# **MOSFET** - Power, Single P-Channel, Small Signal -20 V, -127 mA ## NTNS2K1P021Z #### **Features** - Low Profile Ultra Small Package, XDFN3 (0.62 x 0.42 x 0.4 mm) for Extremely Space–Constrained Applications - -1.5 V Gate Drive - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant #### **Applications** - Small Signal Load Switch - High Speed Interfacing - Level Shift #### MAXIMUM RATINGS (T<sub>J</sub> = 25°C unless otherwise stated) | Parameter | | | Symbol | Value | Unit | |-------------------------------------------------------------------|------------------------|-----------------------|----------------------|---------------|------| | Drain-to-Source Voltage | | | V <sub>DSS</sub> | 20 | V | | Gate-to-Source Volta | Gate-to-Source Voltage | | | ±8 | V | | Continuous Drain | Steady | T <sub>A</sub> = 25°C | ID | -127 | mA | | Current (Note 1) | State | T <sub>A</sub> = 85°C | | -91 | ~ | | | t ≤ 5 s | T <sub>A</sub> = 25°C | | -146 | O | | Power Dissipation (Note 1) | Steady<br>State | $T_A = 25^{\circ}C$ | Pb | 125 | mW | | | t ≤ 5 s | .GN | CF. | 166 | 3 | | Pulsed Drain<br>Current | t <sub>p</sub> ₹ | 10 μs | I <sub>DM</sub> | -488 | mA | | Operating Junction and Storage<br>Temperature Range | | | TJ, T <sub>STG</sub> | –55 to<br>150 | °C | | Source Current (Body Diode) (Note 2) | | | Is | 200 | mA | | Lead Temperature for Soldering Purposes (1/8" from case for 10 s) | | | TL | 260 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - Surface-mounted on FR4 board using the minimum recommended pad size, or 2 mm<sup>2</sup>, 1 oz Cu. - 2. Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2% #### ON Semiconductor® #### www.onsemi.com | V <sub>(BR)DSS</sub> | R <sub>DS(on)</sub> MAX | I <sub>D</sub> Max | |----------------------|-------------------------|--------------------| | | 5.0 Ω @ -4.5 V | | | –20 V | 7.0 Ω @ -1.8 V | -127 mA | | | 20 Ω @ -1.2 V | GIZ | #### P-CHANNEL MOSFET #### **MARKING DIAGRAM** XDFN3 CASE 711BH F = Specific Device Code M = Date Code #### **ORDERING INFORMATION** | Device | Package | Shipping <sup>†</sup> | |-----------------|--------------------|-----------------------| | NTNS2K1P021ZTCG | XDFN3<br>(Pb-Free) | 8000 / Tape &<br>Reel | <sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. #### NTNS2K1P021Z #### THERMAL RESISTANCE RATINGS | Parameter | Symbol | Max | Unit | |---------------------------------------------|-----------------|-----|------| | Junction-to-Ambient - Steady State (Note 3) | $R_{\theta JA}$ | 998 | °C/W | | Junction-to-Ambient - t ≤ 5 s (Note 3) | $R_{\theta JA}$ | 751 | C/VV | <sup>3.</sup> Surface–mounted on FR4 board using the minimum recommended pad size, or 2 mm<sup>2</sup>, 1 oz Cu. ### **ELECTRICAL CHARACTERISTICS** ( $T_J = 25^{\circ}C$ unless otherwise stated) | Parameter | Symbol | Test Condition | | Min | Тур | Max | Unit | |-------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------|------|------|---------------|----------| | OFF CHARACTERISTICS | | | | | | | | | Drain-to-Source Breakdown Voltage | V <sub>(BR)DSS</sub> | $V_{GS} = 0 \text{ V}, I_D = -25$ | 0 μΑ | -20 | | | V | | Zero Gate Voltage Drain Current | I <sub>DSS</sub> | $V_{GS} = 0 \text{ V}, V_{DS} = -5 \text{ V}$ | T <sub>J</sub> = 25°C | | | -50 | nA | | Zero Gate Voltage Drain Current | I <sub>DSS</sub> | $V_{GS} = 0 \text{ V}, V_{DS} = -16 \text{ V}$ | T <sub>J</sub> = 25°C | | | -100 | nA | | Gate-to-Source Leakage Current | I <sub>GSS</sub> | V <sub>DS</sub> = 0 V, V <sub>GS</sub> = ± | 5 V | | | ±100 | nA | | ON CHARACTERISTICS (Note 4) | | | | | | ~1G1 | | | Gate Threshold Voltage | V <sub>GS(TH)</sub> | $V_{GS} = V_{DS}, I_D = -25$ | 50 μΑ | -0.4 | 26 | <b>9</b> –1.0 | V | | | | $V_{GS} = -4.5 \text{ V}, I_D = -1$ | 00 mA | | 2.1 | 5.0 | | | Drain-to-Source On Resistance | R <sub>DS(on)</sub> | $V_{GS} = -1.8 \text{ V}, I_D = -2.8 \text{ V}$ | 20 mA | NE | 3.6 | 7.0 | $\Omega$ | | | | V <sub>GS</sub> = -1.2 V, I <sub>D</sub> = - | 10 mA | 2 1 | 7.3 | 20 | | | Forward Transconductance | 9 <sub>FS</sub> | $V_{DS} = -5 \text{ V}, I_{D} = -125 \text{ mA}$ | | alu, | 0.35 | | S | | Source-Drain Diode Voltage | $V_{SD}$ | $V_{GS} = 0 \text{ V}, I_{S} = -10$ | ) mA | 50,7 | -0.6 | -1.0 | V | | CHARGES & CAPACITANCES | | MO | 120 | Mr | | | | | Input Capacitance | C <sub>ISS</sub> | WE, C | 70,50 | | 12.8 | | | | Output Capacitance | Coss | $V_{GS} = 0 \text{ V, freq} = 1 \text{ MHz, V}$ | V <sub>GS</sub> = 0 V, freq = 1 MHz, V <sub>DS</sub> = -15 V | | 2.8 | | pF | | Reverse Transfer Capacitance | C <sub>RSS</sub> | CO'C'AR" | | | 2.0 | | | | SWITCHING CHARACTERISTICS, VGS = 4.5 V (Note 4) | | | | | | | | | Turn-On Delay Time | <sup>‡</sup> d(ON) | CO, 1/1/2 | | | 37 | | | | Rise Time | trck | $V_{GS} = -4.5 \text{ V}, V_{DD} =$ | –15 V, | | 71 | | 20 | | Turn-Off Delay Time | t <sub>d</sub> (OFF) | $V_{GS} = -4.5 \text{ V}, V_{DD} = -15 \text{ V},$ $I_{D} = 200 \text{ mA}, R_{G} = 2 \Omega$ | | | 280 | | ns | | Fall Time | ¥.5 | | | | 171 | | | Switching characteristics are independent of operating junction temperatures. #### NTNS2K1P021Z #### **TYPICAL CHARACTERISTICS** Figure 1. On-Region Characteristics -V<sub>GS</sub>, GATE-TO-SOURCE VOLTAGE (V) Figure 2. Transfer Characteristics Figure 3. On-Resistance vs. Gate-to-Source Voltage Figure 5. On–Resistance Variation with Temperature Figure 4. On-Resistance vs. Drain Current and Gate Voltage Figure 6. Drain-to-Source Leakage Current vs. Voltage #### NTNS2K1P021Z #### **TYPICAL CHARACTERISTICS** Figure 7. Capacitance Variation $R_G$ , GATE RESISTANCE ( $\Omega$ ) Figure 8. Resistive Switching Time Variation vs. Gate Resistance Figure 9. Diode Forward Voltage vs. Current Figure 10. Maximum Rated Forward Biased Safe Operating Area Figure 11. Thermal Response PIN 1 REFERENCE #### XDFN3 0.42x0.62, 0.3P CASE 711BH ISSUE A **DATE 29 APR 2018** #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009. - 2. CONTROLLING DIMENSION: MILLIMETERS - DIMENSION 6 AND 61 APPLIES TO THE PLATED TERMINALS AND IS MEASURED BETWEEN 0.20 AND 0.25 FROM THE TERMINAL TIP. - 4. COPLANARITY APPLIES TO THE PLATED TERMINALS. | | MILLIMETERS | | | | |-----|-------------|----------|------|--| | DIM | MIN. | N□M. | MAX. | | | Α | 0.33 | 0.38 | 0.43 | | | A1 | | | 0.07 | | | A3 | ( | .13 REF | | | | b | 0.05 | 0.11 | 0.17 | | | b1 | 0.20 | 0.25 | 0.30 | | | D | 0.32 | 0.42 | 0.52 | | | Ε | 0.52 | 0.62 | 0.72 | | | e | 0.30 BSC | | | | | e1 | ( | ).38 BSC | | | | L | 0.09 | 0.15 | 0.21 | | | L1 | 0.15 | 0.20 | 0.25 | | | L2 | | | 0.03 | | | L3 | | | 0.03 | | | k | 0.20 REF | | | | TOP VIEW # GENERIC MARKING DIAGRAM\* O XM X = Specific Device CodeM = Date Code \*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G", may or not be present. Some products may not follow the Generic Marking. | PACKAGE<br>DUTLINE | | <u> </u> | 0,35 | | |---------------------|------|----------|---------------|---------------| | 0.29 | | | <br> | 0.30 | | 0.11 | | | | 0.25 | | 2X 0.21—<br>0.52——— | | - | - | 0.31<br>PITCH | | DECE | 1111 | 4 □ N I | $D \subset D$ | | RECOMMENDED MOUNTING FOOTPRINT | not follow the Generic Marking. | | | | | | | |---------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--| | DOCUMENT NUMBER: | 98AON64946G | Electronic versions are uncontrolled except when accessed directly fron<br>Printed versions are uncontrolled except when stamped "CONTROLLET | | | | | | | | | | | | | XDFN3 0.42x0.62, 0.3P onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. DESCRIPTION: PAGE 1 OF 1 onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales