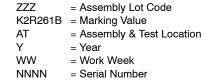
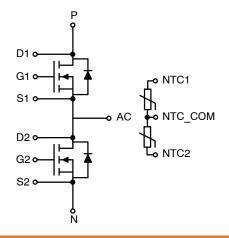

onsemi


Silicon Carbide (SiC) Module – EliteSiC Power Module for Traction Inverter, Single-Side Cooling, 2.6 mohm, 1200V, Half-Bridge, Straight Power Tabs


AHPM15-CDE MODULE CASE MODHT

MARKING DIAGRAM

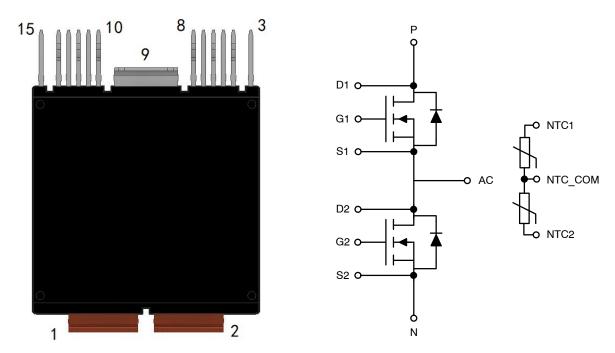
PIN CONFIGURATION

ORDERING INFORMATION

Device	Package	Shipping
NVVR26A120M1WSB	AHPM15	Tube

NVVR26A120M1WSB

Product Description


The NVVR26A120M1WSB is part of the VE-Trac^M B2 SiC family of highly integrated power modules for Hybrid (HEV) and Electric Vehicle (EV) traction inverter application. The module integrates 1200 V SiC MOSFET in a half-bridge configuration. To enhance reliability and thermal performance, sintering technology is applied for die attach. The module is designed to meet the AQG324 standard.

Features

- Ultra Low R_{DS(on)}
- Aluminum Nitride Isolator
- Ultra-low Stray Inductance ~ 7.1 nH
- T_{vi.Max} = 175°C for Continuous Operation
- Automotive Grade SiC MOSFET Chip Technologies
- Sintered Die Technology for High Reliability Performance
- Automotive Module AQG324 Compliant
- PPAP Capable

Applications

• Automotive EV/HEV- Traction Inverter

PIN FUNCTION DESCRIPTIONS

Pin No.	Pin Name	Pin Functional Description
1	Ν	Negative Power Terminal
2	Р	Positive Power Terminal
3	D1	High Side MOSFET (Q1) Drain Sense
4	N/C	No Connection
5	S1	High Side MOSFET (Q1) Source
6	G1	High Side MOSFET (Q1) Gate
7	N/C	No Connection
8	N/C	No Connection
9	AC	Phase Output
10	NTC1	NTC 1
11	S2	Low Side MOSFET (Q2) Source
12	G2	Low Side MOSFET (Q2) Gate
13	NTC2	NTC 2
14	NTC_COM	NTC common
15	D2	Low Side MOSFET (Q2) Drain Sense

Materials

DBC Substrate: AlN isolated substrate, basic isolation, and copper on both sides

Lead frame: Pin 1,2 copper without plating. Pin 3 to 15 copper, with tin electro-plating.

Flammability Information

All materials present in the power module meet UL flammability rating class 94V-0

MODULE CHARACTERISTICS (T_{vj} = 25°C, Unless Otherwise Specified)

Symbol	Parameter	Rating	Unit
Τ _{vj}	Operating Junction Temperature	-40 to 175	°C
T _{STG}	Storage Temperature Range	-40 to 125	°C
V _{ISO}	Isolation Voltage (AC, 50 Hz, 5 s)	4200	V
Ls _{DS}	Stray Inductance	7.1	nH
R _{DD'+SS'}	Module Lead Resistance, Terminal to Chip	0.3	mΩ
G	Module Weight	48	g
CTI	Comparative Tracking Index	>600	-
	Minimum: Terminal to Terminal	6.6	mm
	Minimum (Note 1): Terminal to Isolated Case	3.8	mm
М	M5 DIN 439B Screws for Module Terminals, Max. Torque	2.2	Nm

1. Verified by characterization/design, not by test.

ABSOLUTE MAXIMUM RATINGS (T_{vj} = 25°C, Unless Otherwise Specified)

Symbol	Parameter	Rating	Unit
V _{DS}	Drain-Source Voltage	1200	V
V _{GS}	Gate-Source Voltage	+25/-10	V
I _{DS}	Continuous DC Current, V _{GS} = 20 V, T _{vj} = 175°C, T _F = 65°C @ 10LPM, using Ref. Heatsink (Note 2)	400	A
I _{DS.pulsed}	Pulsed Drain–Source Current, V_{GS} = 20 V, limited by $T_{vj.Max}$	800	А
I _{SD.BD}	DC Current in Body Diode, V _{GS} = –5 V, T _{vj} = 175°C, T _F = 65°C @ 10LPM, using Ref. Heatsink (Note 2)	270	A
I _{SD.pulsed}	Pulsed Body Diode Current, V_{GS} =–5 V, limited by $T_{vj.Max}$	800	А
Ptot	Total Power Dissipation $T_{vj.Max}$ = 175°C, T_F = 65°C, Ref. Heatsink (typ)	1000	W

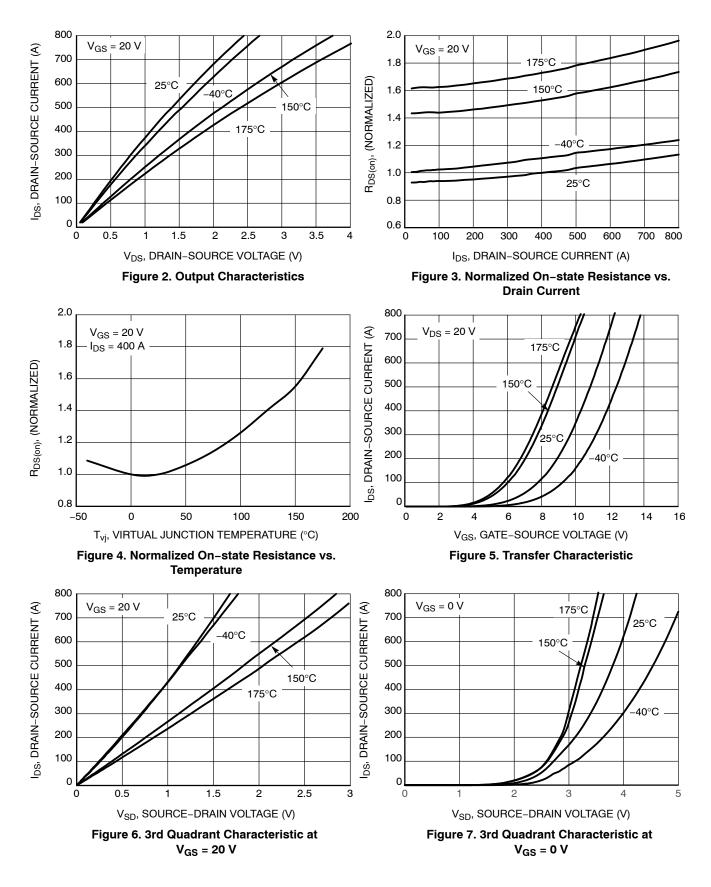
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 2. Verified by characterization/design, not by test.

Parameter		Conditions		Min	Тур	Max	Unit
R _{DS(ON)}	Drain-to-Source On Resistance (Terminal)	V _{GS} = 20V, I _D = 400	$\begin{array}{ll} A & T_{vj} = 25^\circ C \\ T_{vj} = 175^\circ C \end{array}$	-	2.6 4.6	-	mΩ
V _{GS(TH)}	Gate Threshold Voltage	$V_{GS} = V_{DS}$, $I_{D} = 150$) mA	2.1	3.2	-	V
9 _{fs}	Forward Transconductance	V _{DS} = 10 V, I _D = 400) A	-	170	-	S
Q _G	Total Gate Charge	$V_{GS} = -5/+20 \text{ V}, \text{ V}_{DS}$	_S = 800 V, I _D = 400 A	-	1.75	_	μC
R _{g.int}	Internal Gate Resistance			-	2.1	-	Ω
C _{iss}	Input Capacitance	V_{DS} = 800 V, V_{GS} =	0 V, f = 100 kHz	-	31.7	-	nF
Coss	Output Capacitance			-	2.2	-	nF
C _{rss}	Reverse Transfer Capacitance			-	0.22	_	nF
I _{DSS}	Zero Gate Voltage Drain Current	V _{GS} = 0 V, V _{DS} = 12	200 V $T_{vj} = 25^{\circ}C$ $T_{vj} = 175^{\circ}C$	-	_ 13.1	250 -	μA
I _{GSS}	Gate-Source Leakage Current	V_{GS} = 20/–5 V, V_{DS}	= 0 V			±700	nA
T _{d.on}	Turn On Delay, Inductive Load	$I_{DS} = 400 \text{ A},$ $V_{DS} = 800 \text{ V},$ $V_{GS} = +20/-5 \text{ V},$	$T_{vj} = 25^{\circ}C$	_	125	-	ns
		Rg.on = 3 Ω	T _{vj} = 175°C		115		
T _r	Rise Time, Inductive Load	I _{DS} = 400 A, V _{DS} = 800 V, V _{GS} = +20/–5 V,	$T_{vj} = 25^{\circ}C$	-	59	-	ns
		Rg.on = 3Ω	T _{vj} = 175°C		54		
T _{d.off}	Turn Off Delay, Inductive Load	I _{DS} = 400 A, V _{DS} = 800 V, V _{GS} = +20/–5 V,	$T_{vj} = 25^{\circ}C,$	-	220	-	ns
		Rg.off = 1 Ω	T _{vj} = 175°C		228		
Т _f	Fall Time, Inductive Load	$I_{DS} = 400 \text{ A},$ $V_{DS} = 800 \text{ V},$	T _{vj} = 25°C	-	51	-	ns
		V _{GS} = +20/–5 V, Rg.off = 1 Ω	T _{vi} = 175°C		61		
E _{ON}	Turn–On Switching Loss (including diode reverse recovery loss)	$I_{DS} = 400 \text{ A},$ $V_{DS} = 800 \text{ V},$	di/dt = 8.4 A/ns, $T_{vj} = 25^{\circ}\text{C}$		26		mJ
		V _{GS} = +20/–5 V, Ls = 17 nH, Rg.on = 3Ω	di∕dt = 9.7 A/ns, T _{vj} = 175°C	-	28	-	
E _{OFF}	Turn-Off Switching Loss	I _{DS} = 400A, V _{DS} = 800 V,	dv/dt = 19.8 V/ns, $T_{vj} = 25^{\circ}C$		14		mJ
		V_{GS} = +20/–5 V, Ls =17 nH, Rg.off = 1 Ω	dv/dt = 16.8 V/ns, T _{vj} = 175°C	-	17	_	
E_{sc}	Short Circuit Energy Withstand	V _{GS} = 20 V, V _{DS} = 8	800 V T _{vj} = 25°C T _{vj} = 175°C	-	12 11	-	J

Conditions Min Unit Parameters Тур Max $T_{vj} = 25^{\circ}C$ $T_{vj} = 175^{\circ}C$ Diode Forward Voltage $V_{GS} = -5 \text{ V}, \text{ I}_{SD} = 400 \text{ A}$ 3.8 v V_{SD} _ _ (Terminal) 3.3 $I_{SD} = 400 \text{ A},$ $V_{R} = 800 \text{ V},$ $V_{GS} = -5 \text{ V},$ Ls = 17 nH, E_{rr} Reverse Recovery Energy di/dt = 8.4 A/ns, mJ $T_{vj} = 25^{\circ}C$ di/dt = 9.7 A/ns, $T_{vj} = 175^{\circ}C$ 0.4 _ _ 2.1 Rg.on = 3 Ω Q_{RR} **Recovered Charge** I_{SD} = 400 A, μC T_{vj} = 25°C $V_{R}^{-} = 800 V,$ 2.3 $V_{GS} = -5 V$, Rg.on = 3 Ω _ _ T_{vj} = 175°C 8.6 $I_{SD} = 400 \text{ A},$ $V_{R} = 800 \text{ V},$ Peak Reverse Recovery Current А I_{RR} T_{vj} = 25°C 527 $V_{GS} = -5 V$, _ _ Rg.on = 3 Ω $T_{vj} = 175^{\circ}C$ 650

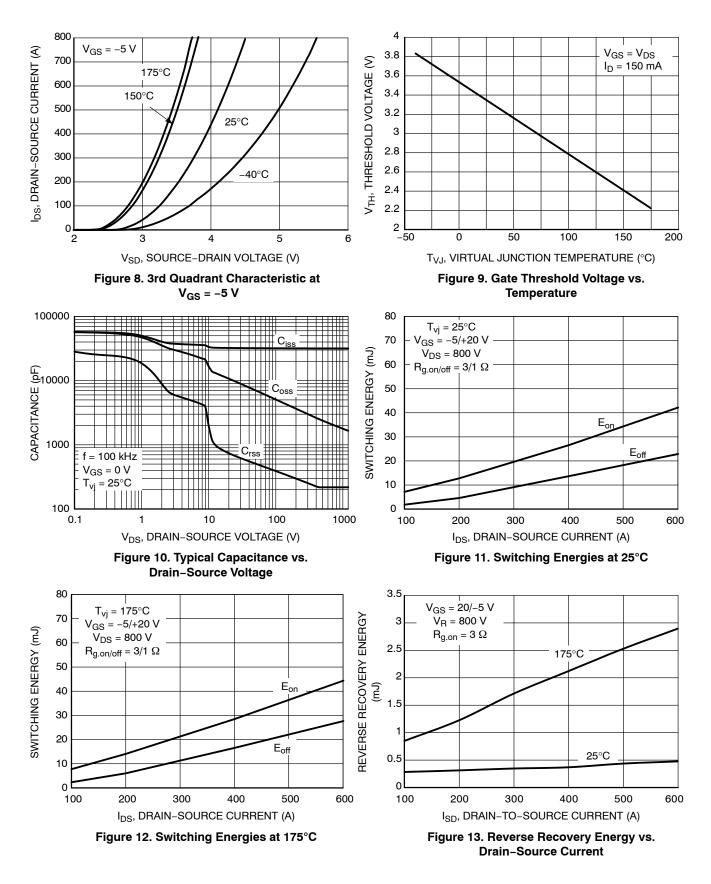
BODY DIODE CHARACTERISTICS (T_{vj} = 25°C, Unless Otherwise Specified)

NTC SENSOR CHARACTERISTICS (T_{vj} = 25°C, Unless Otherwise Specified)

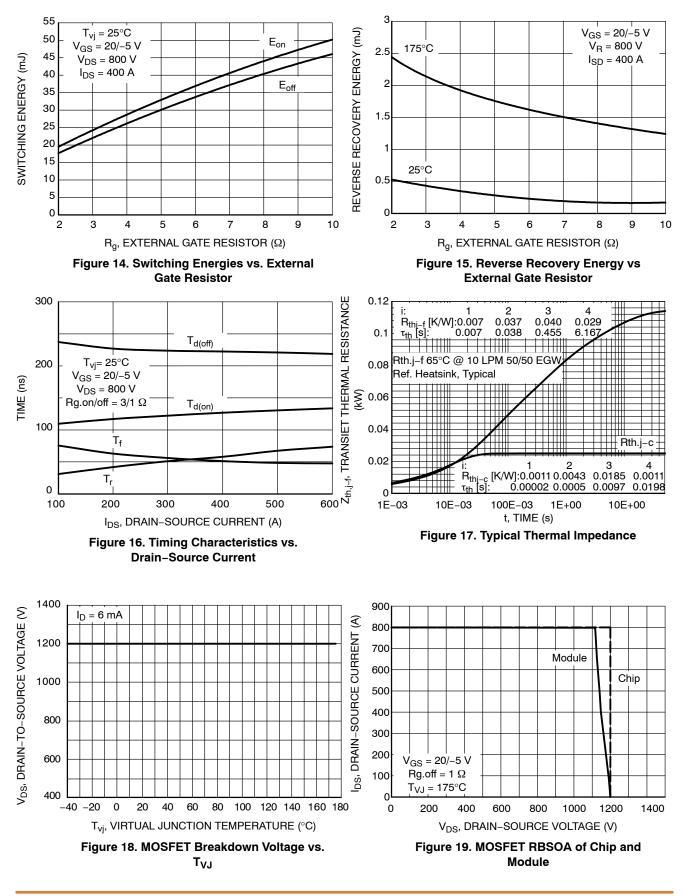

	Parameters	Conditions	Min	Тур	Max	Unit
R25	Rated Resistance	Tc = 25°C	-	10	-	kΩ
$\Delta R/R$	Deviation of R100	Tc = 100°C, R100 = 877 Ω	-3	-	+3	%
P25	Power Dissipation	Tc = 25°C	-	-	125	mW
B25/85	B-Value	R = R25 exp [B25/85 (1/T-1/298)]	-1%	3610	+1%	К

THERMAL CHARACTERISTICS

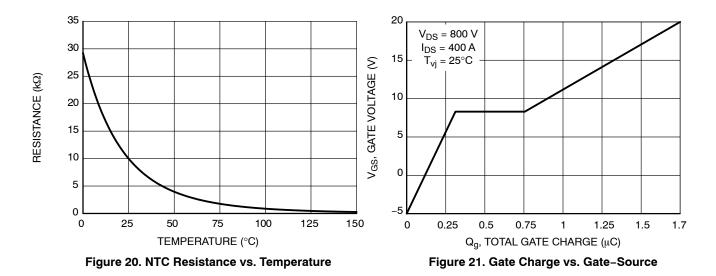
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
R _{th,J-C}	FET Junction to Case		1	0.025	0.028	°C/W
R _{th,J-F}	FET Junction to Fluid	$R_{th},$ Junction to Fluid, 10 L/min, 65°C, 50/50 EGW, Ref. Heatsink	-	0.11	-	°C/W



TYPICAL CHARACTERISTICS

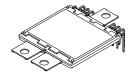


TYPICAL CHARACTERISTICS

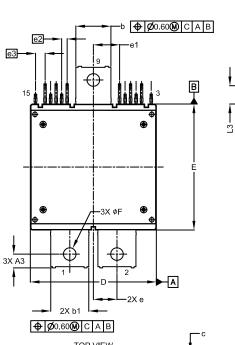


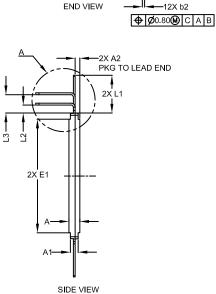
TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

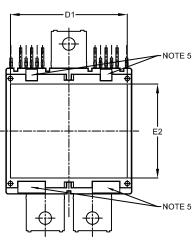


VE-Trac is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.





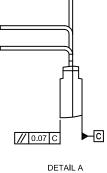
AHPM15-CDE AUTOMOTIVE MODULE CASE MODHT ISSUE O


DATE 23 APR 2021

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER. ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS D & E DO NOT INCLUDE MOLD PROTRUSIONS
- 4. DIMENSIONS b,b1,b2 DO NOT INCLUDE DAMBAR REMAIN.
- 5. MARKING AREA.

BOTTOM VIEW


Т

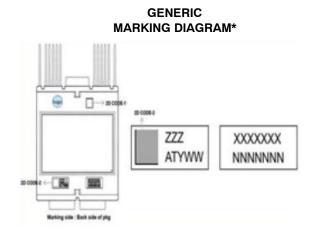
Г

END VIEW

MIN.	NOM.	MAX.
4.60	4.80	5.00
3.20	3.40	3.60
1.70	2.05	2.40
5.70	6.00	6.30
15.20	15.30	15.40
16.50	16.60	16.70
0.90	1.00	1.10
	0.50 REF	
0.70	0.80	0.90
54.80	55.00	55.20
50.70	51.00	51.30
54.80	55.00	55.20
	4.60 3.20 1.70 5.70 15.20 16.50 0.90 0.70 54.80 50.70	4.60 4.80 3.20 3.40 1.70 2.05 5.70 6.00 15.20 15.30 16.50 16.60 0.90 1.00 0.50 REF 0.70 0.70 0.80 54.80 55.00 50.70 51.00

MILLIMETERS

	IVI		(5		
DIM	MIN.	NOM.	MAX.		
E1	49.40	49.60	49.80		
E2	40.70	41.00	41.30		
е	10.00	10.30	10.60		
e1	11.15	11.45	11.75		
e2	2.40 BSC				
e3		4.20 BSC			
F	5.40	5.50	5.60		
L	14.17	14.47	14.77		
L1	16.20	16.50	16.80		
L2	3.20	3.50	3.80		
L3	7.70	8.00	8.30		
М		10° REF			


MILLIMETERS

DOCUMENT NUMBER:	98AON33310H	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	RIPTION: AHPM15-CDE AUTOMOTIVE MODULE PAGE 1 OF				
onsemi and ONSEMi. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.					

AHPM15-CDE AUTOMOTIVE MODULE

CASE MODHT ISSUE O

DATE 23 APR 2021

ZZZ = Assembly Lot Code

AT = Assembly & Test Location

= Year

Y

WW = Work Week

XXXX = Specific Device Code

NNNN = Serial Number

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON33310H	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	AHPM15-CDE AUTOMOTIVE MODULE		PAGE 2 OF 2		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales