MOSFET – Power, N-Channel, SUPERFET[®] III 800 V, 360 m Ω , 13 A

NTD360N80S3Z

Description

800 V SUPERFET III MOSFET is ON Semiconductor's high performance MOSFET family offering 800 V breakdown voltage.

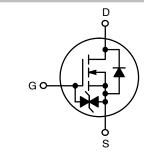
New 800 V SUPERFET III MOSFET which is optimized for primary switch of flyback converter, enables lower switching losses and case temperature without sacrificing EMI performance thanks to its optimized design. In addition, internal Zener Diode significantly improves ESD capability.

This new family of 800 V SUPERFET III MOSFET enables to make more efficient, compact, cooler and more robust applications because of its remarkable performance in switching power applications such as Laptop adapter, Audio, Lighting, ATX power and industrial power supplies.

Features

- Typ. $R_{DS(on)} = 300 \text{ m}\Omega$
- Ultra Low Gate Charge (Typ. Q_g = 25.3 nC)
- Low Stored Energy in Output Capacitance (Eoss = 2.72 μJ @ 400 V)
- 100% Avalanche Tested
- ESD Improved Capability with Zener Diode
- RoHS Compliant

Applications


- Adapters / Chargers
- LED Lighting
- AUX Power
- Audio
- Industrial Power

ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
800 V	360 m $Ω$	13 A

POWER MOSFET

MARKING DIAGRAM

&Z = Assembly Plant Code &3 = Data Code (Year & Week)

&K = Lo

NTD360N80S3Z = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ABSOLUTE MAXIMUM RATINGS ($T_J = 25^{\circ}C$, unless otherwise noted)

Symbol	Param	Value	Unit	
V_{DSS}	Drain-to-Source Voltage		800	V
V_{GS}	Gate-to-Source Voltage	DC	±20	V
		AC (f > 1 Hz)	±30	1
I _D	Drain Current	Continuous (T _C = 25°C)	13	Α
		Continuous (T _C = 100°C)	8.2	1
I _{DM}	Drain Current Pulsed (Note 1)		32.5	Α
E _{AS}	Single Pulsed Avalanche Energy (Note 2	40	mJ	
I _{AS}	Avalanche Current (Note 2)		2.0	А
E _{AR}	Repetitive Avalanche Energy (Note 1)		0.96	mJ
dv/dt	MOSFET dv/dt		100	V/ns
	Peak Diode Recovery dv/dt (Note 3)		10	1
P_{D}	Power Dissipation	(T _C = 25°C)	96	W
		Derate Above 25°C	0.768	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
T_L	Lead Temperature Soldering Reflow for (1/8" from Case for 10 seconds)	260	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
1. Repetitive rating: pulse–width limited by maximum junction temperature.
2. $I_{AS} = 2.0 \text{ A}$, $R_{G} = 25 \Omega$, starting $T_{J} = 25^{\circ}\text{C}$.
3. $I_{SD} \leq 3.25 \text{ A}$, $di/dt \leq 200 \text{ A}/\mu\text{s}$, $V_{DD} \leq 400 \text{ V}$, starting $T_{J} = 25^{\circ}\text{C}$.

THERMAL RESISTANCE RATINGS

Symbol	Parameter	Value	Unit
$R_{ heta JC}$	Junction-to-Case - Steady State	1.3	°C/W
$R_{\theta JA}$	Junction-to-Ambient - Steady State	62.5	

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Marking	Package	Reel Size	Tape Width	Quantity
NTD360N80S3Z	NTD360N80S3Z	TO-252	330 mm	16 mm	2500 Units

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHARACT	ERISTICS			•	•	
BV _{DSS}	Drain-to-Source Breakdown Voltage	$V_{GS} = 0 \text{ V, } I_D = 1 \text{ mA, } T_J = 25^{\circ}\text{C}$	800			V
	V _{GS} = 0 V, I _D = 1 mA, T _J = 150°C	900			V	
$\Delta BV_{DSS} / \Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I _D = 1 mA, Referenced to 25°C		1.1		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 800 V, V _{GS} = 0 V			1	μΑ
	V _{DS} = 640 V, T _C = 125°C		0.8			
I _{GSS}	Gate-to-Body Leakage Current	V _{GS} = ±20 V, V _{DS} = 0 V			1	μΑ
ON CHARACTE	ERISTICS					
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 0.3 \text{ mA}$	2.2		3.8	V
R _{DS(on)}	Static Drain-to-Source On Resistance	V _{GS} = 10 V, I _D = 6.5 A		300	360	mΩ
9FS	Forward Transconductance	V _{DS} = 20 V, I _D = 6.5 A		13.8		S
DYNAMIC CHA	RACTERISTICS			•		
C _{iss}	Input Capacitance	V _{DS} = 400 V, V _{GS} = 0 V, f = 250 kHz		1143		pF
C _{oss}	Output Capacitance			18.1		pF
C _{oss(eff.)}	Effective Output Capacitance	V _{DS} = 0 V to 400 V, V _{GS} = 0 V		236.4		pF
C _{oss(er.)}	Energy Related Output Capacitance	V _{DS} = 0 V to 400 V, V _{GS} = 0 V		34		pF
Q _{g(tot)}	Total Gate Charge at 10 V	$V_{DS} = 400 \text{ V}, I_D = 6.5 \text{ A}, V_{GS} = 10 \text{ V}$		25.3		nC
Q _{gs}	Gate-to-Source Gate Charge	(Note 4)		5.3		nC
Q_{gd}	Gate-to-Drain "Miller" Charge			8.3		nC
ESR	Equivalent Series Resistance	f = 1 MHz		4		Ω
SWITCHING CH	HARACTERISTICS					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 400 \text{ V}, I_D = 6.5 \text{ A}, V_{GS} = 10 \text{ V},$		21.2		ns
t _r	Turn-On Rise Time	$R_g = 25 \Omega$ (Note 4)		18.5		ns
t _{d(off)}	Turn-Off Delay Time			110		ns
t _f	Turn-Off Fall Time			17.7		ns
SOURCE-DRAI	N DIODE CHARACTERISTICS			•		
I _S	Maximum Continuous Source-to-Drain D	liode Forward Current			13	Α
I _{SM}	Maximum Pulsed Source-to-Drain Diode Forward Current				32.5	Α
V _{SD}	Source-to-Drain Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 6.5 A			1.2	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _{SD} = 3.25 A,		370		ns
Q _{rr}	Reverse Recovery Charge	dI _F /dt = 100 A/μs		3.2		μC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

SUPERFET is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

^{4.} Essentially independent of operating temperature typical characteristics.

TYPICAL CHARACTERISTICS

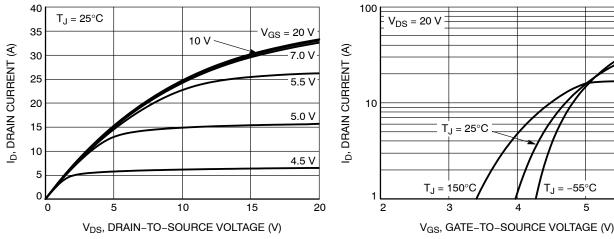


Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

= -55°C

6

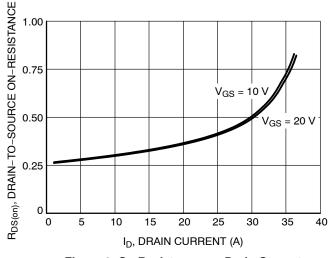


Figure 3. On Resistance vs. Drain Current

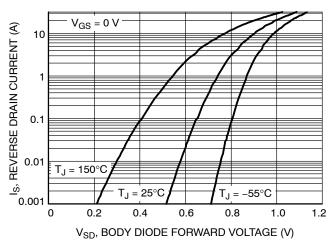


Figure 4. Diode Forward Voltage vs. Current

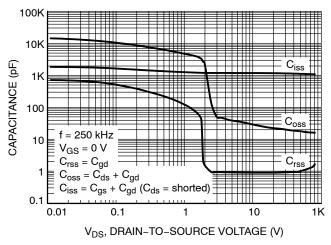


Figure 5. Capacitance Characteristics

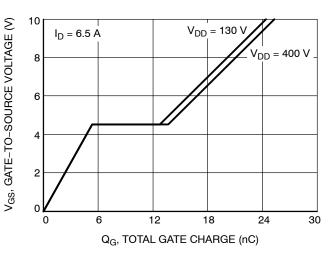


Figure 6. Gate Charge Characteristics

TYPICAL CHARACTERISTICS

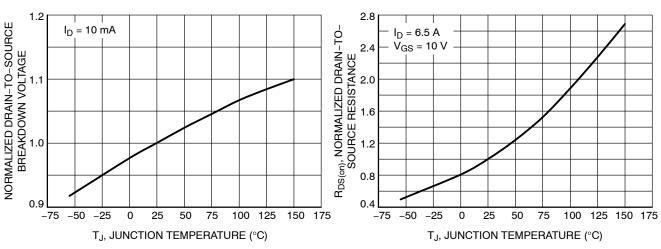
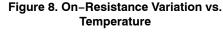



Figure 7. Normalized BV_{DSS} vs. Temperature

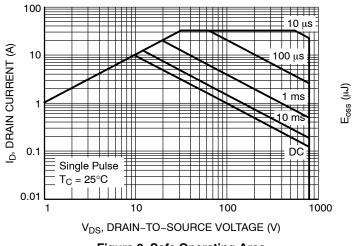


Figure 9. Safe Operating Area

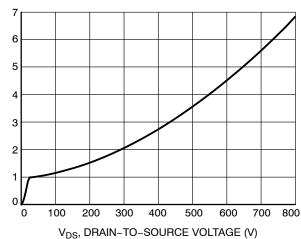


Figure 10. E_{oss} vs. Drain-to-Source Voltage

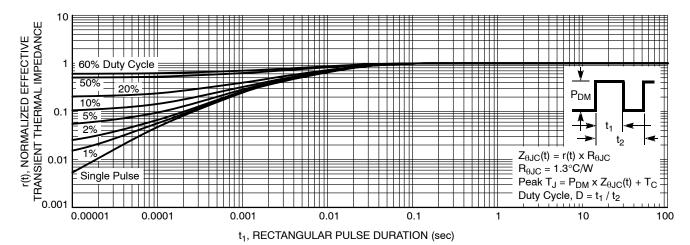


Figure 11. Transient Thermal Impedance

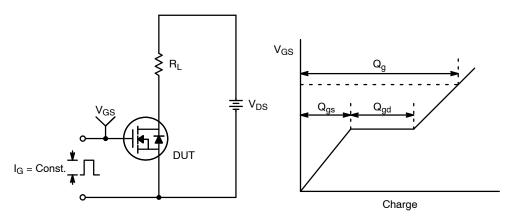


Figure 12. Gate Charge Test Circuit & Waveform

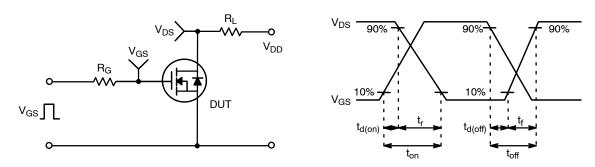


Figure 13. Resistive Switching Test Circuit & Waveforms

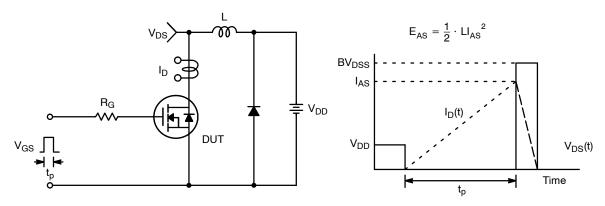


Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms

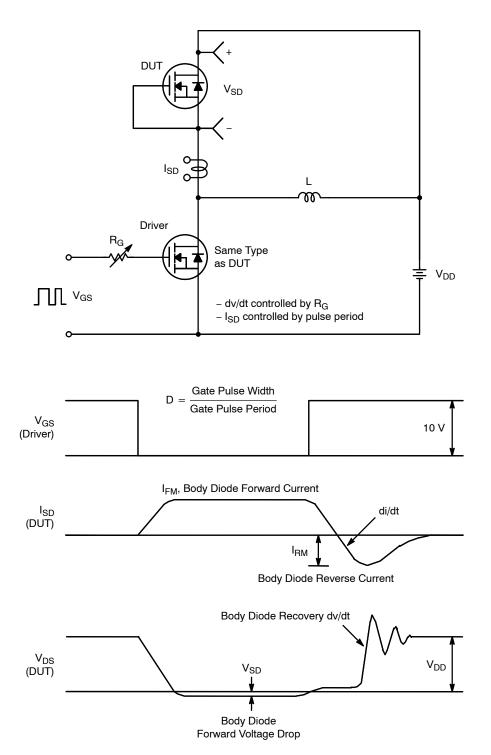
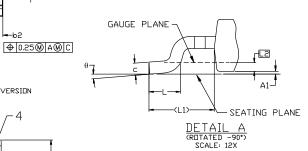


Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms

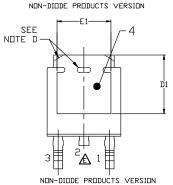
DPAK3 6.10x6.54x2.29, 4.57P CASE 369AS **ISSUE B**

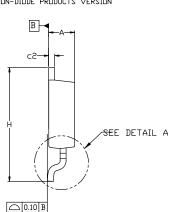
DATE 20 DEC 2023

- NOTES: UNLESS OTHERWISE SPECIFIED


 A) THIS PACKAGE CONFORMS TO JEDEC, TO-252, ISSUE F, VARIATION AA.

 B) ALL DIMENSIONS ARE IN MILLIMETERS.


 C) DIMENSIONING AND TOLERANCING PER


 - מו

- A
- F)
- DIMENSIONING AND TOLERANCING PER
 ASME Y14.5M-2018.
 SUPPLIER DEPENDENT MOLD LOCKING HOLES OR CHAMFERED
 CORNERS OR EDGE PROTRUSION.
 FOR DIODE PRODUCTS, L4 IS 0.25 MM MAX PLASTIC BODY
 STUB WITHOUT CENTER LEAD.
 DIMENSIONS ARE EXCLUSIVE OF BURRS,
 MOLD FLASH AND TIE BAR EXTRUSIONS.
 LAND PATTERN RECOMMENDATION IS BASED ON IPC7351A STD
 T0228P991X239-3N.

DIM	MILLIMETERS		
DIII	MIN.	N□M.	MAX.
Α	2.18 2.29		2.39
A1	0.00	-	0.127
b	0.64	0.77	0.89
b2	0.76	0.95	1.14
b3	5.21	5.34	5.46
C	0.45	0.53	0.61
c2	0.45	0.52	0.58
D	5.97	6.10	6.22
D1	5.21		
Ε	6.35	6.54	6.73
E1	4.32		
е	2.286 BSC		
e1	4.5	572 BS	С
Н	9.40	9.91	10.41
L	1.40	1.59	1.78
L1	2.90 REF		
L2	0.51 BSC		
L3	0.89	1.08	1.27
L4			1.02
θ	0°		10°

A

- 5.55	MIN
6,40	6.50 MIN
1 4.5	2.85 MIN 1.25 MIN 2.286

LAND PATTERN RECOMMENDATION

*FOR ADDITIONAL INFORMATION ON DUR
PB-FREE STRATEGY AND SOLDERING DETAILS,
PLEASE DOWNLOAD THE ON SEMICONDUCTOR
SOLDERING AND MOUNTING TECHNIQUES
REFERENCE MANUAL, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXXXX XXXXXX **AYWWZZ**

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking.

XXXX = Specific Device Code

= Assembly Location Α

Υ = Year

WW = Work Week

ZZ = Assembly Lot Code

Electronic versions are uncontrolled except when accessed directly from the Document Repository. **DOCUMENT NUMBER:** 98AON13810G Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** DPAK3 6.10x6.54x2.29, 4.57P **PAGE 1 OF 1**

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales