Onsemi

MOSFET - Power, Single **N-Channel, TOLL** 80 V, 1.1 mΩ, 299 A

Product Preview NTBLS1D1N08X

Features

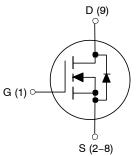
- Low Q_{RR}, Soft Recovery Body Diode
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Synchronous Rectification (SR) in DC-DC and AC-DC
- Primary Switch in Isolated DC-DC Converter
- Motor Drives

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

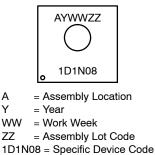
Parameter		Symbol	Value	Unit
Drain-to-Source Voltage		V _{DSS}	80	V
Gate-to-Source Voltage		V _{GS}	±20	V
Continuous Drain Current	T _C = 25°C	۱ _D	299	А
	T _C = 100°C		211	
Power Dissipation	$T_{C} = 25^{\circ}C$	PD	197	W
Pulsed Drain Current	T _C = 25°C, t _p = 100 μs	I _{DM}	1925	A
Operating Junction and Storage Temperature Range		T _J , T _{stg}	–55 to +175	°C
Continuous Source-Drain Current (Body Diode)		I _S	332	A
Single Pulse Avalanche Energy (I _{PK} = 94 A)		E _{AS}	441	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		ΤL	260	°C
Single Pulse Avalanche Energy (I _{PK} = 94 A) Lead Temperature for Soldering Purposes (1/8″ from case for 10 s)		7.0	260	


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Surface mounted on FR4 board using a 1 in², 1 oz. Cu pad

- 2. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.
- 3. E_{AS} of 441 mJ is based on started $T_J = 25^{\circ}C$, $I_{AS} = 94$ A, $V_{DD} = 64$ V, V_{GS} = 10 V, 100% avalanche tested.

This document contains information on a product under development. onsemi reserves the right to change or discontinue this product without notice.

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
80 V	1.1 mΩ @ 10 V	299 A


N-CHANNEL MOSFET

H-PSOF8L CASE 100CU

MARKING DIAGRAM

ORDERING INFORMATION

Device	Package	Shipping [†]
NTBLS1D1N08X	H-PSOF8L (Pb-Free)	2000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Table 1. THERMAL CHARACTERISTICS

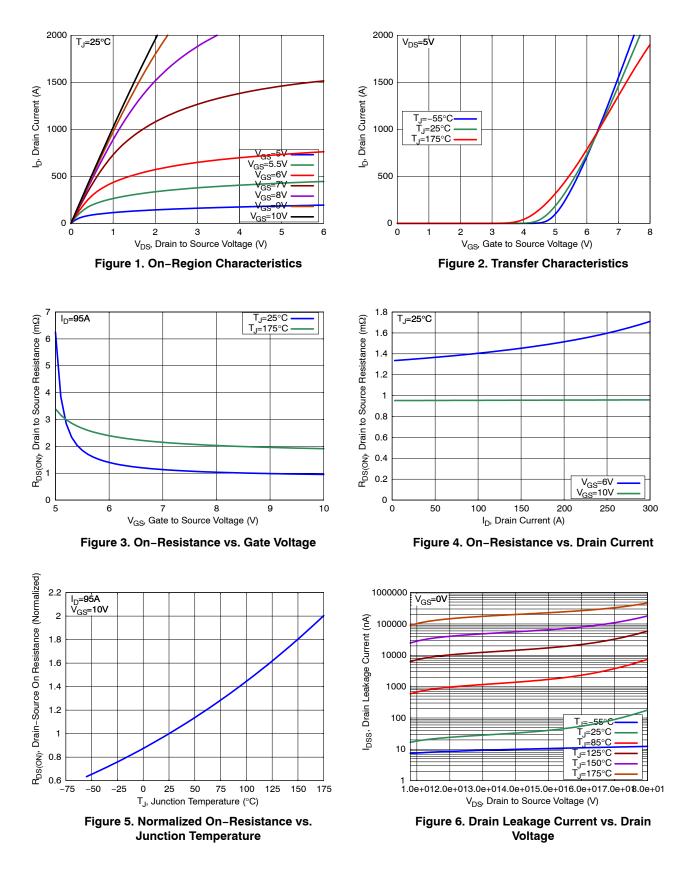
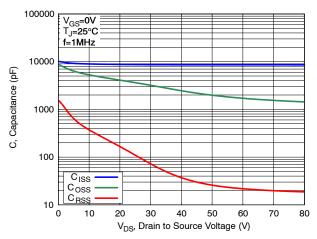
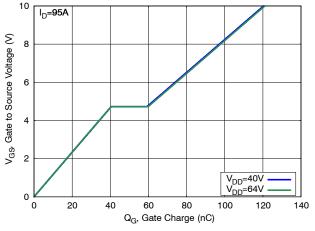
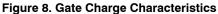

Parameter		Value	Unit
Thermal Resistance, Junction-to-Case		0.76	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	43	

Table 2. ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)


Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•		•			
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D = 1 mA, T _J = 25°C	80			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	ΔV _{(BR)DSS} / ΔT _J	$I_D = 1$ mA, Referenced to 25°C		33		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 80 V, T _J = 25°C			1.0	μA
		V _{DS} = 80 V, T _J = 125°C			250	
Gate-to-Source Leakage Current	I _{GSS}	V_{GS} = 20 V, V_{DS} = 0 V			100	nA
ON CHARACTERISTICS	-	-	-			
Drain-to-Source On Resistance	R _{DS(on)}	V_{GS} = 10 V, I _D = 95 A, T _J = 25°C		0.95	1.1	mΩ
		V_{GS} = 6 V, I_{D} = 47 A, T_{J} = 25°C		1.4		
Gate Threshold Voltage	V _{GS(th)}	V_{GS} = V_{DS} , I_D = 475 μ A, T_J = 25°C	2.4		3.6	V
Gate Threshold Voltage Temperature Coefficient	$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	V_{GS} = V_{DS} , I_D = 475 μ A		-7		mV/°C
Forward Transconductance	9 FS	V _{DS} = 5 V, I _D = 95 A		294		S
CHARGES, CAPACITANCES & GATE RE	SISTANCE	-	-			
Input Capacitance	C _{ISS}	V_{DS} = 40 V, V_{GS} = 0 V, f = 1 MHz		8620		pF nC
Output Capacitance	C _{OSS}			2460		
Reverse Transfer Capacitance	C _{RSS}			37		
Output Charge	Q _{OSS}			175		
Total Gate Charge	Q _{G(tot)}	V_{DD} = 40 V, I _D = 95 A, V _{GS} = 10 V		120		
Threshold Gate Charge	Q _{G(th)}			26		
Gate-to-Source Charge	Q _{GS}			40		
Gate-to-Drain Charge	Q _{GD}			19		
Gate Plateau Voltage	V _{GP}			4.7		V
Gate Resistance	R _G	f = 1 MHz		0.67		Ω
SWITCHING CHARACTERISTICS						
Turn-On Delay Time	t _{d(on)}	Resistive Load, $V_{GS} = 0/10 V$,		22		ns
Rise Time	tr	V_{DD} = 40 V, I_D = 95 A, R_G = 2.5 Ω		118		-
Turn-Off Delay Time	t _{d(off)}			40		
Fall Time	t _f			152		
SOURCE-TO-DRAIN DIODE CHARACTE	ERISTICS					
Forward Diode Voltage	V _{SD}	$I_{\rm S}$ = 95 A, $V_{\rm GS}$ = 0 V, $T_{\rm J}$ = 25°C		0.83	1.2	V
		I_{S} = 95 A, V_{GS} = 0 V, T_{J} = 125°C		0.67		
Reverse Recovery Time	t _{rr}	V _{GS} = 0 V, I _S = 95 A		32		ns
Charge Time	t _a	dl/dt = 1000 A/µs, V _{DD} = 40 V		17		_
Discharge Time	t _b			15		
Reverse Recovery Charge	Q _{RR}	1		297		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS

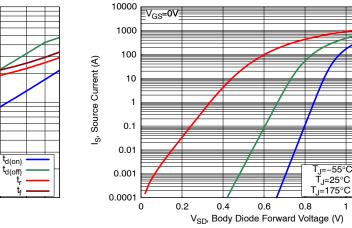


Figure 10. Diode Forward Characteristics

1

1.2

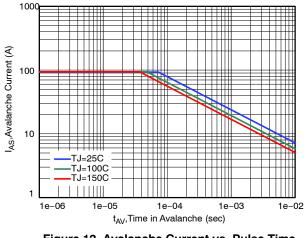


Figure 12. Avalanche Current vs. Pulse Time (UIS)

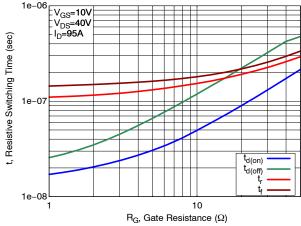


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

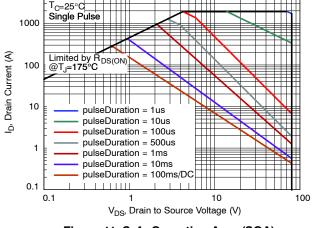
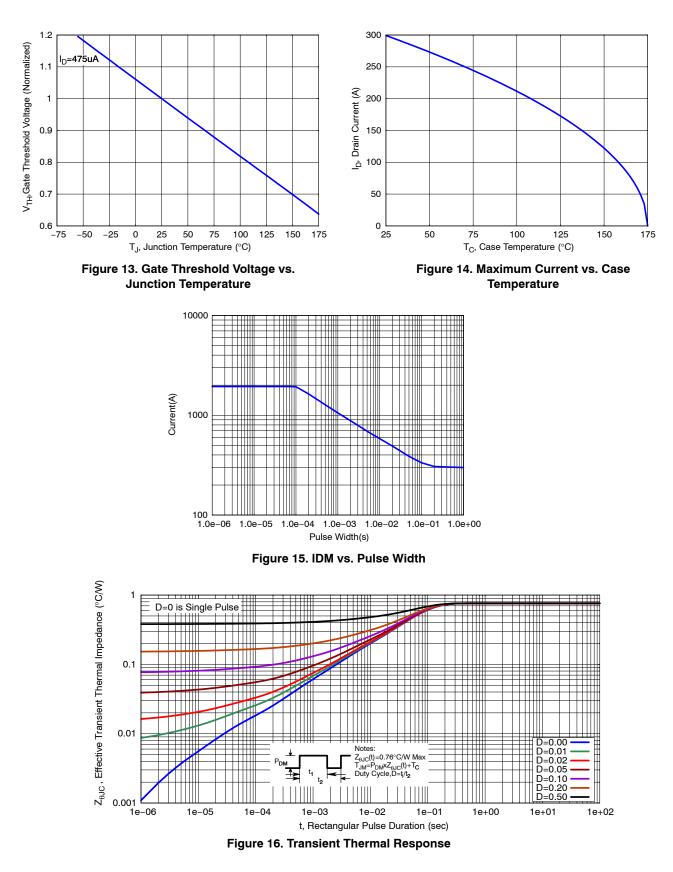
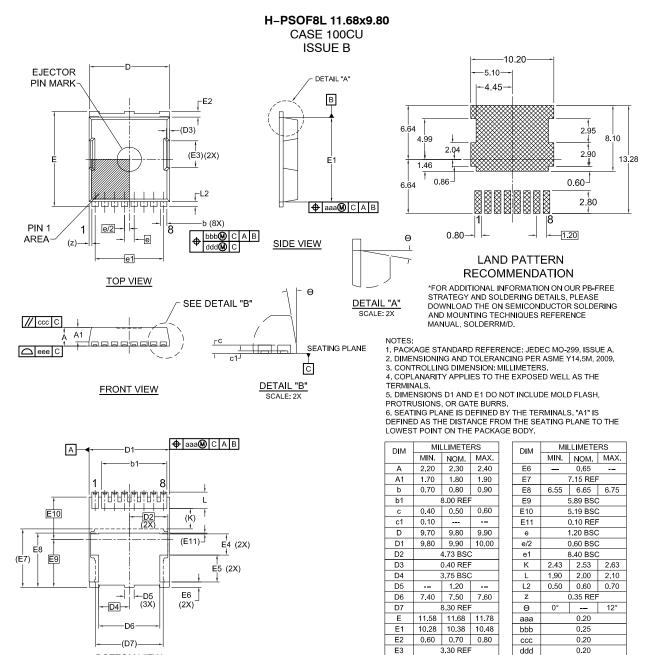




Figure 11. Safe Operating Area (SOA)

TYPICAL CHARACTERISTICS

PACKAGE DIMENSIONS

BOTTOM VIEW

E4

E5

2.60

3.30

eee

0.10

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative