

MOSFET - Power, Single N-Channel, DUAL COOL[®] 40 V, 0.78 m Ω , 310 A

Product Preview

NTMFSCOD8N04XM

Features

- Advanced Dual-Sided Cooling Package
- Latest 40 V Power MOSFET Technology for Motor Drive Applications
- Extreme Lower On–Resistance to Minimize Conduction Losses
- Lower Gate Charge to Minimize Gate Driving and Switching Losses
- Soft Body Diode Reverse Recovery
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

Typical Applications

- Motor Drive
- ORing FET
- Battery Protection

MAXIMUM RATINGS (T_J = 25°C, Unless otherwise specified)

Parar	Parameter		Symbol	Value	Unit
Drain-to-Source Voltaç	ge		V_{DSS}	40	V
Gate-to-Source Voltag	e		V_{GS}	±20	V
Continuous Drain Current $R_{\theta JC}$ (Note 2)	Steady State	T _C = 25°C	I _D	310	Α
Power Dissipation R _{θJC} (Note 2)	State		P _D	135	W
Continuous Drain Current R _{0JA} (Note 1, 2)	Steady State	T _A = 25°C	I _D	52	Α
Power Dissipation R _{θJA} (Note 1, 2)	State		P _D	3.8	W
Pulsed Drain Current	$T_A = 25^{\circ}C, t_p = 10 \mu s$		I _{DM}	TBD	Α
Pulsed Source Cur- rent (Body Diode)	$T_A = 25^{\circ}C, t_p = 10 \mu s$		I _{SM}	TBD	Α
Operating Junction and Range	d Storage Temperature		T _J , T _{stg}	-55 to +175	°C
Source Current (Body [Diode) R _{θJC}		I _S	112	Α
Single Pulse Drain-to- Energy (I _{L(pk)} = TBD A)			E _{AS}	TBD	mJ
Lead Temperature Soldering Reflow for Soldering Purposes (1/8" from case for 10 s)		TL	300	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- Surface-mounted on FR4 board using 1 in² pad size, 1 oz Cu pad.
- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

This document contains information on a product under development. **onsemi** reserves the right to change or discontinue this product without notice.

V _{SSS}	R _{SS(ON)} MAX	I _D MAX
40 V	$0.78~\text{m}\Omega$ @ $10~\text{V}$	310 A

DFN8 5x6 CASE 506EG

MARKING DIAGRAM

3R = Specific Device Code

A = Assembly Location

Y = Year

W = Work Week

Z = Assembly Lot Code

N-Channel MOSFET

ORDERING INFORMATION

See detailed ordering and shipping information on page 3 of this data sheet.

NTMFSC0D8N04XM

THERMAL CHARACTERISTICS

Symbol	Parameter	Max	Unit
$R_{ heta JC}$	Junction-to-Case (Bottom) - Steady State (Note 3)	1.11	°C/W
$R_{ heta JC}$	Junction-to-Case (Top) - Steady State (Note 3)	1.71	
$R_{ heta JA}$	Junction-to-Ambient - Steady State (Notes 1 and 3)	39	

^{3.} The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit	
OFF CHARACTERISTICS	•						•	
Drain - to - Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		40			V	
Drain – to – Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	I _D = 1 mA, ref to	25°C		14.9		mV/°C	
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 40 V	T _J = 25°C			10	μΑ	
			T _J = 125°C			100	1	
Gate – to – Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} =	= 20 V			100	nA	
ON CHARACTERISTICS (Note 4)								
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 1$	Ι80 μΑ	2.5		3.5	V	
Negative Threshold Temperature Coefficient	V _{GS(TH)} / T _J	I _D = 180 μA, ref to	o 25°C		-7.2		mV/°C	
Drain – to – Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D =	50 A		0.63	0.78	mΩ	
Gate-Resistance	R _G	T _A = 25°C			TBD		Ω	
CHARGES & CAPACITANCES								
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = 20 V			5044		pF	
Output Capacitance	C _{OSS}				3228		1	
Reverse Transfer Capacitance	C _{RSS}				85		1	
Output Charge	Q _{OSS}	$V_{GS} = 0 \text{ V}, V_{DS} = 20 \text{ V}$ $V_{GS} = 10 \text{ V}, V_{DS} = 20 \text{ V}, I_{D} = 50 \text{ A}$			116		nC	
Total Gate Charge	Q _{G(TOT)}				72.1		1	
Threshold Gate Charge	Q _{G(TH)}				13.6		1	
Gate-to-Source Charge	Q _{GS}				20.6		1	
Gate-to-Drain Charge	Q_{GD}				13.3		1	
Plateau Voltage	V _{GP}				4.48		V	
SWITCHING CHARACTERISTICS (Note	2 4)						•	
Turn – On Delay Time	t _{d(ON)}	$V_{GS} = 10 \text{ V}, V_{DS} = I_D = 50 \text{ A}, R_G = 10 \text{ A}$	= 20 V,		25.1		ns	
Rise Time	t _r	$I_D = 50 \text{ A}, R_G = 3$	2.5 Ω		8.1		1	
Turn – Off Delay Time	t _{d(OFF)}				39.1		1	
Fall Time	t _f				6.3		1	
DRAIN-SOURCE DIODE CHARACTER	ISTICS				-		-	
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = 50 A	T _J = 25°C		0.80	1.2	V	
			T _J = 125°C		0.66		1	
	ī						ł	
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, dI}_{S}/\text{dt} = 0 \text{ V, dI}_{S}/d$	100 A/μs,		65.8		ns	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Switching characteristics are independent of operating junction temperatures.

NTMFSC0D8N04XM

ORDERING INFORMATION

Device	Device Marking	Package	Shipping [†]
NTMFSC0D8N04XMTWG	3R	DFN8 5x6 (Pb–Free/Halogen Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DUAL COOL is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

NTMFSC0D8N04XM

PACKAGE DIMENSIONS

DFN8 5.1x6.15, 1.27P, DUAL COOL

CASE 506EG

E1

E2

NOTES:

θ

C

1.27

6.61

0.61

KEEP OUT

AREA

SEATING PLANE

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS.
- DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.
- SEATING PLANE IS DEFINED BY THE TERMINALS. "A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

	MILLIMETERS			
D I M	MIN.	NOM.	MAX.	
Α	0.85	0.90	0.95	
A1	-	-	0.05	
A2	-	-	0.05	
b	0.31	0.41	0.51	
b1	0.21	0.31	0.41	
С	0.20	0.25	0.30	
D	4.90	5.00	5.10	
D1	4.80	4.90	5.00	
D2	3.67	3.82	3.97	
D3	2.60 REF			
D4	0.86 REF			
E	6.05	6.15	6.25	
E1	5.70	5.80	5.90	
E2	3.38 3.48 3.5			
E3	;	3.30 REF		
E4	0.50 REF			
E5	0.34 REF			
E6	0.30 REF			
E7	0.52 REF			
е	1.27 BSC			
1/2e	0.635 BSC			
K	1.30	1.40	1.50	
L	0.56	0.66	0.76	
L1	0.52	0.62	0.72	
θ	0°		12°	

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.
A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf . onsemi reserves the right to make changes at any time to any
products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information
provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may
vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

LAND PATTERN RECOMMENDATION

REFERENCE MANUAL, SOLDERRM/D.

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES

PUBLICATION ORDERING INFORMATION

D1

BOTTOM VIEW

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

1.27

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative

(E7)

(E6)