

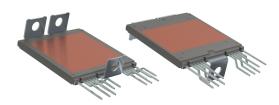
Automotive 750 V, 600 A Dual Side Cooling Half-Bridge Power Module

VE-Trac™ Dual Gen II NVG600A75L4DSC2

Product Description

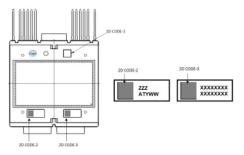
The NVG600A75L4DSC2 is part of a family of power modules with dual side cooling and compact footprints for Hybrid (HEV) and Electric Vehicle (EV) traction inverter application.

The module consists of two narrow mesa Field Stop (FS4) IGBTs in a half-bridge configuration. The chipset utilizes the new narrow mesa IGBT technology in providing high current density and robust short circuit protection with higher blocking voltage to deliver outstanding performance in EV traction applications.


Liquid cooling heatsink reference design, loss models and CAD models are available to support customers in inverter designs.

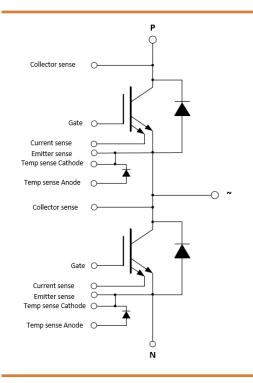
Features

- Dual-Side Cooling
- Integrated Chip Level Temperature and Current Sensor
- $T_{vi max} = 175$ °C for Continuous Operation
- Low-Stray Inductance
- Low Conduction and Switching Losses
- Automotive Grade
- 4.2 kV Isolated DBC Substrate
- AEC Qualified and PPAP Capable
- This Device is Pb-Free and is RoHS Compliant


Typical Applications

- Hybrid and Electric Vehicle Traction Inverter
- High Power DC-DC Boost Converter

AHPM15-CEA CASE MODHS


MARKING DIAGRAM

ZZZ = Assembly Lot CodeAT = Assembly & Test Location

Y = Year WW = Work Week

XXXX = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet

PIN DESCRIPTION

Pin#	Pin	Pin Function Description	Pin Arrangement
1	N	Low Side Emitter	2
2	Р	High Side Collector	, ,
3	H/S COLLECTOR SENSE	High Side Collector Sense	3 0
4	H/S CURRENT SENSE	High Side Current Sense	I
5	H/S EMITTER SENSE	High Side Emitter Sense	6 -
6	H/S GATE	High Side Gate	4 0 5
7	H/S TEMP SENSE (CATHODE)	High Side Temp sense Diode Cathode	7 0 1
8	H/S TEMP SENSE (ANODE)	High Side Temp sense Diode Anode	9
9	~	Phase Output	15 0
10	L/S CURRENT SENSE	Low Side Current Sense	
11	L/S EMITTER SENSE	Low Side Emitter Sense	12 0
12	L/S GATE	Low Side Gate	10 0
13	L/S TEMP SENSE (CATHODE)	Low Side Temp sense Diode Cathode	13 0
14	L/S TEMP SENSE (ANODE)	Low Side Temp sense Diode Anode	14 0
15	L/S COLLECTOR SENSE	Low Side Collector Sense	ī

DBC Substrate

Al₂O₃ isolated substrate, basic isolation, and copper on both sides.

Lead Frame

Copper with Tin electro-plating.

Flammability Information

All materials present in the power module meet UL flammability rating class 94V-0.

MODULE CHARACTERISTICS

Symbol	Parameter				Unit
T _{vj}	Continuous Operating Junction Temperature Range			-40 to 175	°C
T _{STG}	Storage Temperature range			-40 to 125	°C
V _{ISO}	Isolation Voltage, DC, t = 1 s			4200	V
Creepage	Creepage Minimum: Terminal to Terminal				
Clearance	Clearance Minimum: (Note 1) Terminal to Terminal				
CTI	CTI Comparative Tracking Index				
		Min	Тур	Max	
L _{sCE}	Stray Inductance		8		nΗ
R _{CC'+EE'}	R _{CC'+EE'} Module Lead Resistance, Terminals – Chip 0.15				mΩ
G	G Module Weight 75				g
М	M4 Screws for Module Terminals			2.2	Nm

^{1.} Verified by design $\!\!\!/$ not by test.

ABSOLUTE MAXIMUM RATINGS (T_{V,I} = 25°C, unless otherwise specified)

Symbol	Parameter	Rating	Unit
ВТ	•		•
V _{CES}	Collector to Emitter Voltage	750	V
V_{GES}	Gate to Emitter Voltage	±20	V
I _{CN}	Implemented Collector Current	600	Α
I _{C nom}	Continuous DC Collector Current, Tvjmax = 175°C, T _F = 65°C, Ref. Heatsink	500	Α
I _{CRM}	Pulsed Collector Current @ VGE = 15 V, tp = 1 ms	1200	А
ODE			
V_{RRM}	Repetitive Peak Reverse Voltage	750	V
I _{FN}	Implemented Forward Current	600	А
IF	Continuous Forward Current, Tvjmax = 175°C, T _F = 65°C, Ref. Heatsink	400	Α
I _{FRM}	Repetitive Peak Forward Current, t _p = 1 ms	1200	Α
l ² t value	$V_R = 0 \text{ V}, t_p = 10 \text{ ms}, Tv_J = 150^{\circ}\text{C}$ $T_{VJ} = 175^{\circ}\text{C}$	14000 12000	A ² s

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	Min	Тур	Max	Unit
IGBT.R _{th,J-C}	Effective Rth, Junction to Case	-	0.06	0.08	°C/W
IGBT.R _{th,J-F}	Effective Rth, Junction to Fluid, λ_{TIM} = 6 W/m–K, F = 660 N 10 L/min, 65°C, 50/50 EGW, Ref. Heatsink	-	0.146	-	°C/W
Diode.R _{th,J-C}	Effective Rth, Junction to Case	1	0.10	0.13	°C/W
Diode.R _{th,J-F}	Effective Rth, Junction to Fluid, λ_{TIM} = 6 W/m–K, F = 660 N 10 L/min, 65°C, 50/50 EGW, Ref. Heatsink	-	0.196	-	°C/W

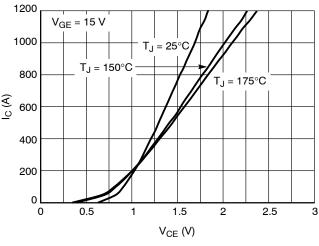
CHARACTERISTICS OF IGBT (Tvj = 25° C, unless otherwise specified)

	Parameters Conditions			Min	Тур	Max	unit
V _{CESAT}	Collector to Emitter Saturation Voltage	V _{GE} = 15 V, I _C = 400 A,	$T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$ $T_{vj} = 175^{\circ}C$	- - -	1.23 1.28 1.30	1.35 - -	V
		V _{GE} = 15 V, I _C = 600 A,	T_{vj} = 25°C T_{vj} = 150°C T_{vj} = 175°C	- - -	1.39 1.53 1.57	- - -	
I _{CES}	Collector to Emitter Leakage Current	V _{GE} = 0, V _{CE} = 750 V	T_{vj} = 25°C T_{vj} = 175°C	-	- 8	1 -	mA
I _{GES}	Gate – Emitter Leakage Current	$V_{CE} = 0, V_{GE} = \pm 20 \text{ V}$		-	-	±400	nA
V _{th}	Threshold Voltage	$V_{CE} = V_{GE}, I_{C} = 500 \text{ mA}$		4.5	5.6	6.5	V
Q_{G}	Total Gate Charge	$V_{GE} = -8 \text{ to } 15 \text{ V}, V_{CE} = 40 \text{ I}_{C} = 400 \text{ A}$	00 V,	-	1.0	-	μC
R _{Gint}	Internal Gate Resistance			ı	2	_	Ω
C _{ies}	Input Capacitance	$V_{CE} = 30 \text{ V}, V_{GE} = 0 \text{ V}, f =$	1 MHz	ı	36	_	nF
C _{oes}	Output Capacitance	$V_{CE} = 30 \text{ V}, V_{GE} = 0 \text{ V}, f =$	1 MHz	-	0.7	_	nF
C _{res}	Reverse Transfer Capacitance	$V_{CE} = 30 \text{ V}, V_{GE} = 0 \text{ V}, f =$	1 MHz	-	0.09	_	nF
T _{d.on}	Turn On Delay, Inductive Load	I_C = 400 A, V_{CE} = 400 V V_{GE} = +15/-8 V Rg.on = 3.9 Ω	$T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$ $T_{vj} = 175^{\circ}C$	- - -	194 224 228	-	ns
T _r	Rise Time, Inductive Load	I_C = 400 A, V_{CE} = 400 V V_{GE} = +15/-8 V Rg.on = 3.9 Ω	$T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$ $T_{vj} = 175^{\circ}C$	- - -	71 89 94	- - -	ns
T _{d.off}	Turn Off Delay, Inductive Load	I_C = 400 A, V_{CE} = 400 V V_{GE} = +15/-8 V Rg.off = 15 Ω	$T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$ $T_{vj} = 175^{\circ}C$	- - -	969 1047 1063	- - -	ns
T _f	Fall Time, Inductive Load	I_{C} = 400 A, V_{CE} = 400 V V_{GE} = +15/-8 V Rg.off = 15 Ω	$T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$ $T_{vj} = 175^{\circ}C$	- - -	123 202 230	- - -	ns
E _{ON}	Turn-On Switching Loss (Including Diode Reverse Recovery Loss)	$\begin{array}{l} I_{C} = 400 \text{ A, V}_{CE} = 400 \text{ V} \\ V_{GE} = +15/-8 \text{ V} \\ Rg.on = 3.9 \Omega \\ Ls = 25 \text{ nH} \\ di/dt \left(T_{vj} = 25^{\circ}\text{C}\right) = 4.67 \text{ A/} \\ di/dt \left(T_{vj} = 175^{\circ}\text{C}\right) = 3.61 \text{ A/} \end{array}$		- - -	10.09 16.73 18.57	- - -	mJ
E _{OFF}	Turn-Off SwitchingLoss	$\begin{array}{l} I_{C} = 400 \text{ A, V}_{CE} = 400 \text{ V} \\ V_{GE} = +15/-8 \text{ V} \\ \text{Rg. off} = 15 \Omega \\ \text{Ls} = 25 \text{ nH} \\ \text{dv/dt } (T_{vj} = 25^{\circ}\text{C}) = 2.82 \text{ V/r} \\ \text{dv/dt } (T_{vj} = 175^{\circ}\text{C}) = 2.08 \text{ V/r} \\ \end{array}$	$T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$ $T_{vj} = 175^{\circ}C$ ns //ns	- - -	15.95 25.06 27.30	- - -	mJ
Esc	Minimum Short Circuit Energy Withstand	$V_{GE} \le 15 \text{ V}, V_{CE} = 400 \text{ V}$	T _{vj} = 25°C T _{vj} = 175°C	- 3.5	3.5 -	-	J

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

CHARACTERISTICS OF INVERSE DIODE (Tvj = 25°C, unless otherwise specified)

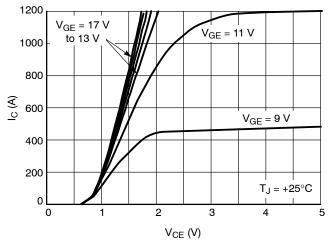
	Parameters	Conditions		Min	Тур	Max	unit
V _F	Diode Forward Voltage	V _{GE} = 0 V, I _C = 400 A,	$T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$ $T_{vj} = 175^{\circ}C$	- - -	1.34 1.30 1.29	1.47 - -	V
		V _{GE} = 0 V, I _C = 600 A,	$T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$ $T_{vj} = 175^{\circ}C$	1 1 1	1.48 1.47 1.46	1 1	
E _{rr}	Reverse Recovery Energy	$\begin{aligned} &V_{R} = 400 \text{ V, I}_{F} = 400 \text{ A,} \\ &R_{GON} = 3.9 \Omega, \\ &-\text{di/dt} = 3.61 \text{ A/ns (175°C)} \\ &V_{GE} = -8 \text{ V} \end{aligned}$	$T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$ $T_{vj} = 175^{\circ}C$	1 1 1	1.05 4.93 5.90	1 1 1	mJ
Q _{RR}	Recovered Charge	$\begin{aligned} &V_{R} = 400 \text{ V, I}_{F} = 400 \text{ A,} \\ &R_{GON} = 3.9 \Omega, \\ &-\text{di/dt} = 3.61 \text{ A/ns (175°C)} \\ &V_{GE} = -8 \text{ V} \end{aligned}$	$T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$ $T_{vj} = 150^{\circ}C$	- - -	11.60 25.72 29.28		μС
Irr	Peak Reverse Recovery Current	$\begin{aligned} &V_{R} = 400 \text{ V, I}_{F} = 400 \text{ A,} \\ &R_{GON} = 3.9 \Omega, \\ &-\text{di/dt} = 3.61 \text{ A/ns (175°C)} \\ &V_{GE} = -8 \text{ V} \end{aligned}$	$T_{vj} = 25^{\circ}C$ $T_{vj} = 150^{\circ}C$ $T_{vj} = 175^{\circ}C$	- - -	241 294 304	- - -	A


SENSOR CHARACTERISTICS (Tvj = 25°C, unless otherwise specified)

	Parameters Conditions		3	Min	Тур	Max	unit
T _{sense}	Temperature Sense	I _F = 1 mA,	T_{vj} =25°C T_{vj} = 150°C T_{vj} = 175°C	1 1 1	2.5 1.7 1.5	1 1 1	V
I _{sense}	Current Sense	$R_{shunt} = 10 \Omega,$	I _C = 1200 A I _C = 600 A I _C = 100 A	1 1	416 223 50	1 1 1	mV

ORDERING INFORMATION

Part Number	Package	Shipping
NVG600A75L4DSC2	AHPM15-CEA Module Case MODHS (Pb-Free)	18 Units / 3x Tub


TYPICAL CHARACTERISTICS

1200 $V_{CE} = 20 V$ T_J = 175°C 1000 $T_J = 150^{\circ}C$ 800 600 400 200 __ = 25°C ol 8 10 12 14 6 V_{GE} (V)

Figure 1. IGBT Output Characteristic

Figure 2. IGBT Transfer Characteristic

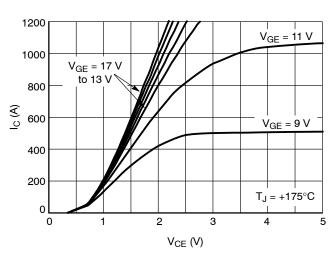
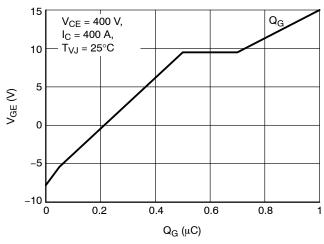



Figure 3. IGBT Output Characteristic, +25°C

Figure 4. IGBT Output Characteristic, +175°C

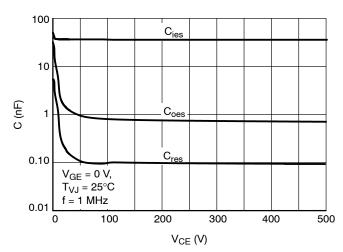
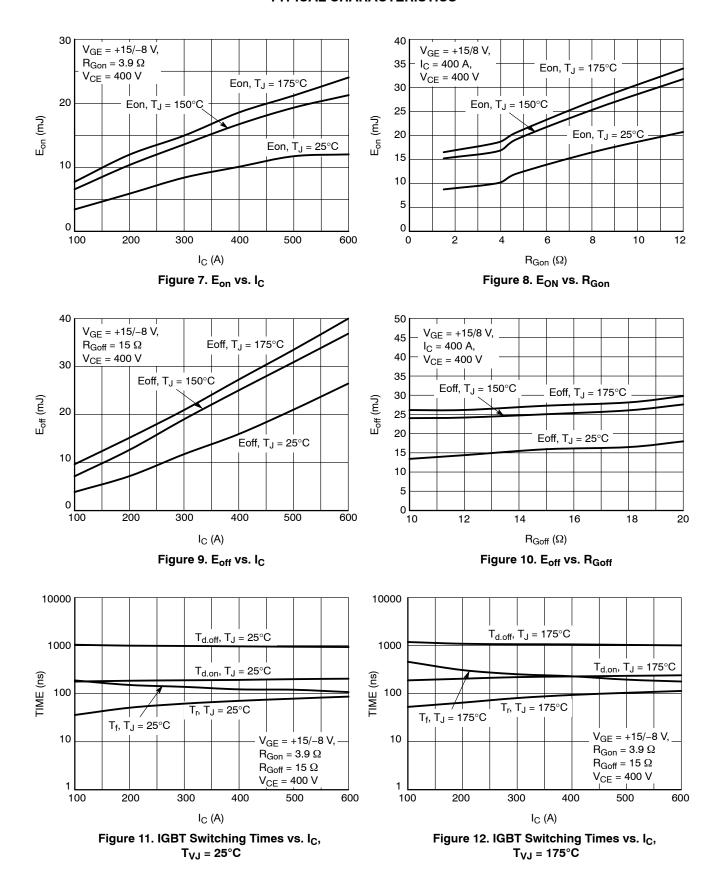



Figure 5. Gate Charge Characteristics

Figure 6. Capacitance Characteristics

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

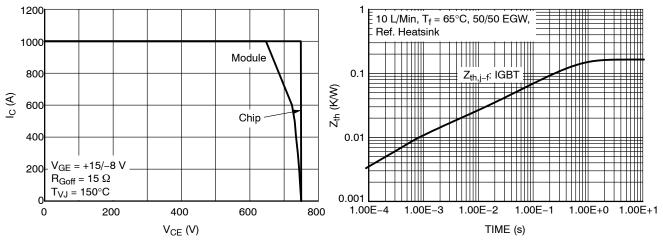


Figure 13. Reverse Bias Safe Operating Area

Figure 14. IGBT Transient Thermal Impedance

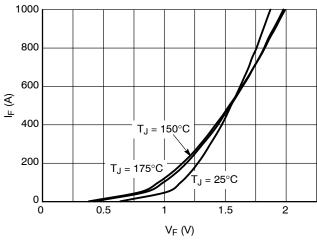


Figure 15. Diode Forward Characteristic

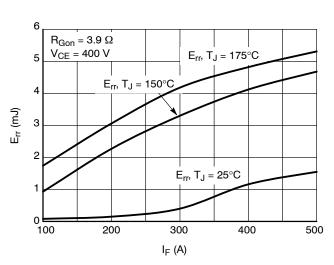


Figure 16. Diode Switching Losses vs. I_F

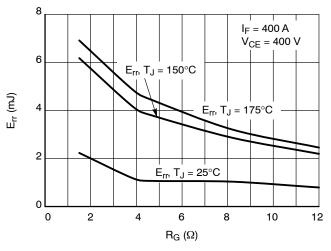


Figure 17. Diode Switching Losses vs. R_{Gon}

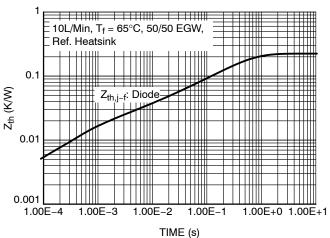
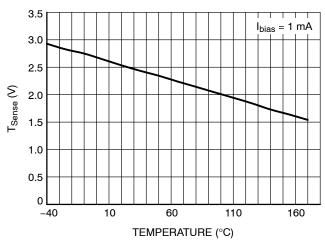



Figure 18. Diode Transient Thermal Impedance

TYPICAL CHARACTERISTICS

600 $R_{shunt} = 10 \Omega$ 175°C 500 150°C 400 I_{Sense} (mV) 25°C 300 200 100 0 700 900 100 300 500 1100 1300 I_C (A)

Figure 19. Temperature Sensor Characteristic

Figure 20. Current Sensor Characteristic

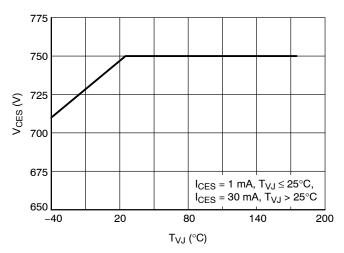


Figure 21. Maximum Allowed V_{CE}

General Note: These are preliminary values measured from a small number of DV units. Values will be updated based on higher quantity of PV measurements.

VE-Trac is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales