MOSFET – Small Signal, Complementary, SC-88 ## 20 V / -8.0 V, +0.63 A / -0.775 A NTJD4105C ## **Features** - Complementary N and P Channel Device - Leading -8.0 V Trench for Low R_{DS(on)} Performance - ESD Protected Gate ESD Rating: Class 1 - SC-88 Package for Small Footprint (2 x 2 mm) - Pb-Free Packages are Available #### **Applications** - DC-DC Conversion - Load/Power Switching - Single or Dual Cell Li-Ion Battery Supplied Devices - Cell Phones, MP3s, Digital Cameras, PDAs ## MAXIMUM RATINGS (T_J = 25°C unless otherwise noted) | Symbol | Paramet | | Value | Unit | | |--------------------------------------|---|---------------|-----------------------|--------|----| | V_{DSS} | Drain-to-Source Voltage | N-Ch | 20 | V | | | | | P-Ch | -8.0 | | | | V_{GS} | Gate-to-Source Voltage | | N-Ch | ±12 | V | | | | | P-Ch | ±8.0 | | | I _D | Continuous Drain Current | N-Ch | $T_A = 25^{\circ}C$ | 0.63 | Α | | | - Steady State | | T _A = 85°C | 0.46 | | | | (Based on R_{\thetaJA}) | P-Ch | $T_A = 25^{\circ}C$ | -0.775 | | | | 1 (GJA) | | $T_A = 85^{\circ}C$ | -0.558 | | | | Continuous Drain Current | N-Ch | $T_A = 25^{\circ}C$ | 0.91 | | | | - Steady State | | T _A = 85°C | 0.65 | | | | (Based on $R_{\theta JL}$) | P-Ch | $T_A = 25^{\circ}C$ | -1.1 | | | | · · · · · · · · · · · · · · · · · · · | | T _A = 85°C | -0.8 | | | I _{DM} | Pulsed Drain Current | | tp ≤[]0 μs | ±1.2 | Α | | P_{D} | Power Dissipation - Steady | / State | $T_A = 25^{\circ}C$ | 0.27 | W | | | (Based on $R_{\theta JA}$) | | $T_A = 85^{\circ}C$ | 0.14 | | | | Power Dissipation - Steady | / State | $T_A = 25^{\circ}C$ | 0.55 | | | | (Based on R _{θJL}) | | T _A = 85°C | 0.29 | | | T _J ,
T _{STG} | Operating Junction and Sto | –55 to
150 | °C | | | | I _S | Source Current (Body Diode) | | N-Ch | 0.63 | Α | | | | P-Ch | -0.775 | | | | TL | Lead Temperature for Sold (1/8" from case for | | rposes | 260 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. ## THERMAL RESISTANCE RATINGS (Note 1). | Symbol | Parameter | Value | Unit | | |-----------------|----------------------------------|-------|------|------| | $R_{\theta JA}$ | Junction-to-Ambient | Тур | 400 | °C/W | | | Steady State | Max | 460 | | | $R_{\theta JL}$ | Junction-to-Lead (Drain) | Тур | 194 | | | | Steady State | Max | 226 | | ^{1.} Surface mounted on FR4 board using 1 oz Cu area = 0.9523 in sq. | V _{(BR)DSS} | R _{DS(on)} TYP | I _D Max | |----------------------|-------------------------|--------------------| | N-Ch 20 V | 0.29 Ω @ 4.5 V | | | | 0.36 Ω @ 2.5 V | 0.63 A | | | 0.22 Ω @ -4.5 V | | | P-Ch -8.0 V | 0.32 Ω @ -2.5 V | -0.775 A | | | 0.51 Ω @ –1.8 V | | SC-88/SOT-363 CASE 419B STYLE 28 ## MARKING DIAGRAM & PIN ASSIGNMENT TC = Device Code M = Date Code Pb-Free Package (Note: Microdot may be in either location) ## **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet. NOTE: Some of the devices on this data sheet have been **DISCONTINUED**. Please refer to the table on page 7. ## **ELECTRICAL CHARACTERISTICS** ($T_J = 25^{\circ}C$ unless otherwise noted) | Symbol | Parameter | N/P | Test Condition | on | Min | Тур | Max | Units | |-----------------------|--|----------|---|--|-------|-------|-------|----------| | OFF CHAI | RACTERISTICS | | | | | | | L | | V _{(BR)DSS} | Drain-to-Source | N | | I _D = 250 μA | 20 | 27 | | V | | ▼ (BH)D99 | Breakdown Voltage | P | $V_{GS} = 0 V$ | $I_D = -250 \mu\text{A}$ | -8.0 | -10.5 | | • | | V _{(BR)DSS} | Drain-to-Source Breakdown | N | | 10 - 200 μ/τ | 0.0 | 22 | | mV/ °C | | / T _J | Voltage Temperature | | | | | | | 1, | | | Coefficient | Р | | | | -6.0 | | | | I_{DSS} | Zero Gate Voltage Drain Cur- | N | $V_{GS} = 0 \text{ V}, V_{DS} = 16 \text{ V}$ | T _{.1} = 25 °C | | | 1.0 | μΑ | | | rent | Р | $V_{GS} = 0 \text{ V}, V_{DS} = -6.4 \text{ V}$ | · · | | | 1.0 | | | I_{GSS} | Gate-to-Source | N | V _{DS} = 0 V | $V_{GS} = \pm 12 V$ | | | 10 | μΑ | | | Leakage Current | Р | • D2 = 0 • | $V_{GS} = \pm 8.0$ | | | 10 | | | ON CHAR | ACTERISTICS (Note 2) | | | | | | | | | V _{GS(TH)} | Gate Threshold Voltage | N | $V_{GS} = V_{DS}$ | $I_D = 250 \mu A$ | 0.6 | 0.92 | 1.5 | V | | | | Р | ▼GS - ▼DS | $I_D = -250 \mu A$ | -0.45 | -0.83 | -1.0 | | | V _{GS(TH)} / | Gate Threshold | N | | | | -2.1 | | -mV/ °C | | IJ | Temperature Coeffi-
cient | Р | | | | 2.2 | | 1 | | D-ac | Drain-to-Source On Resist- | N | \/ | 0.62.4 | | 0.29 | 0.375 | Ω | | R _{DS(on)} | ance | P | $V_{GS} = 4.5 \text{ V } I_D = 0$
$V_{GS} = -4.5 \text{ V}, I_D = 0$ | | | 0.29 | 0.375 | 24 | | | | N | $V_{GS} = -4.5 \text{ V}, I_D = 100 \text{ V}$ | | | 0.22 | 0.445 | 4 | | | | P | $V_{GS} = 2.5 \text{ V}, I_D = 100 \text{ V}_{GS} = -2.5 \text{ V}$ | | | 0.32 | 0.443 | 1 | | | | P | $V_{GS} = -1.8 \text{ V}, I_D = 0.00 \text{ V}$ | | | 0.51 | 0.90 | | | 9FS | Forward Transconductance | N | $V_{DS} = 4.0 \text{ V } I_D = 0$ | | | 2.0 | 0.00 | S | | 955 | 1 ciwara Transconductance | P | $V_{DS} = -4.0 \text{ V}, I_{D} = 0.0 \text{ V}$ | | | 2.0 | | 1 | | CHARGES | S AND CAPACITANCES | <u> </u> | V DS = 1.3 V, ID = | 0.07 71 | | 2.0 | | <u> </u> | | C _{ISS} | Input Capacitance | N | | V _{DS} = 20 V | | 33 | 46 | pF | | OISS | input oupacitance | P | | $V_{DS} = 20 \text{ V}$
$V_{DS} = -8.0 \text{ V}$ | | 160 | 225 | Pi | | C _{OSS} | Output Capacitance | N | | $V_{DS} = 0.0 \text{ V}$ | | 13 | 22 | | | 9055 | Cutput Capacitarios | P | $f = 1 MHz, V_{GS} = 0 V$ | $V_{DS} = -8.0 \text{ V}$ | | 38 | 55 | | | C _{RSS} | Reverse Transfer Capacitance | N | | $V_{DS} = 20 \text{ V}$ | | 2.8 | 5.0 | | | 9100 | The second of th | P | | $V_{DS} = -8.0 \text{ V}$ | | 28 | 40 | | | Q _{G(TOT)} | Total Gate Charge | N | V _{GS} = 4.5 V, V _{DS} = 10 V | | | 1.3 | 3.0 | nC | | -(101) | | P | $V_{GS} = -4.5 \text{ V}, V_{DS} = -5.0$ | | | 2.2 | 4.0 | 1 | | Q _{G(TH)} | Threshold Gate Charge | N | $V_{GS} = 4.5 \text{ V}, V_{DS} = 10 \text{ V}$ | | | 0.1 | | | | G(III) | | Р | V _{GS} = -4.5 V, V _{DS} = -5.0 | | | 0.1 | | 1 | | Q _{GS} | Gate-to-Source Charge | N | V _{GS} = 4.5 V, V _{DS} = 10 V | | | 0.2 | | 1 | | | _ | Р | $V_{GS} = -4.5 \text{ V}, V_{DS} = -5.0$ | | | 0.5 | | | | Q_{GD} | Gate-to-Drain Charge | N | V _{GS} = 4.5 V, V _{DS} = 10 V | | | 0.4 | | 1 | | | | Р | $V_{GS} = -4.5 \text{ V}, V_{DS} = -5.0$ | | | 0.5 | | 1 | | SWITCHIN | IG CHARACTERISTICS (Note 3) | | | | | | | - | | t _{d(ON)} | Turn-On Delay Time | N | | | | 0.083 | | μs | | t _r | Rise Time | 1 | V _{GS} = 4.5 V, V _{DD} = | = 10 V, | | 0.227 | | 1 | | t _{d(OFF)} | Turn-Off Delay Time | 1 | $I_D = 0.5 \text{ A}, R_G =$ | 20 Ω | | 0.786 | | 1 | | t _f | Fall Time | 1 | | | | 0.506 | | 1 | | t _{d(ON)} | Turn-On Delay Time | Р | | | | 0.013 | |] | | t _r | Rise Time |] | $V_{GS} = -4.5 \text{ V}, V_{DD} =$ | = -4.0 V, | | 0.023 | |] | | t _{d(OFF)} | Turn-Off Delay Time | | $I_D = -0.5 \text{ A}, R_G =$ | 8.0 Ω | | 0.050 | | | | t _f | Fall Time | | | | | 0.036 | | | | DRAIN-S | DURCE DIODE CHARACTERISTIC | cs | | | | | | | | V _{SD} | Forward Diode Voltage | N | Vac = 0.V.T. 05°C | $I_S = 0.23 \text{ A}$ | | 0.76 | 1.1 | V | | | | Р | $V_{GS} = 0 \text{ V}, T_J = 25^{\circ}\text{C}$ | $I_S = -0.23 \text{ A}$ | | 0.76 | 1.1 | 1 | | | | N | V | I _S = 0.23 A | | 0.63 | | 1 | | | | Р | $V_{GS} = 0 \text{ V, T}_{J} = 125^{\circ}\text{C}$ | $I_S = -0.23 \text{ A}$ | | 0.63 | | | | t_{RR} | Reverse Recovery Time | N | V _{GS} = 0 V, | I _S = 0.23 A | | 0.410 | | μs | | | | Р | $d_{IS}/d_t = 90 A/\mu s$ | $I_S = -0.23 \text{ A}$ | | 0.078 | | | - Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%. Switching characteristics are independent of operating junction temperatures. ## TYPICAL N-CHANNEL PERFORMANCE CURVES (T_J = 25°C UNLESS OTHERWISE NOTED) Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics Figure 3. On-Resistance vs. Drain Current and Temperature Figure 4. On-Resistance vs. Drain Current and Temperature Figure 5. On–Resistance Variation with Temperature Figure 6. Capacitance Variation ## $\textbf{TYPICAL N-CHANNEL PERFORMANCE CURVES} \ (T_J = 25^{\circ}\text{C UNLESS OTHERWISE NOTED}) \ (\text{continued})$ Figure 7. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge Figure 8. Diode Forward Voltage vs. Current ## $\textbf{TYPICAL P-CHANNEL PERFORMANCE CURVES} \ (\textbf{T}_{J} = 25^{\circ} \textbf{C} \ \textbf{UNLESS OTHERWISE NOTED}) \ (\textbf{continued})$ Figure 9. On-Region Characteristics Figure 10. Transfer Characteristics Figure 11. On–Resistance vs. Drain Current and Temperature Figure 12. On-Resistance vs. Drain Current and Temperature Figure 13. On-Resistance Variation with Temperature Figure 14. Capacitance Variation ## $\textbf{TYPICAL P-CHANNEL PERFORMANCE CURVES} \ (T_J = 25^{\circ}\text{C UNLESS OTHERWISE NOTED}) \ (continued)$ Figure 15. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge Figure 16. Diode Forward Voltage vs. Current ## **ORDERING INFORMATION** | Device | Package | Shipping [†] | |--------------|----------------------|-----------------------| | NTJD4105CT1G | SOT-363
(Pb-Free) | 3000 / Tape & Reel | | NTJD4105CT2G | SOT-363
(Pb-Free) | 3000 / Tape & Reel | ## **DISCONTINUED** (Note 4) | NTJD4105CT1 | SOT-363 | 3000 / Tape & Reel | |--------------|----------------------|----------------------| | NTJD4105CT2 | SOT-363 | 3000 / Tape & Reel | | NTJD4105CT4 | SOT-363 | 10,000 / Tape & Reel | | NTJD4105CT4G | SOT-363
(Pb-Free) | 10,000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{4.} **DISCONTINUED:** These devices are not recommended for new design. Please contact your **onsemi** representative for information. The most current information on these devices may be available on www.onsemi.com. E1 6X 0.30 - e В ## SC-88 2.00x1.25x0.90, 0.65P CASE 419B-02 **ISSUE Z** **DATE 18 APR 2024** #### NOTES: - DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5-2018. - ALL DIMENSION ARE IN MILLIMETERS. - DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END. - DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AND DATUM H. DATUMS A AND B ARE DETERMINED AT DATUM H. - DIMENSIONS 6 AND c APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP. 6. - DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION 6 AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT. DIM MIN TOP VIEW ∆aaa H A−B <u></u> БЬБ С ⊕ ddd M C A−B D 6X 0.66 2.50 ## **GENERIC MARKING DIAGRAM*** | А | | | 1.10 | | | |-----|----------------|----------|------|--|--| | A1 | 0.00 | | 0.10 | | | | A2 | 0.70 | 0.90 | 1.00 | | | | Ь | 0.15 | 0.20 | 0.25 | | | | С | 0.08 | 0.15 | 0.22 | | | | D | : | 2.00 BSC | ; | | | | E | 2.10 BSC | | | | | | E1 | 1.25 BSC | | | | | | е | 0.65 BSC | | | | | | L | 0.26 0.36 0.46 | | | | | | L2 | 0.15 BSC | | | | | | aaa | 0.15 | | | | | | bbb | 0.30 | | | | | | ccc | 0.10 | | | | | | ddd | | 0.10 | | | | | | | | | | | MILLIMETERS NOM RECOMMENDED MOUNTING FOOTPRINT* FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ONSEMI SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D. XXX = Specific Device Code = Date Code* = Pb-Free Package (Note: Microdot may be in either location) - *Date Code orientation and/or position may vary depending upon manufacturing location. - *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. ## **STYLES ON PAGE 2** | DOCUMENT NUMBER: | 98ASB42985B | Electronic versions are uncontrolled except when accessed directly from the Document Repositor
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | |------------------|-----------------------------|---|-------------|--|--| | DESCRIPTION: | SC-88 2.00x1.25x0.90, 0.65P | | PAGE 1 OF 2 | | | onsemi and ONSEMi, are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. ## SC-88 2.00x1.25x0.90, 0.65P CASE 419B-02 ISSUE Z **DATE 18 APR 2024** | STYLE 1: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2 | STYLE 2:
CANCELLED | STYLE 3:
CANCELLED | STYLE 4: PIN 1. CATHODE 2. CATHODE 3. COLLECTOR 4. EMITTER 5. BASE 6. ANODE | STYLE 5:
PIN 1. ANODE
2. ANODE
3. COLLECTOR
4. EMITTER
5. BASE
6. CATHODE | STYLE 6:
PIN 1. ANODE 2
2. N/C
3. CATHODE 1
4. ANODE 1
5. N/C
6. CATHODE 2 | |--|--|---|---|---|--| | STYLE 7:
PIN 1. SOURCE 2
2. DRAIN 2
3. GATE 1
4. SOURCE 1
5. DRAIN 1
6. GATE 2 | STYLE 8:
CANCELLED | STYLE 9: PIN 1. EMITTER 2 2. EMITTER 1 3. COLLECTOR 1 4. BASE 1 5. BASE 2 6. COLLECTOR 2 | STYLE 10:
PIN 1. SOURCE 2
2. SOURCE 1
3. GATE 1
4. DRAIN 1
5. DRAIN 2
6. GATE 2 | STYLE 11:
PIN 1. CATHODE 2
2. CATHODE 2
3. ANODE 1
4. CATHODE 1
5. CATHODE 1
6. ANODE 2 | STYLE 12: PIN 1. ANODE 2 2. ANODE 2 3. CATHODE 1 4. ANODE 1 5. ANODE 1 6. CATHODE 2 | | STYLE 13: PIN 1. ANODE 2. N/C 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE | STYLE 14:
PIN 1. VREF
2. GND
3. GND
4. IOUT
5. VEN
6. VCC | STYLE 15: PIN 1. ANODE 1 2. ANODE 2 3. ANODE 3 4. CATHODE 3 5. CATHODE 2 6. CATHODE 1 | STYLE 16:
PIN 1. BASE 1
2. EMITTER 2
3. COLLECTOR 2
4. BASE 2
5. EMITTER 1
6. COLLECTOR 1 | STYLE 17: PIN 1. BASE 1 2. EMITTER 1 3. COLLECTOR 2 4. BASE 2 5. EMITTER 2 6. COLLECTOR 1 | STYLE 18:
PIN 1. VIN1
2. VCC
3. VOUT2
4. VIN2
5. GND
6. VOUT1 | | STYLE 19:
PIN 1. I OUT
2. GND
3. GND
4. V CC
5. V EN
6. V REF | STYLE 20: PIN 1. COLLECTOR 2. COLLECTOR 3. BASE 4. EMITTER 5. COLLECTOR 6. COLLECTOR | STYLE 21: PIN 1. ANODE 1 2. N/C 3. ANODE 2 4. CATHODE 2 5. N/C 6. CATHODE 1 | STYLE 22:
PIN 1. D1 (i)
2. GND
3. D2 (i)
4. D2 (c)
5. VBUS
6. D1 (c) | STYLE 23:
PIN 1. Vn
2. CH1
3. Vp
4. N/C
5. CH2
6. N/C | STYLE 24: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. CATHODE 5. CATHODE 6. CATHODE | | STYLE 25: PIN 1. BASE 1 2. CATHODE 3. COLLECTOR 2 4. BASE 2 5. EMITTER 6. COLLECTOR 1 | STYLE 26: PIN 1. SOURCE 1 2. GATE 1 3. DRAIN 2 4. SOURCE 2 5. GATE 2 6. DRAIN 1 | STYLE 27: PIN 1. BASE 2 2. BASE 1 3. COLLECTOR 1 4. EMITTER 1 5. EMITTER 2 6. COLLECTOR 2 | STYLE 28: PIN 1. DRAIN 2. DRAIN 3. GATE 4. SOURCE 5. DRAIN 6. DRAIN | STYLE 29: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE/ANODE 6. CATHODE | STYLE 30:
PIN 1. SOURCE 1
2. DRAIN 2
3. DRAIN 2
4. SOURCE 2
5. GATE 1
6. DRAIN 1 | Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment. | DOCUMENT NUMBER: | 98ASB42985B | Electronic versions are uncontrolled except when accessed directly from the Document Repositor
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | |------------------|----------------------------|---|--|--|--| | DESCRIPTION: | SC-88 2.00x1.25x0.90, 0.65 | SC-88 2.00x1.25x0.90, 0.65P | | | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### ADDITIONAL INFORMATION TECHNICAL PUBLICATIONS: $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales