onsemi

MOSFET – Power, N-Channel 80 V, 1.27 m Ω

NVCR4LS1D3N08M7A

Features

- Typical $R_{DS(on)} = 1.0 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$
- Typical $Q_{g(tot)} = 172 \text{ nC}$ at $V_{GS} = 10 \text{ V}$
- AEC-Q101 Qualified and PPAP Capable
- RoHS Compliant

ORDERING INFORMATION

Device	Package
NVCR4LS1D3N08M7A	Wafer Sawn on Foil

DIMENSION (µm)

Die Size	6604 x 3683
Die Size (Sawn)	$6584 \pm 30 \text{ x } 3663 \pm 30$
Source Attach Area	6399.3 x 3452.6
Gate Attach Area	343.1 x 477.5
Die Thickness	101.6 ±19.1

Gate and Source: AlSiCu Drain: Ti-NiV-Ag (back side of die) Passivation: Polyimide Wafer Diameter: 8 inch Wafer sawn on UV Tape Bad dice identified in inking Gross Die Counts: 1001

RECOMMENDED STORAGE CONDITIONS

Temperature	22 to 28°C
RH	40 to 66%

The Chip	is	100%	Probed	to	Meet	the	Conditions	and	Limits
Specified at 7	Γ _J :	= 25°C.							

Symbol	Parameter	Condition	Min	Тур	Max	Unit
BV _{DSS}	Drain to Source Breakdown Voltage	I_D = 250 μ A, V_{GS} = 0 V	80	-	-	V
I _{DSS}	Drain to Source Leakage Current	V_{DS} = 80 V, V_{GS} = 0 V	-	-	1	μA
I _{GSS}	Gate to Source Leakage Current	V_{GS} = ±20 V, V_{DS} = 0 V	-	-	±100	nA
V _{GS(th)}	Gate to Source Threshold Voltage	V_{GS} = V_{DS} , I_D = 250 μ A	2.0	-	4.0	V
*R _{DS(on)}	Bare Die Drain to Source On Resistance	I _D = 5 A, V _{GS} = 10 V	-	1.0	1.27	mΩ
*V _{SD}	Source to Drain Diode Voltage	I_{SD} = 5 A, V_{GS} = 0 V	-	-	1.2	V
E _{AS}	Single Pulse Drain-to-Source Avalanche Energy	L = 0.3 mH, I _{AS} = 70 A	735	-	-	mJ

*Accurate R_{DS(on)}, V_{SD} test at die level are not feasible for this thin die as limited by the test contact precision attainable in a die form. The max R_{DS(on)}, V_{SD} specification are defined from the historical performance of the die in package but are not guaranteed by test in production. The die R_{DS(on)} performance depends on the Source wire/ribbon bonding layout.

MOSFET MAXIMUM RATINGS in Reference to the FDBL86361-F085 electrical data in TOLL

(T_J = 25°C unless otherwise noted)

Symbol	Parameter	Ratings	Unit
V _{DSS}	Drain to Source Voltage	80	V
V _{GS}	Gate to Source Voltage	±20	V
I _D	Continuous Drain Current $R_{\theta JC}$ (V _{GS} = 10) (Note 1) T _C = 25°C T _C = 100°C	371 262	A
E _{AS}	Single Pulse Avalanche Energy (Note 2)	819	mJ
PD	Power Dissipation $R_{\theta JC}$	429	W
	Derate Above 25°C	2.86	W/°C
TJ, T _{STG}	Operating and Storage Temperature	–55 to +175	°C
R_{\thetaJC}	Thermal Resistance, Junction to Case	0.35	°C/W
$R_{\theta JA}$	Maximum Thermal Resistance, Junction to Ambient (Note 3)	43	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Current is limited by silicon.

2. Starting $T_J = 25^{\circ}$ C, L = 0.4 mH, $I_{AS} = 64$ A, $V_{DD} = 40$ V during inductor charging and $V_{DD} = 0$ V during time in avalanche. 3. R_{0JA} is the sum of the junction–to–case and case–to–ambient thermal resistance, where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JC} is guaranteed by design, while R_{0JA} is determined by the board design. The maximum rating presented here is based on mounting on a 1 in² pad of 2oz copper.

ELECTRICAL CHARACTERISTICS in Reference to the FDBL86361-F085 electrical data in TOLL

(T_J = 25°C unless otherwise noted)

Symbol	Parameter	Test	Conditions	Min.	Тур.	Max.	Unit				
OFF CHARAC	OFF CHARACTERISTICS										
BV _{DSS}	Drain to Source Breakdown Voltage	I_{D} = 250 μ A, V_{GS} = 0 V		80	-	-	V				
I _{DSS}	Drain to Source Leakage Current	V _{DS} = 80 V, V _{GS} = 0 V	$T_J = 25^{\circ}C$	-	-	1	μΑ				
I _{GSS}	Gate to Source Leakage Current	V_{GS} = ±20 V		-	-	±100	nA				

ON CHARACTERISTICS

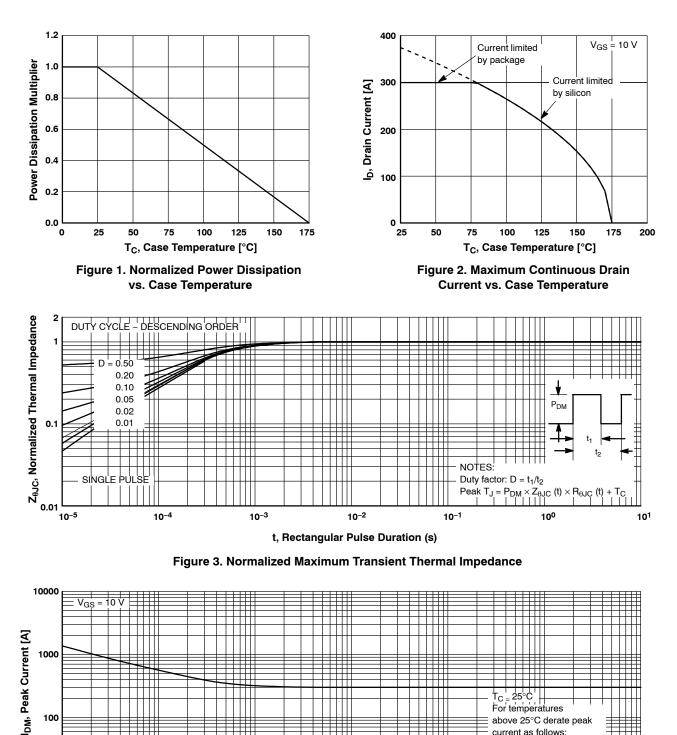
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS}=V_{DS},\ I_{D}=250\ \mu A$		2.0	3.0	4.0	V
R _{DS(on)}	Drain to Source on Resistance	$I_{\rm D} = 80 \rm A,$	$T_J = 25^{\circ}C$	-	1.1	1.4	mΩ
		V _{GS} = 10 V	T _J = 175°C (Note 4)	-	2.4	3.1	mΩ

DYNAMIC CHARACTERISTICS

C _{iss}	Input Capacitance	V_{DS} = 40 V, V_{GS} = 0 V, f = 1 MHz	-	12800	-	pF
C _{oss}	Output Capacitance		_	1925	-	pF
C _{rss}	Reverse Transfer Capacitance		-	139	-	pF
Rg	Gate Resistance	f = 1 MHz	-	2.7	-	Ω
Q _{g(ToT)}	Total Gate Charge	V_{GS} = 0 to 10 V, V_{DD} = 64 V, I_{D} = 80 A	-	172	-	nC
Q _{g(th)}	Threshold Gate Charge	V_{GS} = 0 to 2 V, V_{DD} = 64 V, I_{D} = 80 A	-	23	-	nC
Q _{gs}	Gate to Source Gate Charge	$V_{DD} = 64 \text{ V}, \text{ I}_{D} = 80 \text{ A}$	-	51	-	nC
Q _{gd}	Gate to Drain "Miller" Charge		-	34	-	nC

SWITCHING CHARACTERISTICS

t _{d(on)}	Turn-On Delay	$V_{DD} = 40 \text{ V}, \text{ I}_{D} = 80 \text{ A},$	-	42	-	ns
tr	Rise Time	V_{GS} = 10 V, R_{GEN} = 6 Ω	-	73	-	ns
t _{d(off)}	Turn-Off Delay		-	87	-	ns
t _f	Fall Time		-	48	-	ns


ELECTRICAL CHARACTERISTICS in Reference to the FDBL86361-F085 electrical data in TOLL

(T_J = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit			
DRAIN-SOUR	DRAIN-SOURCE DIODE CHARACTERISTIC								
V _{SD}	Source to Drain Diode Voltage	I _{SD} = 80 A, V _{GS} = 0 V	_	-	1.25	V			
		I_{SD} = 40 A, V_{GS} = 0 V	-	1	1.2	V			
t _{rr}	Reverse Recovery Time	$I_{F} = 80 \text{ A}, \text{ dI}_{SD}/\text{dt} = 100 \text{ A}/\mu\text{s},$	-	117	-	ns			
Q _{rr}	Reverse Recovery Charge	$V_{DD} = 64 \text{ V}$	_	205	_	nC			

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. The maximum value is specified by design at $T_J = 175^{\circ}$ C. Product is not tested to this condition in production.

TYPICAL CHARACTERISTICS

Ħ

10⁻²

t, Rectangular Pulse Duration (s) Figure 4. Peak Current Capability

10⁻¹

 $T_{C} = 25^{\circ}C$ For temperatures

above 25°C derate peak

175 – T_C

150

10¹

10⁰

current as follows:

1,2

10⁻³

100

10 10-5

10-4

TYPICAL CHARACTERISTICS (CONTINUED)

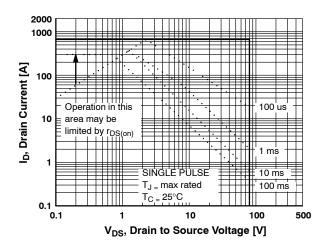


Figure 5. Forward Bias Safe Operating Area

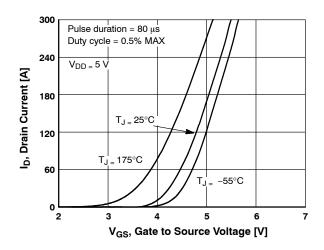
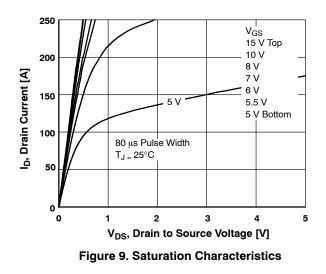



Figure 7. Transfer Characteristics

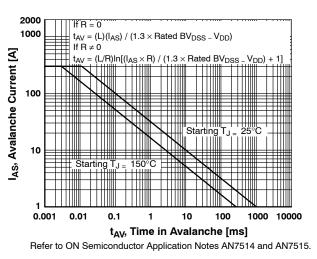
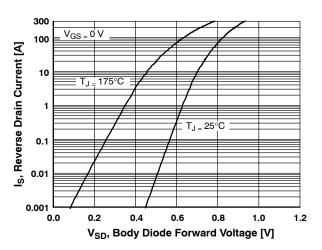
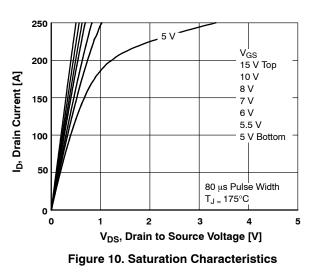




Figure 6. Unclamped Inductive Switching Capability

TYPICAL CHARACTERISTICS (CONTINUED)

Pulse duration = 80 µs

Duty cycle = 0.5% MAX

 $I_{D} = 80$ A

 $V_{GS} = 10 V$

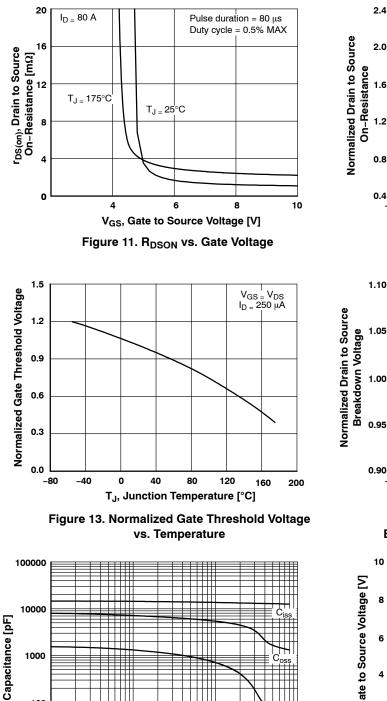
120

120

V_DD _ 48 V

140

160


180

160

200

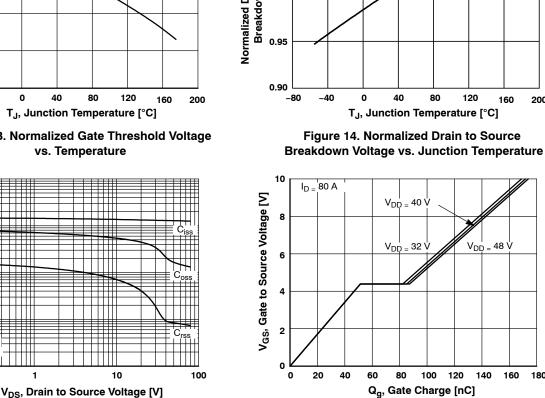
160

200

10

Figure 15. Capacitance vs. Drain to Source

Voltage


1

100

10

0.1

f = 1 MHz V_{GS =} 0 V

-80

-40

 $I_D = 5 mA$

0

40

80

T_J, Junction Temperature [°C]

Figure 12. Normalized R_{DSON} vs. Junction Temperature

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>