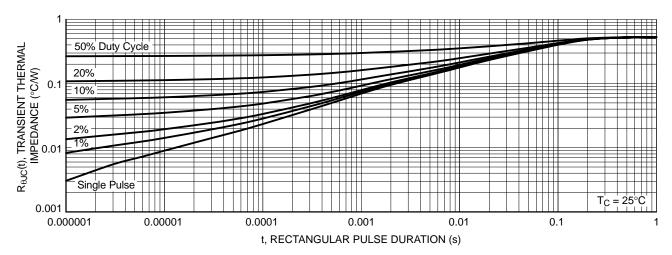
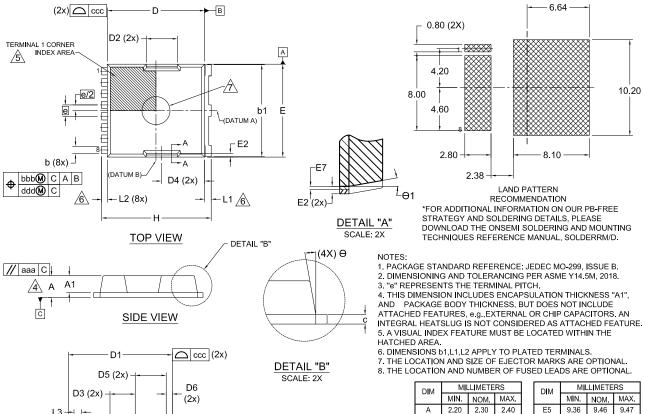


Figure 14. Thermal Response



(DAT

H-PSOF8L 11.68x9.80x2.30, 1.20P CASE 100CU ISSUE D

DATE 25 APRIL 2024

b2 (8x)		
		GENERIC
8 1 1		MARKING DIAGRAM*
L (8x) D/2 HEAT SLUG TERMINAL		AYWWZZ
L (0X)		
(DATUM B)—/ I—— H/2 ——		
- H1		XXXXXXXX
		o ^^^^
BOTTOM VIEW	Α	= Assembly Location

DIM	MIL	RS		
D.1	MIN.	NOM.	MAX.	
Α	2.20	2.30	2.40	
A1	1.70	1.80	1.90	
b	0.70	0.80	0.90	
b1	9.70	9.80	9.90	
b2	0.35	0.45	0.55	
С	0.40	0.50	0.60	
D	10.28	10.38	10.48	
D/2	5.09	5.19	5.29	
D1	10.98	11.08	11.18	
D2	3.20	3.30	3.40	
D3	2.60	2.70	2.80	
D4	4.45	4.55	4.65	
D5	3.20	3.30	3.40	
D6	0.55	0.65	0.75	
Е	9.80	9.90	10.00	
E1	7.30	7.40	7.50	
E2	0.30	0.40	0.50	
E3	7.40	7.50	7.60	
E4	8.20	8.30	8.40	

E6	1.10	1.20	1.30		
E7	0.15	0.18	0.21		
е	1.20 BSC				
e/2	(0.60 BSC	;		
Н	11.58	11.68	11.78		
H/2	5.74	5.84	5.94		
H1		7.15 BSC	;		
L	1.90	2.00	2.10		
L1	0.60	0.70	0.80		
L2	0.50	0.60	0.70		
L3	0.70 0.80		0.90		
Φ		10° REF			
0 1		10° REF			
aaa		0.20			
bbb	0.25				
ccc	0.20				
ddd	0.20				
eee	0.10				
		_			

= Year WW = Work Week = Assembly Lot Code ZZ XXXX = Specific Device Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON13813G Electronic versions are uncontrolled except when accessed directly from the Document Repo Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	H-PSOF8L 11.68x9.80x2.3	0, 1.20P	PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales