MOSFET – Power, Single, N-Channel, μ8FL 30 V, 52 A

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

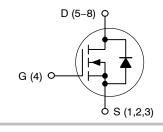
Applications

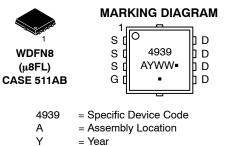
- Low-Side DC-DC Converters
- Power Load Switch
- Notebook Battery Management
- Motor Control

MAXIMUM RATINGS (T_J = 25° C unless otherwise stated)

Param	eter		Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	30	V
Gate-to-Source Voltage	Gate-to-Source Voltage				V
Continuous Drain		T _A = 25°C	I _D	14.3	А
Current $R_{\theta JA}$ (Note 1)		T _A = 85°C	1	10.3	1
Power Dissipation $R_{\theta JA}$ (Note 1)		$T_A = 25^{\circ}C$	P _D	2.21	W
Continuous Drain		$T_A = 25^{\circ}C$	I _D	20.3	А
Current R _{θJA} ≤ 10 s (Note 1)		T _A = 85°C		14.7	
Power Dissipation $R_{\theta JA} \leq 10 \text{ s} \text{ (Note 1)}$	Steady	$T_A = 25^{\circ}C$	P _D	4.48	W
Continuous Drain	State	T _A = 25°C	I _D	8.9	А
Current $R_{\theta JA}$ (Note 2)		T _A = 85°C	1	6.4	1
Power Dissipation $R_{\theta JA}$ (Note 2)		$T_A = 25^{\circ}C$	PD	0.85	W
Continuous Drain		T _C = 25°C	Ι _D	52	А
Current $R_{\theta JC}$ (Note 1)		$T_C = 85^{\circ}C$		38	
Power Dissipation $R_{\theta JC}$ (Note 1)		$T_C = 25^{\circ}C$	P _D	29.8	W
Pulsed Drain Current	T _A = 25°0	C, t _p = 10 μs	I _{DM}	170	А
Operating Junction and Storage Temperature			Т _Ј , T _{stg}	–55 to +150	°C
Source Current (Body Die	Source Current (Body Diode)			35	А
Drain to Source dV/dt			dV/dt	6.0	V/ns
$ \begin{array}{l} \mbox{Single Pulse Drain-to-So} \\ (T_J = 25^\circ C, V_{DD} = 50 \mbox{ V}, V_{L} \\ I_L = 31 \mbox{ A}_{pk}, L = 0.1 \mbox{ mH}, F \end{array} $	/ _{GS} = 10 V,	nche Energy	E _{AS}	48	mJ
Lead Temperature for So (1/8" from case for 10 s)	dering Pur	ooses	ΤL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.




ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
30 V	5.5 mΩ @ 10 V	52 A
30 V	8.0 mΩ @ 4.5 V	52 A

N-Channel MOSFET

(Note: Microdot may be in either location)

= Work Week = Pb-Free Package

WW

ORDERING INFORMATION

Device	Package	Shipping [†]
NTTFS4939NTAG	WDFN8 (Pb-Free)	1500/Tape & Reel
NTTFS4939NTWG	WDFN8 (Pb-Free)	5000/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

- Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ extsf{ heta}JC}$	4.2	°C/W
Junction-to-Ambient - Steady State (Note 3)	R _{θJA}	56.5	
Junction-to-Ambient – Steady State (Note 4)	R _{θJA}	146.5	
Junction-to-Ambient – (t \leq 10 s) (Note 3)	R _{0JA}	28	

Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size (40 mm², 1 oz. Cu).

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I _D = 2	250 μA	30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	$V_{(BR)DSS}/T_J$				15		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$			1.0	μΑ
		$V_{DS} = 24 V$	$T_J = 125^{\circ}C$			10	
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS} =	= ±20 V			±100	nA

ON CHARACTERISTICS (Note 5)

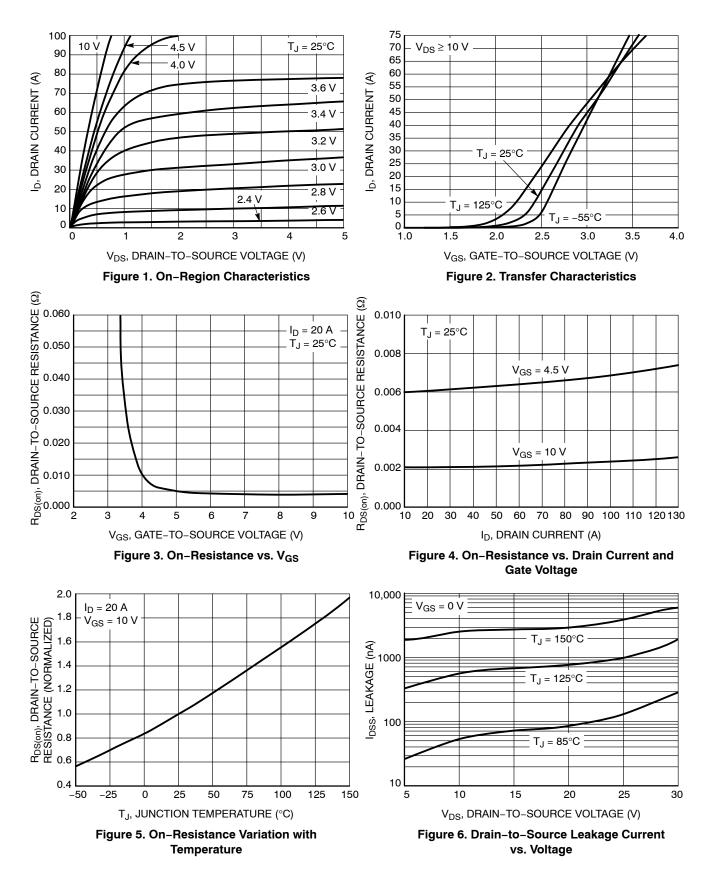
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$		1.2		2.2	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				4.0		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 20 A		4.1	5.5	mΩ
			I _D = 10 A		4.1		
			I _D = 20 A		6.0	8.0	
		V _{GS} = 4.5 V	l _D = 10 A		5.9		
Forward Transconductance	9 _{FS}	V _{DS} = 1.5 V, I _D =	= 15 A		35		S

CHARGES AND CAPACITANCES

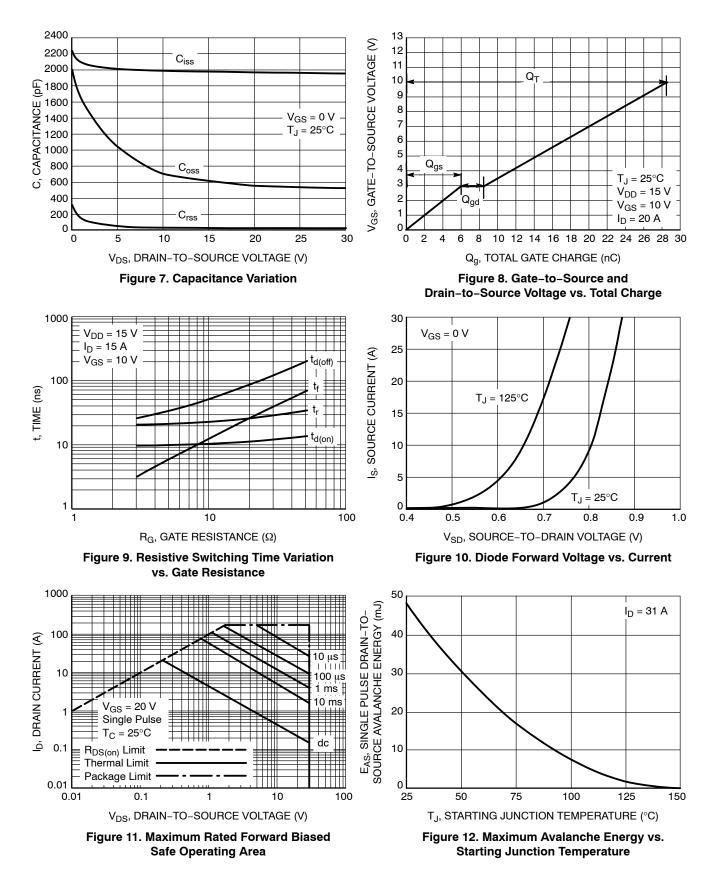
C _{iss}			1979		pF
C _{oss}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 15 V		711		
C _{rss}	1		20.2		
Q _{G(TOT)}			12.4		nC
Q _{G(TH)}			3.2		
Q _{GS}	$v_{GS} = 4.5 \text{ V}, v_{DS} = 15 \text{ V}, I_D = 20 \text{ A}$		6.0		
Q _{GD}	1		1.8		
Q _{G(TOT)}	V_{GS} = 10 V, V_{DS} = 15 V, I_{D} = 20 A		28		nC
	Coss Crss QG(TOT) QG(TH) QGS QGD	$\begin{tabular}{ c c c c c c } \hline C_{oss} & $V_{GS} = 0 $V, $f = 1.0 $MHz, $V_{DS} = 15 V \\ \hline C_{rss} & $Q_{G(TOT)}$ \\ \hline $Q_{G(TOT)}$ & $V_{GS} = 4.5 $V, $V_{DS} = 15 $V, $I_{D} = 20 A \\ \hline Q_{GD} & Q_{GD} & $V_{GS} = 4.5 $V, $V_{DS} = 15 $V, $I_{D} = 20 A \\ \hline Q_{GD} & $V_{GS} = 4.5 $V, $V_{DS} = 15 $V, $I_{D} = 20 A \\ \hline Q_{GD} & $V_{GS} = 4.5 $V, $V_{DS} = 15 $V, $I_{D} = 20 A \\ \hline Q_{GD} & $V_{GS} = 4.5 $V, $V_{DS} = 15 $V, $I_{D} = 20 A \\ \hline Q_{GD} & $V_{GS} = 4.5 $V, $V_{DS} = 15 $V, $I_{D} = 20 A \\ \hline Q_{GD} & $V_{GS} = 4.5 $V, $V_{DS} = 15 $V, $V_{DS} = 15 $V, $I_{D} = 20 A \\ \hline Q_{GD} & $V_{GS} = 4.5 $V, $V_{DS} = 15 $V, $$	$\begin{tabular}{ c c c c c c } \hline C_{oss} & $V_{GS} = 0 $ V, $f = 1.0 $ MHz, $V_{DS} = 15 $ V$ & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	$\begin{tabular}{ c c c c c c } \hline V_{GS} & V_{GS} = 0 V, f = 1.0 MHz, V_{DS} = 15 V & 711 \\ \hline C_{rss} & 20.2 \\ \hline $Q_{G(TOT)}$ & 12.4 \\ \hline $Q_{G(TH)}$ & V_{GS} = 4.5 V, V_{DS} = 15 V, I_{D} = 20 A & 3.2 \\ \hline Q_{GD} & 1.8 \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c } \hline V_{GS} & V_{GS} = 0 V, f = 1.0 MHz, V_{DS} = 15 V & 711 & 20.2 & $$

SWITCHING CHARACTERISTICS (Note 6)

Turn-On Delay Time	t _{d(on)}		12.2	ns
Rise Time	t _r	V _{GS} = 4.5 V, V _{DS} = 15 V,	20.6	
Turn-Off Delay Time	t _{d(off)}	$I_{\rm D}$ = 15 A, R _G = 3.0 Ω	20.8	
Fall Time	t _f		3.9	


5. Pulse Test: pulse width = 300 $\mu s,$ duty cycle \leq 2%.

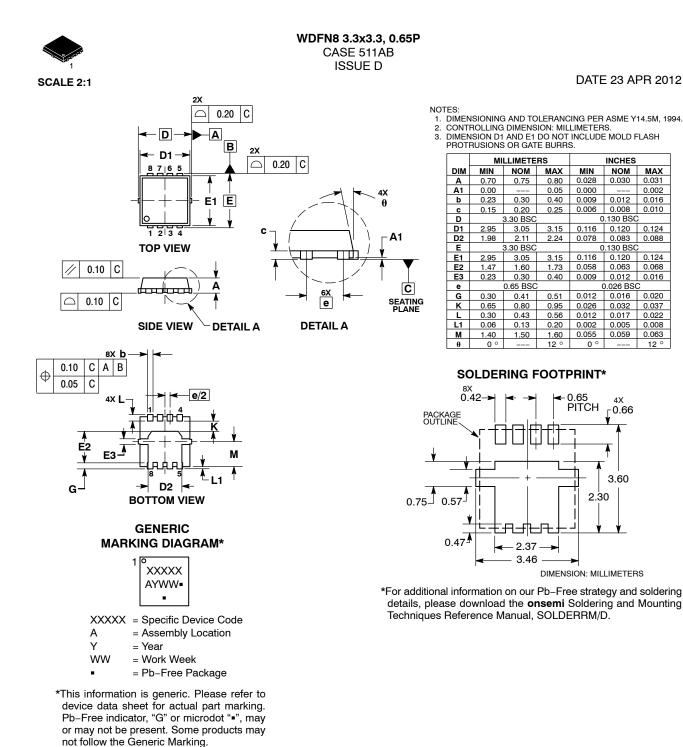
6. Switching characteristics are independent of operating junction temperatures.


ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Uni
SWITCHING CHARACTERISTIC	S (Note 6)				•		•
Turn-On Delay Time	t _{d(on)}				8.7		ns
Rise Time	t _r	V_{GS} = 10 V, V_{DS} = 15 V, I _D = 15 A, R _G = 3.0 Ω			19.5		
Turn-Off Delay Time	t _{d(off)}	$I_{\rm D} = 15 \rm A, R_{\rm G}$	= 3.0 Ω		25.3		
Fall Time	t _f				3.2		
DRAIN-SOURCE DIODE CHARA	ACTERISTICS						
Forward Diode Voltage	V _{SD}	VGS = 0 V,	$T_J = 25^{\circ}C$		0.84	1.2	V
			T _J = 125°C		0.71		1
Reverse Recovery Time	t _{RR}				35.5		ns
Charge Time	t _a	$V_{GS} = 0 V_{,} d_{IS}/d_{t}$	= 100 A/μs,		19		1
Discharge Time	t _b	$V_{GS} = 0 \text{ V}, \text{ d}_{IS}/\text{d}_t$ $I_S = 20$	A		16.5		1
Reverse Recovery Charge	Q _{RR}				28		nC
PACKAGE PARASITIC VALUES							
Source Inductance	L _S				0.38		nH
Drain Inductance	L _D	т ог			0.054		1
Gate Inductance	L _G	T _A = 25°C			1.3		1
Gate Resistance	R _G				1.1	2.0	Ω

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS



TYPICAL CHARACTERISTICS

Figure 13. Thermal Response

 DOCUMENT NUMBER:
 98AON30561E
 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

 DESCRIPTION:
 WDFN8 3.3X3.3, 0.65P
 PAGE 1 OF 1

 onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation

special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>