

Silicon Carbide (SiC) MOSFET - EliteSiC, 32 mohm, 650 V, M3S, TO-247-4L

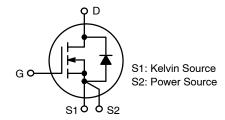
NVH4L032N065M3S

Features

- Typical $R_{DS(on)} = 32 \text{ m}\Omega$ @ $V_{GS} = 18 \text{ V}$
- Ultra Low Gate Charge $(Q_{G(tot)} = 55 \text{ nC})$
- High Speed Switching with Low Capacitance (Coss = 114 pF)
- 100% Avalanche Tested
- AEC-Q101 Qualified and PPAP Capable
- This Device is Halide Free and RoHS Compliant with Exemption 7a, Pb–Free 2LI (on second level interconnection)

Applications

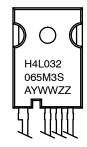
- Automotive On Board Charger
- Automotive DC-DC Converter for EV/HEV


MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Value	Unit	
Drain-to-Source Voltage		V_{DSS}	650	V
Gate-to-Source Voltage		V_{GS}	-8/+22	V
Continuous Drain Current	T _C = 25°C	I _D	50	Α
Power Dissipation	T _C = 25°C	P_{D}	187	W
Continuous Drain Current (Note 1)	T _C = 100°C	Ι _D	30	Α
Power Dissipation	T _C = 100°C	P_{D}	94	W
Pulsed Drain Current (Note 2)	T _C = 25°C t _p = 100 μs	I _{DM}	163	Α
Continuous Source-Drain Current (Body Diode)	$T_C = 25^{\circ}C$ $V_{GS} = -3 V$	I _S	29	Α
Continuous Source-Drain Current (Body Diode)	$T_C = 100^{\circ}C$ $V_{GS} = -3 V$	I _S	16	Α
Pulsed Source-Drain Current (Body Diode) (Note 2)	$T_{C} = 100^{\circ}C$ $V_{GS} = -3 V$ $t_{p} = 100 \mu s$	I _{SM}	137	A
Single Pulse Avalanche Energy (Note 3)	I _{LPK} = 16.7 A, L = 1 mH	E _{AS}	139	mJ
Operating Junction and Storage T Range	T _J , T _{stg}	-55 to +175	°C	
Lead Temperature for Soldering Purposes (1/8" from case for 10 seconds)		TL	270	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 30 A is limited by package. Power chip max drain current is 35 A if limited by max junction temperature.
- 2. Single pulse, limited by max junction temperature.
- 3. EAS of 139 mJ is based on starting T_J = 25°C, L = 1 mH, I_{AS} = 16.7 A, V_{DD} = 100 V, V_{GS} = 18 V.


V _{(BR)DSS}	R _{DS(ON)} TYP	I _D MAX
650 V	32 m Ω @ V _{GS} = 18 V	50 A

N-CHANNEL MOSFET

MARKING DIAGRAM

H4L032065M3S = Specific Device Code

A = Assembly Location

Y = Year

WW = Work Week
ZZ = Lot Traceability

ORDERING INFORMATION

Device	Package	Shipping
NVH4L032N065M3S	TO-247-4L	30 Units / Tube

THERMAL CHARACTERISTICS

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case (Note 4)	$R_{ heta JC}$	0.8	°C/W
Thermal Resistance, Junction-to-Ambient (Note 4)	$R_{\theta JA}$	40	

^{4.} The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V, } I_D = 1 \text{ mA, } T_J = 25^{\circ}\text{C}$	650	_	_	V
Drain-to-Source Breakdown Voltage Temperature Coefficient	$\Delta V_{(BR)DSS}/ \Delta T_J$	I _D = 1 mA, Referenced to 25°C	-	90	-	mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 650 V, T _J = 25°C	_	-	10	μΑ
		V _{DS} = 650 V, T _J = 175°C (Note 6)	-	-	500	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{GS} = -8/+22 \text{ V}, V_{DS} = 0 \text{ V}$	_	-	±1.0	μΑ
ON CHARACTERISTICS		•	-		-	
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 18 V, I _D = 15 A, T _J = 25°C	-	32	44	mΩ
		V _{GS} = 18 V, I _D = 15 A, T _J = 175°C (Note 6)	-	49	_	
		V _{GS} = 15 V, I _D = 15 A, T _J = 25°C	_	41	_	1
		V _{GS} = 15 V, I _D = 15 A, T _J = 175°C (Note 6)	-	52	-	
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 7.5 \text{ mA}, T_J = 25^{\circ}\text{C}$	2	2.7	4	V
Forward Transconductance	9FS	V _{DS} = 10 V, I _D = 15 A (Note 6)	_	9.9	_	S
CHARGES, CAPACITANCES & GATE	RESISTANCE					
Input Capacitance	C _{ISS}	V _{DS} = 400 V, V _{GS} = 0 V, f = 1 MHz	_	1410	_	pF
Output Capacitance	C _{OSS}	(Note 6)	_	114	_]
Reverse Transfer Capacitance	C _{RSS}		_	9.2	-	1
Total Gate Charge	Q _{G(TOT)}	V _{DD} = 400 V, I _D = 15 A,	-	55	_	nC
Gate-to-Source Charge	Q_{GS}	$V_{GS} = -3/18 \text{ V (Note 6)}$	-	15	-	
Gate-to-Drain Charge	Q _{GD}		_	14	_	1
Gate Resistance	R_{G}	f = 1 MHz	_	5.0	_	Ω
SWITCHING CHARACTERISTICS						
Turn-On Delay Time	t _{d(ON)}	$V_{GS} = -3/18 \text{ V}, V_{DD} = 400 \text{ V},$	_	8.8	_	ns
Turn-Off Delay Time	t _{d(OFF)}	$I_D = 15 \text{ A}, R_G = 4.7 \Omega, T_J = 25^{\circ}\text{C}$ (Notes 5 and 6)	_	31	_	1
Rise Time	t _r	, ,	-	12	_	
Fall Time	t _f		-	9	-	
Turn-On Switching Loss	E _{ON}		-	33	-	μJ
Turn-Off Switching Loss	E _{OFF}		_	16	_	
Total Switching Loss	E _{TOT}		_	49	-	

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified) (continued)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS	•		-	•	-	-
Turn-On Delay Time	t _{d(ON)}	$V_{GS} = -3/18 \text{ V}, V_{DD} = 400 \text{ V},$	_	7.8	_	ns
Turn-Off Delay Time	t _{d(OFF)}	I_D = 15 A, R_G = 4.7 Ω, T_J = 175°C (Notes 5 and 6)	_	37	_	
Rise Time	t _r	, , , , , , , , , , , , , , , , , , , ,	_	12	_	
Fall Time	t _f	1	_	11	_	
Turn-On Switching Loss	E _{ON}	7	_	31	_	μJ
Turn-Off Switching Loss	E _{OFF}	1	_	25	_	
Total Switching Loss	E _{TOT}		_	56	_	
SOURCE-TO-DRAIN DIODE CHARA	CTERISTICS					
Forward Diode Voltage	V _{SD}	$I_{SD} = 15 \text{ A}, V_{GS} = -3 \text{ V}, T_{J} = 25^{\circ}\text{C}$	_	4.5	6.0	V
		I _{SD} = 15 A, V _{GS} = -3 V, T _J = 175°C (Note 6)	_	4.1	-	
Reverse Recovery Time	t _{RR}	$V_{GS} = -3 \text{ V}, I_{S} = 15 \text{ A},$	_	15.5	_	ns
Charge Time	ta	dl/dt = 1000 A/μs, V _{DS} = 400 V, T _{.1} = 25°C (Note 6)	_	8.9	-	
Discharge Time	t _b]	_	6.6	-	
Reverse Recovery Charge	Q _{RR}	1	-	72	_	nC
Reverse Recovery Energy	E _{REC}	1	_	4.6	_	μJ
Peak Reverse Recovery Current	I _{RRM}	1	-	9.3	_	Α

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

5. EON/EOFF result is with body diode.

^{6.} Defined by design, not subject to production test.

TYPICAL CHARACTERISTICS

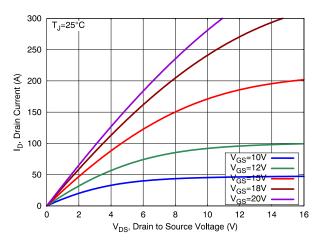


Figure 1. Output Characteristics

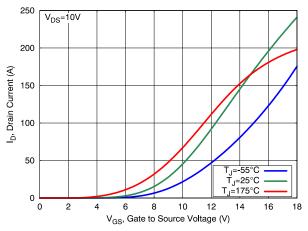


Figure 3. Transfer Characteristics

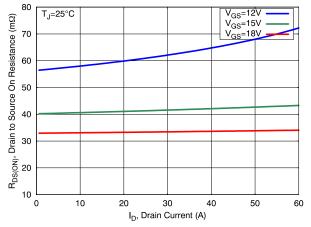


Figure 5. On-Resistance vs. Drain Current

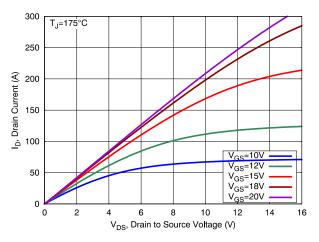


Figure 2. Output Characteristics

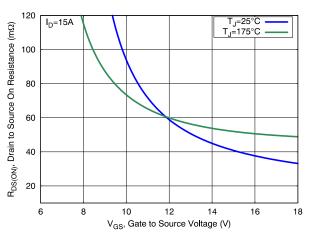


Figure 4. On-Resistance vs. Gate Voltage

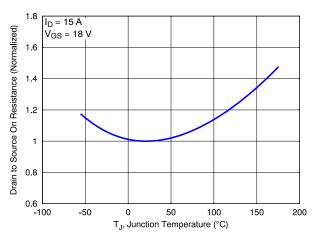


Figure 6. On-Resistance vs. Junction Temperature

TYPICAL CHARACTERISTICS

25

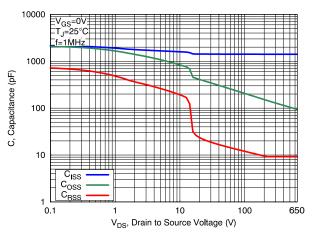
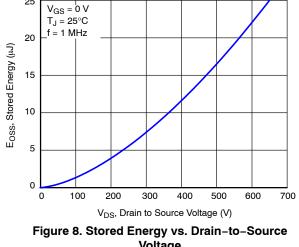



Figure 7. Capacitance Characteristics

Voltage

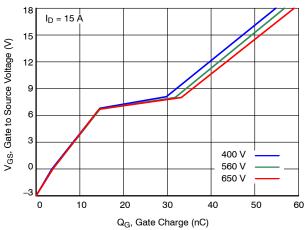


Figure 9. Gate Charge Characteristics

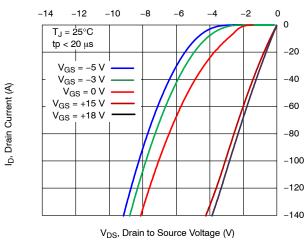


Figure 10. Reverse Conduction Characteristics

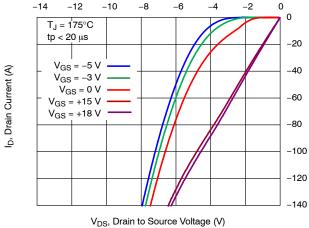


Figure 11. Reverse Conduction Characteristics

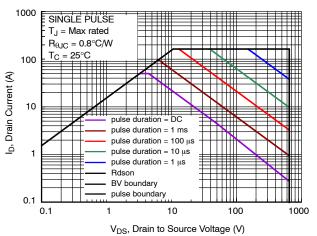


Figure 12. Safe Operating Area

TYPICAL CHARACTERISTICS

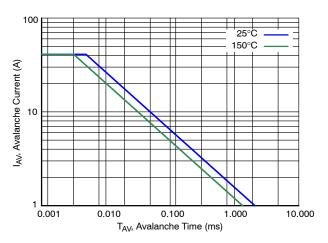


Figure 13. Avalanche Current vs. Pulse Time (UIS)

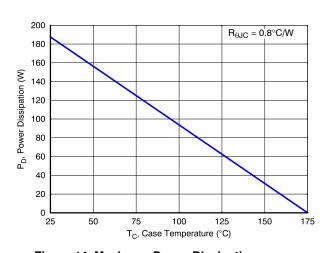


Figure 14. Maximum Power Dissipation vs.

Case Temperature

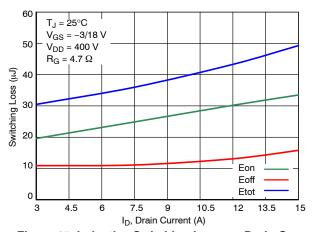


Figure 15. Inductive Switching Loss vs. Drain Current

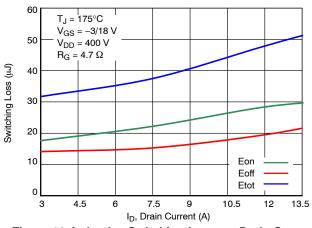


Figure 16. Inductive Switching Loss vs. Drain Current

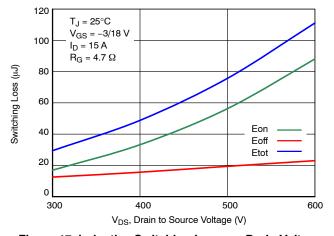


Figure 17. Inductive Switching Loss vs. Drain Voltage

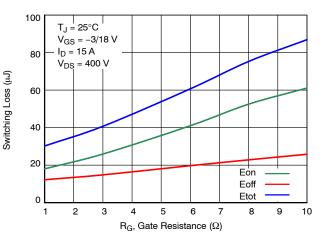


Figure 18. Inductive Switching Loss vs.
Gate Resistance

TYPICAL CHARACTERISTICS

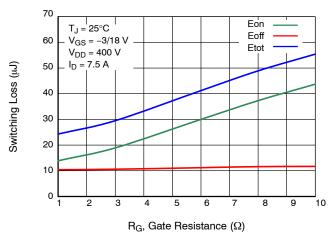


Figure 19. Inductive Switching Loss vs. Gate Resistance

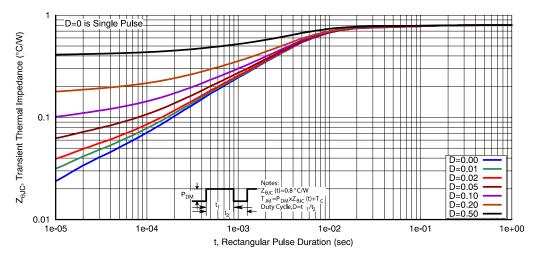
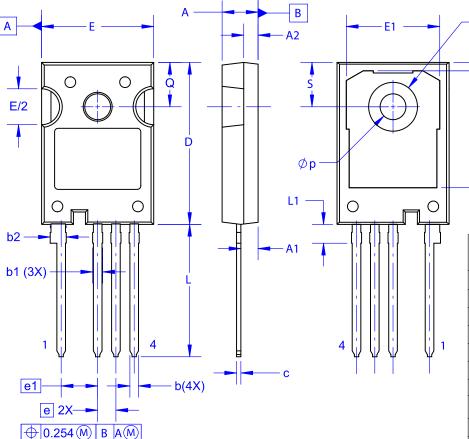


Figure 20. Thermal Response Characteristics

 \emptyset p1

D1


DIM

D2

TO-247-4LD CASE 340CJ **ISSUE A**

DATE 16 SEP 2019

NOTES:

- A. NO INDUSTRY STANDARD APPLIES TO THIS PACKAGE.
 B. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD
 FLASH, AND TIE BAR EXTRUSIONS.
 C. ALL DIMENSIONS ARE IN MILLIMETERS.
 D. DRAWING CONFORMS TO ASME Y14.5-2009.

Α	4.80	5.00	5.20		
A1	2.10	2.40	2.70		
A2	1.80	2.00	2.20		
b	1.07	1.20	1.33		
b1	1.20	1.40	1.60		
b2	2.02	2.22	2.42		
С	0.50	0.60	0.70		
D	22.34	22.54	22.74		
D1	16.00	16.25	16.50		
D2	0.97	1.17	1.37		
е	2.54 BSC				
e1	5.08 BSC				
E	15.40	15.60	15.80		
E1	12.80	13.00	13.20		
E/2	4.80	5.00	5.20		
L	18.22	18.42	18.62		
L1	2.42	2.62	2.82		
р	3.40	3.60	3.80		
p1	6.60	6.80	7.00		
Q	5.97	6.17	6.37		
S	5.97	6.17	6.37		

MILLIMETERS

NOM

MAX

MIN

DOCUMENT NUMBER:	98AON13852G	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-247-4LD		PAGE 1 OF 1	

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales