

MOSFET – Power, P-Channel, SOIC-8

-30 V, -11.4 A

NTMS4177P

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- SOIC–8 Surface Mount Package Saves Board Space
- This is a Pb-Free Device

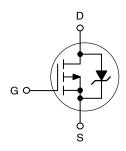
Applications

- Load Switches
- Notebook PC's
- Desktop PC's

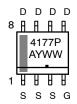
MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Symbol	Rating			Value	Unit	
V _{DSS}	Drain-to-Source Voltage			-30	V	
V _{GS}	Gate-to-Source Voltage	!		±20	V	
I _D	Continuous Drain	T _A = 25°C	-8.9	Α		
	Current R _{θJA} (Note 1)		T _A = 70°C	-7.1		
P _D	Power Dissipation R _{θJA} (Note 1)		T _A = 25°C	1.52	W	
I _D	Continuous Drain		T _A = 25°C	-6.6	Α	
	Current R _{θJA} (Note 2)	Steady	T _A = 70°C	-5.3		
P _D	Power Dissipation R _{θJA} (Note 2)	State	T _A = 25°C	0.84	W	
I _D	Continuous Drain		T _A = 25°C	-11.4	Α	
	Current $R_{\theta JA}$ t < 10 s (Note 1)		T _A = 70°C	-9.3		
P _D	Power Dissipation R _{θJA} t < 10 s (Note 1)		T _A = 25°C	2.5	W	
I _{DM}	Pulsed Drain Current	Current $T_A = 25^{\circ}C$, $t_p = 10 \mu s$			Α	
T_J, T_{STG}	Operating Junction and Storage Temperature			-55 to +150	°C	
Is	Source Current (Body Diode)			-2.1	Α	
EAS	Single Pulse Drain-to-Source Avalanche Energy T_J = 25°C, V_{DD} = 30 V, V_{GS} = 10 V, I_L = 20 A_{pk} , L = 1.0 mH, R_G = 25 Ω			200	mJ	
T _L	Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			260	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. Surface-mounted on FR4 board using 1 inch sq pad size, 1 oz Cu.
- 2. Surface-mounted on FR4 board using the minimum recommended pad size.

V _{(BR)DSS}	R _{DS(on)} Max	I _D Max	
-30 V	12 mΩ @ –10 V	-11.4 A	
	19 mΩ @ -4.5 V	11.17	



SOIC-8 CASE 751 STYLE 12

P-Channel

MARKING DIAGRAM & PIN ASSIGNMENT

4177P = Device Code A = Assembly Location

Y = Year WW = Work Week ■ = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
NTMS4177PR2G	SOIC-8 (Pb-Free)	2,500 / Tape & Reel

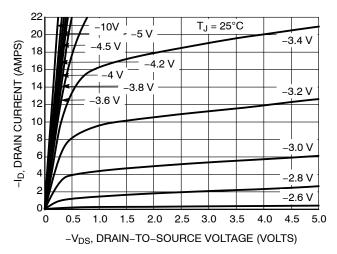
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

NTMS4177P

THERMAL RESISTANCE RATINGS

Symbol	Rating	Max	Unit
$R_{\theta JA}$	Junction-to-Ambient - Steady State (Note 3)	82	
$R_{\theta JA}$	Junction-to-Ambient – t≤10 s (Note 3)	50	°C/W
$R_{\theta JF}$	Junction-to-FOOT (Drain)	20	C/VV
$R_{\theta JA}$	Junction-to-Ambient - Steady State (Note 4)	148	

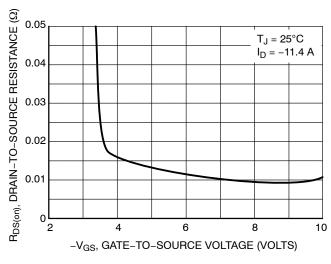
- Surface-mounted on FR4 board using 1 inch sq pad size, 1 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size.


ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)jk

Symbol	Characteristic	Test Condition		Min	Тур	Max	Unit
OFF CHARA	CTERISTICS						
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D$	= -250 μΑ	-30			V
V _{(BR)DSS} /T _J	Drain-to-Source Breakdown Voltage Temperature Coefficient				29		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{GS} = 0 V,	T _J = 25°C			-1.0	^
		$V_{DS} = -24 \text{ V}$	T _J = 85°C			-5.0	μΑ
I _{GSS}	Gate-to-Source Leakage Current	$V_{DS} = 0 \text{ V}, V_{G}$	iS = ±20 V			±100	nA
ON CHARAC	CTERISTICS (Note 5)						
V _{GS(TH)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_D$	= -250 μA	-1.5		-2.5	V
V _{GS(TH)} /T _J	Negative Threshold Temperature Coefficient				6.0		mV/°C
R _{DS(on)}	Drain-to-Source On Resistance	V _{GS} = -10 V	I _D = -11.4 A		10	12	mΩ
		V _{GS} = -4.5 V	I _D = -9.1 A		15	19	11152
9FS	Forward Transconductance	V _{DS} = −1.5 V	$I_D = -11.4 \text{ A}$		30		S
CHARGES, C	CAPACITANCES AND GATE RESISTANCE						
C _{ISS}	Input Capacitance	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$ $V_{DS} = -24 \text{ V}$			3100		pF
C _{OSS}	Output Capacitance				550		
C _{RSS}	Reverse Transfer Capacitance	103			370		
Q _{G(TOT)}	Total Gate Charge				29		
Q _{G(TH)}	Threshold Gate Charge	$V_{GS} = -4.5 \text{ V}, V_{DS} = -15 \text{ V},$ $I_D = -11.4 \text{ A}$			3.3		nC
Q_{GS}	Gate-to-Source Charge				10		
Q_{GD}	Gate-to-Drain Charge				13		
Q _{G(TOT)}	Total Gate Charge	$V_{GS} = -10 \text{ V}, V_{DS} = -15 \text{ V},$ $I_D = -11.4 \text{ A},$			55		nC
R_{G}	Gate Resistance				2.0	4.0	Ω
SWITCHING	CHARACTERISTICS (Note 6)						
t _{d(ON)}	Turn-On Delay Time				18		ns
t _r	Rise Time	$V_{GS} = -10 \text{ V}, \text{ V}_{I}$	_{DD} = -15 V,		13		
t _{d(OFF)}	Turn-Off Delay Time	$I_{D} = -1.0 \text{ A, F}$	$R_{\rm G}$ = 6.0 Ω		64		
t _f	Fall Time				36		1
DRAIN-TO-S	SOURCE CHARACTERISTICS						
V_{SD}	Forward Diode Voltage	V _{GS} = 0 V	T _J = 25°C		-0.73	-1.0	V
		$I_D = -2.1 \text{ A}$	T _J = 125°C		0.54		
t _{RR}	Reverse Recovery Time	$V_{GS} = 0 \text{ V, } d_{IS}/d_t = 100 \text{ A/}\mu\text{s,}$ $I_S = -2.1 \text{ A}$			34		
Ta	Charge Time				18		ns
T _b	Discharge Time				16		
Q _{RR}	Reverse Recovery Time				30		nC

- 5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.
- 6. Switching characteristics are independent of operating junction temperatures.

NTMS4177P


TYPICAL PERFORMANCE CURVES

22 $V_{DS} \ge 10 \text{ V}$ 20 -ID, DRAIN CURRENT (AMPS) 18 16 14 12 10 $T_{J} = 125^{\circ}C$ $T_J = 25^{\circ}C$ $T_J = -55^{\circ}C$ 0 1.5 3.0 3.5 2.5 4.0 -V_{GS}, GATE-TO-SOURCE VOLTAGE (VOLTS)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

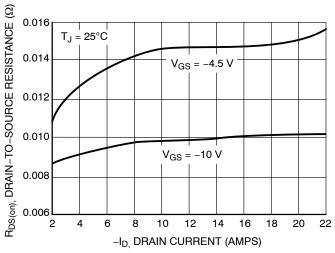
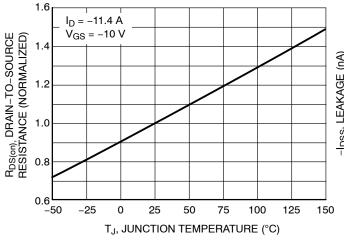



Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

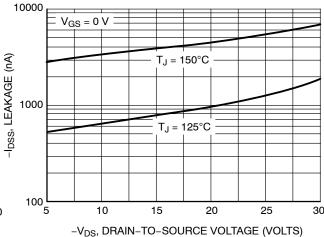


Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-to-Source Leakage Current vs. Voltage

NTMS4177P

TYPICAL PERFORMANCE CURVES (continued)

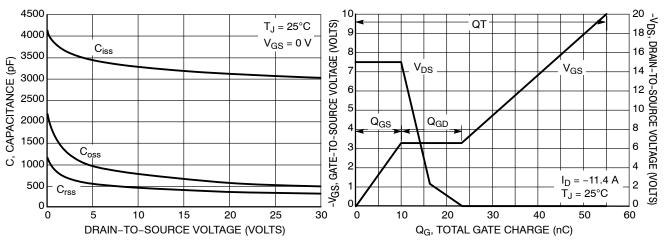
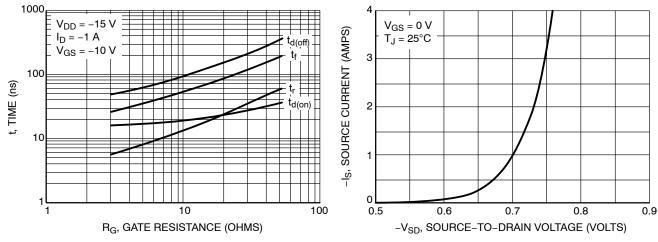



Figure 7. Capacitance Variation

Figure 8. Gate-To-Source and Drain-To-Source Voltage vs. Total Charge

100 μs

Figure 9. Resistive Switching Time Variation vs. Gate Resistance

100

 $V_{GS} = -20 \text{ V}$

SINGLE PULSE T_C = 25°C

-ID, DRAIN CURRENT (AMPS)

0.01 L 0.1

200 SINGLE PULSE DRAIN-TO-SOURCE $I_D = -20 \text{ A}$ 175 AVALANCHE ENERGY (mJ) 150 125 100 75 50 25 ∭ , EAS, EAS, 25 75 100 125 150 T_J, STARTING JUNCTION TEMPERATURE (°C)

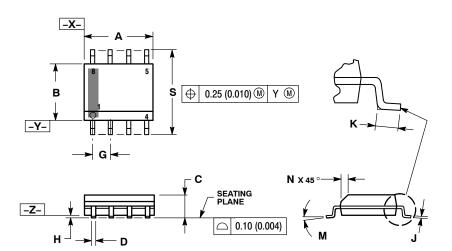
Figure 10. Diode Forward Voltage vs. Current

Figure 11. Maximum Rated Forward Biased Safe Operating Area

-V_{DS}, DRAIN-TO-SOURCE VOLTAGE (VOLTS)

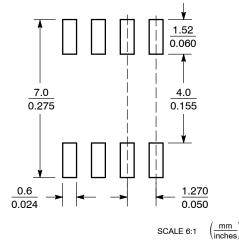
R_{DS(on)} LIMIT THERMAL LIMIT

PACKAGE LIMIT


Figure 12. Maximum Avalanche Energy vs. Starting Junction Temperature

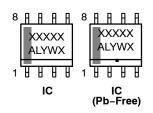
SOIC-8 NB CASE 751-07 **ISSUE AK**

DATE 16 FEB 2011


XS

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.80	5.00	0.189	0.197	
В	3.80	4.00	0.150	0.157	
C	1.35	1.75	0.053	0.069	
D	0.33	0.51	0.013	0.020	
G	1.27	1.27 BSC		0.050 BSC	
Н	0.10	0.25	0.004 0.010		
J	0.19	0.25	0.007	0.010	
K	0.40	1.27	0.016	0.050	
M	0 °	8 °	0 °	8 °	
N	0.25	0.50	0.010	0.020	
S	5.80	6.20	0.228	0.244	


SOLDERING FOOTPRINT*

0.25 (0.010) M Z Y S

^{*}For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location = Wafer Lot

= Year = Work Week W = Pb-Free Package

XXXXXX XXXXXX AYWW AYWW H \mathbb{H} Discrete **Discrete** (Pb-Free)

XXXXXX = Specific Device Code = Assembly Location Α

ww = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2	

onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB CASE 751-07 ISSUE AK

DATE 16 FEB 2011

STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. COLLECTOR 4. EMITTER 5. EMITTER 6. BASE 7. BASE 8. EMITTER	STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 4. COLLECTOR, #2 5. BASE, #2 6. EMITTER, #2 7. BASE, #1 8. EMITTER, #1	STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1	STYLE 4: PIN 1. ANODE 2. ANODE 3. ANODE 4. ANODE 5. ANODE 6. ANODE 7. ANODE 8. COMMON CATHODE
STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN 4. DRAIN 5. GATE 6. GATE 7. SOURCE 8. SOURCE	7. BASE, #1 8. EMITTER, #1 STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE	STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd	STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 3. BASE. #2
STYLE 9: PIN 1. EMITTER, COMMON 2. COLLECTOR, DIE #1 3. COLLECTOR, DIE #2 4. EMITTER, COMMON 5. EMITTER, COMMON 6. BASE, DIE #2 7. BASE, DIE #1 8. EMITTER, COMMON	STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND 6. BIAS 2 7. INPUT 8. GROUND	STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 8. DRAIN 1	STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN
STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN	STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE 4. P-GATE 5. P-DRAIN 6. P-DRAIN 7. N-DRAIN 8. N-DRAIN	STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 6. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON	STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 7. COLLECTOR, DIE #1 8. COLLECTOR, DIE #1
STYLE 17: PIN 1. VCC 2. V2OUT 3. V1OUT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC	STYLE 18: PIN 1. ANODE 2. ANODE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. CATHODE 8. CATHODE	STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1	STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN
5. RXE 6. VEE 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3. CATHODE 3 4. CATHODE 4 5. CATHODE 5 6. COMMON ANODE 7. COMMON ANODE 8. CATHODE 6	STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3. COMMON CATHODE/VCC 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND	STYLE 23: PIN 1. LINE 1 IN 2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT	STYLE 24: PIN 1. BASE 2. EMITTER 3. COLLECTOR/ANODE 4. COLLECTOR/ANODE 5. CATHODE 6. CATHODE 7. COLLECTOR/ANODE 8. COLLECTOR/ANODE
STYLE 25: PIN 1. VIN 2. N/C 3. REXT 4. GND 5. IOUT 6. IOUT 7. IOUT 8. IOUT	STYLE 26: PIN 1. GND 2. dv/dt 3. ENABLE 4. ILIMIT 5. SOURCE 6. SOURCE 7. SOURCE 8. VCC	STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN	STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND 5. V_MON 6. VBULK 7. VBULK 8. VIN
STYLE 29: PIN 1. BASE, DIE #1 2. EMITTER, #1 3. BASE, #2 4. EMITTER, #2 5. COLLECTOR, #2 6. COLLECTOR, #2 7. COLLECTOR, #1 8. COLLECTOR, #1	STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 3. GATE 2 4. SOURCE 2 5. SOURCE 1/DRAIN 2 6. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 8. GATE 1		

DOCUMENT NUMBER:	98ASB42564B Electronic versions are uncontrolled except when accessed directly from the Document Repr Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales