MOSFET – Power, N-Channel, Automotive, SUPERFET[®] III, Easy-Drive ## 650 V, 25 m Ω ## **NVCR8LS025N65S3A** #### **Features** - Typical $R_{DS(on)}$ = 19.9 m Ω at V_{GS} = 10 V - Typical $Q_{g(tot)} = 236 \text{ nC}$ at $V_{GS} = 10 \text{ V}$ - AEC-Q101 Qualified - RoHS Compliant #### DIMENSION (µm) | Die Size | 10830 x 7610 | |--------------------|----------------------| | Die Size (Sawn) | 10810 ±30 x 7590 ±30 | | Source Attach Area | (10155 x 3346) x 2 | | Gate Attach Area | 406 x 618 | | Die Thickness | 203.2 ± 25.4 | Gate and Source: AlSiCu Drain: Ti-NiV-Ag (back side of die) Passivation: SiN Wafer Diameter: 8 inch Wafer sawn on UV Tape Bad dice identified in Inking Gross Die Count: 296 #### **ORDERING INFORMATION** | Device | Package | |------------------|--------------------| | NVCR8LS025N65S3A | Wafer Sawn on Foil | #### RECOMMENDED STORAGE CONDITIONS | Temperature | 22 to 28°C | | | |-------------|------------|--|--| | RH | 40% to 66% | | | #### **ELECTRICAL CHARACTERISTICS** The Chip is 100% Probed to Meet the Conditions and Limits Specified at T_J = 25°C | Symbol | Parameter | Condition | Min. | Тур. | Max. | Unit | |----------------------|--|--|------|------|------|------| | BV _{DSS} | Drain to Source Breakdown Voltage | $I_D = 1 \text{ mA}, V_{GS} = 0 \text{ V}$ | 650 | - | - | V | | I _{DSS} | Drain to Source Leakage Current | V _{DS} = 650 V, V _{GS} = 0 V | _ | - | 1 | μΑ | | I _{GSS} | Gate to Source Leakage Current | $V_{GS} = +30 / -20 \text{ V}, V_{DS} = 0 \text{ V}$ | - | - | ±100 | nA | | V _{GS(th)} | Gate to Source Threshold Voltage | $V_{GS} = V_{DS}, I_D = 3 \text{ mA}$ | 2.5 | - | 4.5 | V | | *R _{DS(on)} | Bare Die Drain to Source On Resistance | I _D = 37.5 A, V _{GS} = 10 V | - | 19.9 | 25 | mΩ | | V _{SD} | Drain to Source Diode Forward Voltage | V _{GS} = 0 V, I _{SD} = 37.5 V | | | 1.2 | V | ^{*}Accurate RDS(on) test at die level is not feasible for this thin die as limited by the test contact precision attainable in a die form. The max RDS(on) specification is defined from the historical performance of the die in package but is not guaranteed by test in production. The die RDS(on) performance depends on the Source wire/ribbon bonding layout. #### **ABSOLUTE MAXIMUM RATINGS** in Reference to the NVHL025N65S3 electrical data in TO-247-3LD (T_J = 25°C unless otherwise noted) | Symbol | Parameter | | Ratings | Unit | | |----------------------------------|--|------------------------|-------------|------|--| | V _{DSS} | Drain to Source Voltage | | 650 | V | | | V _{GS} | Gate to Source Voltage | DC Positive | 30 | V | | | | | AC Positive, (f > 1Hz) | 30 | V | | | | | AC Negative, (f > 1Hz) | -20 | V | | | I_{D} | Continuous Drain Current | $T_C = 25^{\circ}C$ | 75 | Α | | | | | $T_C = 100^{\circ}C$ | 65.8 | Α | | | I _{DM} | Pulsed Drain Current | Pulsed (Note 1) | 300 | Α | | | E _{AS} | Single Pulse Avalanche Energy (Note 2) | | 2025 | mJ | | | E _{AR} | Repetitive Avalanche (Note 1) | | 5.95 | mJ | | | dv/dt | MOSFET dv/dt | | 100 | V/ns | | | | Peak Diode Recovery dv/dt (Note 3) | | 20 | V/ns | | | P _D | Power Dissipation R _{θJC} | $T_C = 25^{\circ}C$ | 595 | W | | | T _{J,} T _{STG} | Operating and Storage Temperature | | -55 to +150 | °C | | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - 1. Repetitive rating: pulse–width limited by maximum junction temperature. 2. $I_{AS}=15$ A, $R_{G}=25$ Ω , Starting $T_{J}=25^{\circ}C$. 3. $I_{SD}<75$ A, di/dt ≤ 200 A/ms, VDD \leq BVDSS, starting $T_{J}=25^{\circ}C$ #### THERMAL CHARACTERISTICS | Symbol | Symbol Parameter | | Unit | | |---|--|------|------|--| | R _{θJ C} Thermal Resistance, Junction to Case, Max | | 0.21 | °C/W | | | $R_{ heta J A}$ | Thermal Resistance, Junction to Ambient, Max | 40 | °C/W | | #### **ELECTRICAL CHARACTERISTICS** in Reference to the NVHL025N65S3 electrical data in TO-247-3LD (T_J = 25°C unless otherwise noted) | Symbol | Parameter | Conditions | Min. | Тур. | Max. | Unit | |------------------------|--|--|------|-------|------|------| | OFF CHA | RACTERISTICS | <u> </u> | • | • | | - | | BV _{DSS} | Drain to Source Breakdown Voltage | I _D = 1 mA, V _{GS} = 0 V | 650 | - | _ | V | | I _{DSS} | Drain to Source Leakage Current | V _{DS} = 650 V, V _{GS} = 0 V, T _J = 25°C | - | - | 1 | μА | | | V _{DS} = 520 V, V _{GS} = 0 V, T _J = 125°C | - | 7.92 | - | μА | | | I _{GSS} | Gate to Source Leakage Current | V _{GS} = +30 V | - | - | +100 | nA | | | | V _{GS} = -20 V | | | -100 | nA | | ON CHAR | ACTERISTICS | | | - | • | | | V _{GS(th)} | Gate to Source Threshold Voltage | $V_{GS} = V_{DS}, I_D = 3.0 \text{ mA}$ | 2.5 | | 4.5 | V | | R _{DS(on)} | Drain to Source On-Resistance | $I_D = 37.5 \text{ A}, \qquad T_J = 25^{\circ}\text{C}$ | - | 19.9 | 25 | mΩ | | , , | | V _{GS} = 10 V T _J = 100°C | - | 34.6 | - | mΩ | | 9FS | Forward Transconductance | V _{DS} = 20 V, I _D = 75 A | | 78.5 | | S | | DYNAMIC | CHARACTERISTICS | | | | | | | C _{iss} | Input Capacitance | V _{DS} = 400 V, V _{GS} = 0 V, | - | 7330 | - | pF | | C _{oss} | Output Capacitance | f = 1 MHz | _ | 197 | - | pF | | C _{rss} | Reverse Transfer Capacitance | | _ | 33.6 | - | pF | | C _{oss(eff.)} | Effective Output Capacitance | V _{DS} = 0 V to 400 V, V _{GS} = 0 V | | 2062 | | pF | | C _{oss(er.)} | Energy Related Output Capacitance | V _{DS} = 0 V to 400 V, V _{GS} = 0 V | | 285 | | pF | | Q _{g(ToT)} | Total Gate Charge | V _{GS} = 10 V, V _{DS} = 400 V _, I _D = 75 A | - | 236 | - | nC | | Q _{gs} | Gate to Source Gate Charge | (Note 4) | - | 59.3 | - | nC | | Q_{gd} | Gate to Drain "Miller" Charge | | _ | 97.3 | - | nC | | RG | Gate Resistance | f = 1 MHz | - | 0.818 | - | Ω | | SWITCHI | NG CHARACTERISTICS | | | | | | | t _{d(on)} | Turn-On Delay Time | $V_{DD} = 400 \text{ V}, \ I_D = 75 \text{ A}, V_{GS} = 10 \text{ V},$ | - | 43.3 | - | ns | | t _r | Rise Time | $R_G = 2 \Omega$ | - | 109 | - | ns | | t _{d(off)} | Turn-Off Delay Time | (Note 4) | _ | 120 | - | ns | | t _f | Fall Time | | _ | 107 | - | ns | | DRAIN - S | SOURCE DIODE CHARACTERISTICS | | | | | | | Is | Maximum Continuous Drain to Source Diode Forward Current | | | | 75 | Α | | I _{SM} | Maximum Pulsed Drain to Source Diode Forward Current | | | | 300 | Α | | V _{SD} | Source to Drain Diode Voltage | $V_{GS} = 0 \text{ V}, I_{SD} = 37.5 \text{ A}, V_{GS} = 0 \text{ V}$ | - | - | 1.2 | V | | t _{rr} | Reverse Recovery Time | V_{GS} = 0 V, I_{SD} = 75 A, dI_{SD}/dt = 100 A/ μs | - | 714 | _ | ns | | | | | _ | 26.4 | | μC | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Essentially independent of operating temperature typical characteristics. SUPERFET is a registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. #### **TYPICAL CHARACTERISTICS** Figure 1. Normalized Power Dissipation vs. Case Temperature Figure 2. Maximum Continuous Drain Current vs. Case Temperature Figure 3. Normalized Maximum Transient Thermal Impedance Figure 4. Peak Current Capability #### TYPICAL CHARACTERISTICS (continued) Figure 5. Forward Bias Safe Operating Area Figure 6. Transfer Characteristic Figure 8. Saturation Characteristics Figure 7. Forward Diode Characteristics Figure 9. Saturation Characteristics #### TYPICAL CHARACTERISTICS (continued) 3.0 Pulse Duration = 250 μs Normalized Drain to Source 2.5 Duty Cycle = 0.5% Max ON-Resistance 2.0 1.5 $I_D = 75 A$ 1.0 V_{GS} = 10 V 0.5 0.0 -80 -40 40 80 120 160 T_J, Junction Temperature (°C) Figure 10. R_{DSON} vs. Gate Voltage Figure 11. Normalized R_{DSON} vs. Junction Temperature Figure 12. Normalized Gate Threshold Voltage vs. Temperature Figure 13. Normalized Drain to Source Breakdown Voltage vs. Junction Temperature Figure 14. Capacitance vs. Drain to Source Volatage Figure 15. Gate Charge vs. Gate to Source Voltage ## TYPICAL CHARACTERISTICS (continued) Figure 16. E_{OSS} vs. Drain to Source Voltage Figure 17. On–Resistance Variation vs. Drain Current and Gate Voltage onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase #### ADDITIONAL INFORMATION **TECHNICAL PUBLICATIONS:** $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales