# Silicon Carbide (SiC) Module – EliteSiC, 2 x 10 mohm SiC M1 MOSFET, 1200 V, 2 x 100 A, Vienna Module 900 V, F2 Package

## NXH020U90MNF2PTG, NXH020U90MNF2PG

The NXH020U90MNF2 is a power module containing a Vienna Rectifier module consisting of two 10 m $\Omega$ , 900 V SiC MOSFETs, two 100 A, 1200 V SiC diodes and a thermistor in an F2 package.

#### **Features**

- Neutral Point:  $10 \text{ m}\Omega$ , 900 V SiC MOSFETs
- Boost Diodes: 100 A, 1200 V SiC Diodes
- Thermistor
- Options with Pre-Applied Thermal Interface Material (TIM) and without Pre-Applied TIM
- Press-Fit Pins
- These Devices are Pb-Free, Halide Free and are RoHS Compliant

#### **Typical Applications**

- Electric Vehicle Charging Stations
- Uninterruptible Power Supplies
- Energy Storage Systems

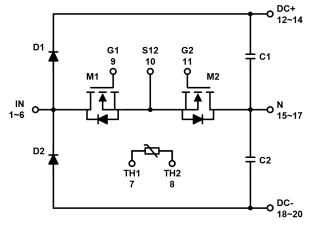
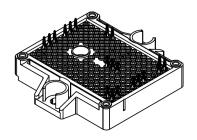




Figure 1. NXH020U90MNF2 Schematic Diagram

1



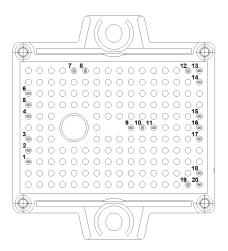
PIM20 56.7x42.5 (PRESS FIT) CASE 180BZ

#### **MARKING DIAGRAM**

NXH020U90MNF2P(T)G ATYYWW

NXH020U90MNF2P(T)G = Specific Device Code

= Pb-Free Package


AT = Assembly & Test Site

Code

YYWW = Year & Work Week

Code

#### **PIN CONNECTIONS**



See Pin Function Description for pin names.

#### **ORDERING INFORMATION**

See detailed ordering and shipping information on page 5 of this data sheet.

#### PIN FUNCTION DESCRIPTION

| Pin | Name | Description                |
|-----|------|----------------------------|
| 1   | IN   | Phase Connection           |
| 2   | IN   | Phase Connection           |
| 3   | IN   | Phase Connection           |
| 4   | IN   | Phase Connection           |
| 5   | IN   | Phase Connection           |
| 6   | IN   | Phase Connection           |
| 7   | TH1  | Thermistor Connection 1    |
| 8   | TH2  | Thermistor Connection 2    |
| 9   | G1   | M1 Gate                    |
| 10  | S12  | Common Source M1 M2        |
| 11  | G2   | M2 Gate                    |
| 12  | DC+  | DC Positive Bus connection |
| 13  | DC+  | DC Positive Bus connection |
| 14  | DC+  | DC Positive Bus connection |
| 15  | N    | N connection               |
| 16  | N    | N connection               |
| 17  | N    | N connection               |
| 18  | DC-  | DC Negative Bus connection |
| 19  | DC-  | DC Negative Bus connection |
| 20  | DC-  | DC Negative Bus connection |

#### **MAXIMUM RATINGS**

| Rating                                                                        | Symbol              | Value      | Unit      |
|-------------------------------------------------------------------------------|---------------------|------------|-----------|
| SIC MOSFET                                                                    | 1                   |            | •         |
| Drain-Source Voltage                                                          | $V_{DSS}$           | 900        | V         |
| Gate-Source Voltage                                                           | $V_{GS}$            | +18/-8     | V         |
| Continuous Drain Current @ T <sub>C</sub> = 80 °C (T <sub>J</sub> = 175 °C)   | I <sub>D</sub>      | 149        | Α         |
| Pulsed Drain Current (T <sub>J</sub> = 175 °C)                                | I <sub>Dpulse</sub> | 447        | Α         |
| Maximum Power Dissipation (T <sub>J</sub> = 175 °C)                           | P <sub>tot</sub>    | 352        | W         |
| Minimum Junction Temperature                                                  | $T_{JMIN}$          | -40        | °C        |
| Maximum Junction Temperature                                                  | T <sub>JMAX</sub>   | 175        | °C        |
| SIC DIODE                                                                     |                     |            |           |
| Peak Repetitive Reverse Voltage                                               | $V_{RRM}$           | 1200       | V         |
| Continuous Forward Current @ T <sub>C</sub> = 80 °C (T <sub>J</sub> = 175 °C) | I <sub>F</sub>      | 118        | Α         |
| Surge Forward Current, tp = 10 ms                                             | I <sub>FSM</sub>    | 354        | Α         |
| Power Dissipation per Diode ( $T_J = 175 ^{\circ}C$ , $T_C = 80 ^{\circ}C$ )  | P <sub>tot</sub>    | 365        | W         |
| Minimum Operating Junction Temperature                                        | $T_{JMIN}$          | -40        | °C        |
| Maximum Operating Junction Temperature                                        | T <sub>JMAX</sub>   | 175        | °C        |
| THERMAL PROPERTIES                                                            |                     |            |           |
| Maximum Operating Junction Temperature under Switching Conditions             | $T_{VJOP}$          | 150        | °C        |
| Storage Temperature Range                                                     | T <sub>stg</sub>    | -40 to 150 | °C        |
| TIM Layer Thickness                                                           | T <sub>TIM</sub>    | 160 ±20    | μm        |
| INSULATION PROPERTIES                                                         |                     |            |           |
| Isolation test voltage, t = 1 sec, 60 Hz                                      | V <sub>is</sub>     | 4800       | $V_{RMS}$ |
| Creepage distance                                                             |                     | 12.7       | mm        |
| СТІ                                                                           |                     | 600        |           |
| Substrate Ceramic Material                                                    |                     | HPS        |           |
| Substrate Ceramic Material Thickness                                          |                     | 0.38       | mm        |
| Substrate Warpage (Note 2)                                                    | W                   | Max 0.18   | mm        |
|                                                                               | •                   |            |           |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe

#### **ELECTRICAL CHARACTERISTICS**

(T<sub>J</sub> = 25 °C unless otherwise noted)

| Parameter                           | Test Conditions                                                         | Symbol               | Min | Тур   | Max | Unit |
|-------------------------------------|-------------------------------------------------------------------------|----------------------|-----|-------|-----|------|
| SIC MOSFET CHARACTERISTICS (M1, M2) |                                                                         |                      |     |       |     |      |
| Drain-Source Breakdown Voltage      | V <sub>GS</sub> = 0 V, I <sub>D</sub> = 200 μA                          | V <sub>(BR)DSS</sub> | 900 | -     | -   | V    |
| Zero Gate Voltage Drain Current     | V <sub>GS</sub> = 0 V, V <sub>DS</sub> = 900 V                          | I <sub>DSS</sub>     | -   | _     | 300 | μΑ   |
| Drain-Source On Resistance          | V <sub>GS</sub> = 15 V, I <sub>D</sub> = 100 A, T <sub>J</sub> = 25 °C  | R <sub>DS(ON)</sub>  | =   | 10.03 | 14  | mΩ   |
|                                     | V <sub>GS</sub> = 15 V, I <sub>D</sub> = 100 A, T <sub>J</sub> = 125 °C |                      | =   | 10.80 | =   |      |
|                                     | V <sub>GS</sub> = 15 V, I <sub>D</sub> = 100 A, T <sub>J</sub> = 150 °C |                      | =   | 11.61 | =   |      |
| Gate-Source Threshold Voltage       | $V_{GS} = V_{DS}$ , $I_D = 40 \text{ mA}$                               | V <sub>GS(TH)</sub>  | 1.8 | 2.74  | 4.3 | V    |
| Gate Leakage Current                | V <sub>GS</sub> = -5 V / 15 V, V <sub>DS</sub> = 0 V                    | I <sub>GSS</sub>     | -1  | -     | 1   | μΑ   |

Operating parameters.

<sup>2.</sup> Height difference between horizontal plane and substrate bottom copper.

#### **ELECTRICAL CHARACTERISTICS** (continued)

(T<sub>J</sub> = 25 °C unless otherwise noted)

| Parameter                             | Test Conditions                                                                                         | Symbol              | Min | Тур      | Max  | Unit |
|---------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------|-----|----------|------|------|
| Input Capacitance                     | V <sub>DS</sub> = 450 V, V <sub>GS</sub> = 0 V, f = 1 MHz                                               | C <sub>ISS</sub>    | -   | 7007     | ı    | pF   |
| Reverse Transfer Capacitance          |                                                                                                         | C <sub>RSS</sub>    | -   | 44       | -    |      |
| Output Capacitance                    |                                                                                                         | C <sub>OSS</sub>    | -   | 665      | _    |      |
| Total Gate Charge                     | $V_{DS} = 720 \text{ V}, V_{GS} = -5 \text{ V} / 15 \text{ V},$                                         | $Q_{G(TOTAL)}$      | _   | 546.4    | 1    | nC   |
| Gate-Source Charge                    | I <sub>D</sub> = 100 A                                                                                  | Q <sub>GS</sub>     | =   | 105.45   | _    | nC   |
| Gate-Drain Charge                     |                                                                                                         | $Q_{GD}$            | =   | 122.7    | =    | nC   |
| Turn-on Delay Time                    | T <sub>J</sub> = 25 °C                                                                                  | t <sub>d(on)</sub>  | =   | 43.2     | _    | ns   |
| Rise Time                             | $V_{DS} = 450 \text{ V}, I_D = 100 \text{ A}$<br>$V_{GS} = -5 \text{ V} / 15 \text{ V}, R_G = 2 \Omega$ | t <sub>r</sub>      | =   | 19.8     | _    |      |
| Turn-off Delay Time                   |                                                                                                         | t <sub>d(off)</sub> | -   | 110      | _    |      |
| Fall Time                             |                                                                                                         | t <sub>f</sub>      | _   | 12.8     | _    | =    |
| Turn-on Switching Loss per Pulse      |                                                                                                         | E <sub>ON</sub>     | _   | 0.75     | _    | mJ   |
| Turn-off Switching Loss per Pulse     | 7                                                                                                       | E <sub>OFF</sub>    | =   | 0.71     | _    |      |
| Turn-on Delay Time                    | T <sub>J</sub> = 150 °C                                                                                 | t <sub>d(on)</sub>  | =   | 41.6     |      | ns   |
| Rise Time                             | $V_{DS} = 450 \text{ V}, I_D = 100 \text{ A}$<br>$V_{GS} = -5 \text{ V} / 15 \text{ V}, R_G = 2 \Omega$ | t <sub>r</sub>      | =   | 18       |      |      |
| Turn-off Delay Time                   |                                                                                                         | t <sub>d(off)</sub> | _   | 128      | _    |      |
| Fall Time                             |                                                                                                         | t <sub>f</sub>      | _   | 12.8     | -    |      |
| Turn-on Switching Loss per Pulse      |                                                                                                         | E <sub>ON</sub>     | _   | 0.63     | -    | mJ   |
| Turn-off Switching Loss per Pulse     |                                                                                                         | E <sub>OFF</sub>    | _   | 0.77     | _    |      |
| Diode Forward Voltage                 | I <sub>D</sub> = 100 A                                                                                  | V <sub>SD</sub>     | _   | 4.47     | 6    | V    |
| Ç                                     | I <sub>D</sub> = 100 A, T <sub>J</sub> = 150 °C                                                         |                     | _   | 3.92     | -    |      |
| Thermal Resistance - Chip-to-Case     | M1, M2                                                                                                  | $R_{thJC}$          | =   | 0.27     | =    | °C/W |
| Thermal Resistance – Chip-to-Heatsink | Thermal grease,<br>Thickness = 2 Mil +2%,<br>A = 2.8 W/mK                                               | R <sub>thJH</sub>   | -   | 0.49     | _    | °C/W |
| SIC DIODE CHARACTERISTICS (D1, D2)    | <u> </u>                                                                                                |                     |     | <u> </u> |      | ı    |
| Diode Reverse Leakage Current         | V <sub>R</sub> = 1200 V                                                                                 | I <sub>R</sub>      | _   | _        | 400  | μА   |
| Diode Forward Voltage                 | I <sub>F</sub> = 100 A, T <sub>J</sub> = 25 °C                                                          | $V_{F}$             |     | 1.54     | 2.30 | V    |
|                                       | I <sub>F</sub> = 100 A, T <sub>J</sub> = 125 °C                                                         | -                   | =   | 1.84     | =    |      |
|                                       | I <sub>F</sub> = 100 A, T <sub>J</sub> = 150 °C                                                         | -                   | =   | 1.93     | _    |      |
| Reverse Recovery Time                 | T <sub>J</sub> = 25 °C                                                                                  | t <sub>rr</sub>     | _   | 19.5     | _    | ns   |
| Reverse Recovery Charge               | $V_{DS} = 450 \text{ V}, I_D = 100 \text{ A}$<br>$V_{GS} = -5 \text{ V} / 15 \text{ V}, R_G = 2 \Omega$ | Q <sub>rr</sub>     | _   | 439      |      | nC   |
| Peak Reverse Recovery Current         |                                                                                                         | I <sub>RRM</sub>    | _   | 33.4     | 1    | Α    |
| Peak Rate of Fall of Recovery Current |                                                                                                         | di/dt               | _   | 2803     | _    | A/μs |
| Reverse Recovery Time                 | T <sub>.1</sub> = 150 °C                                                                                | t <sub>rr</sub>     |     | 20.5     |      | ns   |
| Reverse Recovery Charge               | $V_{DS} = 450 \text{ V}, I_D = 100 \text{ A}$<br>$V_{GS} = -5 \text{ V} / 15 \text{ V}, R_G = 2 \Omega$ | Q <sub>rr</sub>     |     | 525      | -    | nC   |
| Peak Reverse Recovery Current         |                                                                                                         | I <sub>RRM</sub>    | _   | 40.1     | -    | Α    |
| Peak Rate of Fall of Recovery Current | _                                                                                                       | di/dt               |     | 4002     |      | A/μs |
| Thermal Resistance - Chip-to-Case     | D1, D2                                                                                                  | R <sub>thJC</sub>   |     | 0.26     | _    | °C/W |
| Thermal Resistance – Chip-to-Heatsink | Thermal grease, Thickness = 2 Mil +2%, A = 2.8 W/mK                                                     | R <sub>thJH</sub>   | _   | 0.49     | _    | °C/W |

#### **ELECTRICAL CHARACTERISTICS** (continued)

(T<sub>J</sub> = 25 °C unless otherwise noted)

| Parameter                  | Test Conditions          | Symbol           | Min | Тур  | Max | Unit |
|----------------------------|--------------------------|------------------|-----|------|-----|------|
| THERMISTOR CHARACTERISTICS | 3                        |                  |     |      | •   |      |
| Nominal Resistance         | T = 25 °C                | R <sub>25</sub>  | _   | 5    | _   | kΩ   |
|                            | T = 100 °C               | R <sub>100</sub> | =   | 457  | =   | Ω    |
| Deviation of R25           |                          | ΔR/R             | -3  | _    | 3   | %    |
| Power Dissipation          |                          | P <sub>D</sub>   | _   | 50   | -   | mW   |
| Power Dissipation Constant |                          |                  | _   | 5    | -   | mW/K |
| B-value                    | B(25/50), tolerance ±3%  |                  | -   | 3375 | -   | K    |
| B-value                    | B(25/100), tolerance ±3% |                  | =   | 3455 | =   | K    |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

#### **ORDERING INFORMATION**

| Orderable Part Number | Marking          | Package                                                                                                                 | Shipping                |
|-----------------------|------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------|
| NXH020U90MNF2PTG      | NXH020U90MNF2PTG | F2-VIENNA: Case 180BZ<br>Press-fit Pins with pre-applied<br>thermal interface material (TIM)<br>(Pb-Free / Halide Free) | 20 Units / Blister Tray |
| NXH020U90MNF2PG       | NXH020U90MNF2PG  | F2-VIENNA: Case 180BZ<br>Press-fit Pins<br>(Pb-Free / Halide Free)                                                      | 20 Units / Blister Tray |

#### **TYPICAL CHARACTERISTICS**

SIC MOSFET (M1/M2)

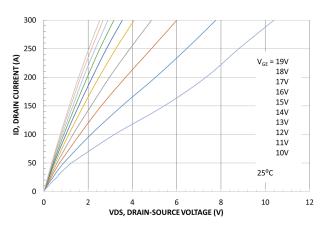



Figure 2. MOSFET Typical Output Characteristic

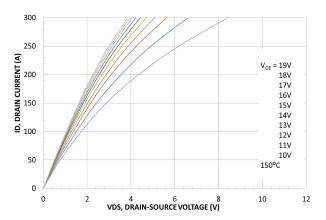



Figure 4. MOSFET Typical Output Characteristic

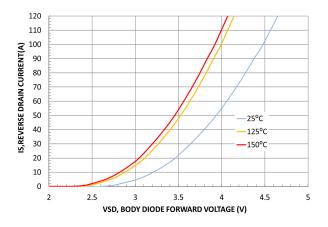



Figure 6. Body Diode Forward Characteristic

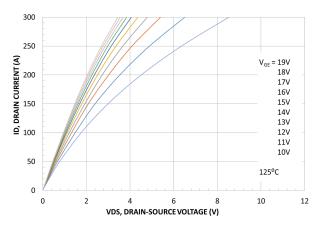



Figure 3. MOSFET Typical Output Characteristic

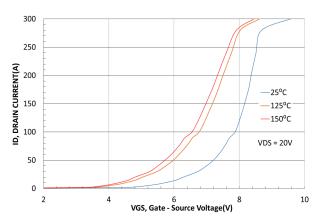



Figure 5. MOSFET Typical Transfer Characteristic

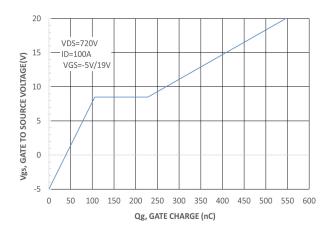



Figure 7. Gate-to-Source Voltage vs. Total Charge

#### **TYPICAL CHARACTERISTICS**

SIC DIODE (D1/D2)

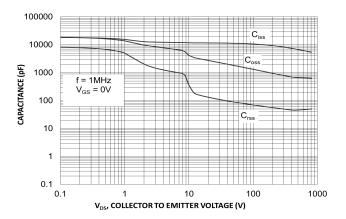



Figure 8. Capacitance vs. Drain-to-Source Voltage

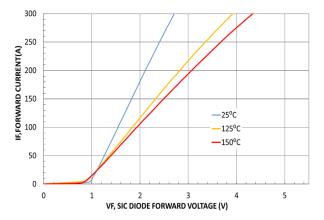



Figure 9. SiC Diode Forward Characteristic

#### **TYPICAL CHARACTERISTICS**

M1/M2 MOSFET SWITCHING CHARACTERISTICS

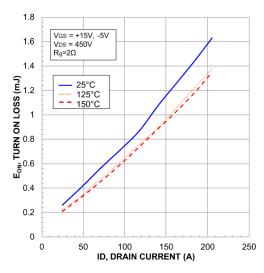



Figure 10. Typical Switching Loss Eon vs. ID

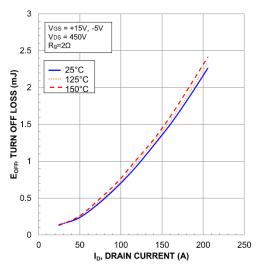



Figure 12. Typical Switching Loss  $E_{\rm off}$  vs. ID

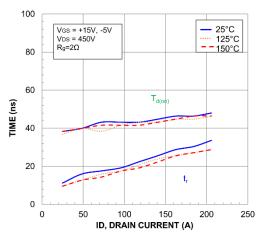



Figure 14. Typical Turn-On Switching  $T_{don,tr}$  vs. ID

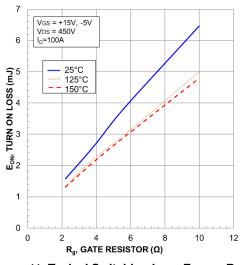



Figure 11. Typical Switching Loss  $E_{on}$  vs.  $R_{G}$ 

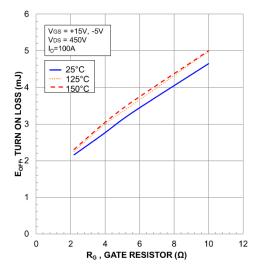



Figure 13. Typical Switching Loss  $E_{\text{off}}$  vs.  $R_{\text{G}}$ 

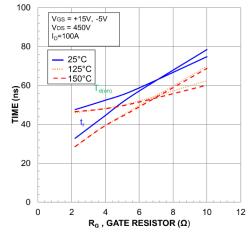



Figure 15. Typical Turn-On Switching T<sub>don,tr</sub> vs. R<sub>G</sub>

#### **TYPICAL CHARACTERISTICS**

M1/M2 MOSFET SWITCHING CHARACTERISTICS

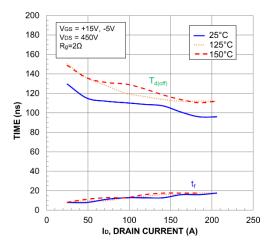



Figure 16. Typical Turn-Off Switching  $T_{doff,tf}\ vs.\ ID$ 

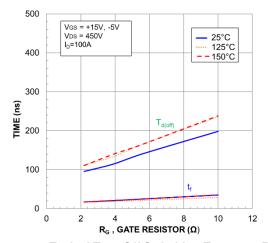



Figure 17. Typical Turn-Off Switching  $T_{doff,tf}$  vs.  $R_{G}$ 

#### **TYPICAL CHARACTERISTICS**

M1/M2 MOSFET COMMUTATE D1/D2 DIODE

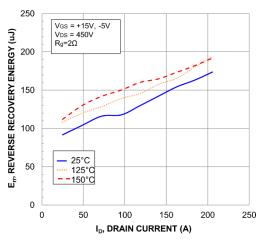



Figure 18. Typical Reverse Recovery Energy vs. ID

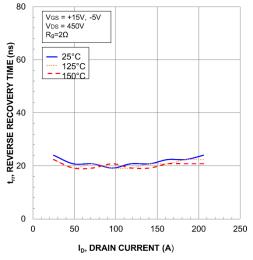



Figure 20. Typical Reverse Recovery Time vs. ID

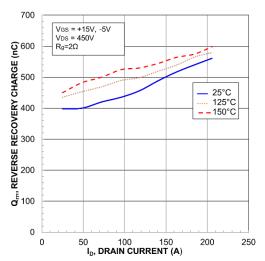



Figure 22. Typical Reverse Recovery Charge vs. ID

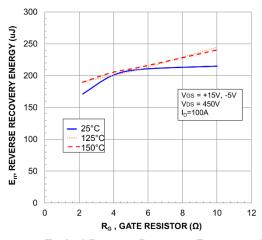



Figure 19. Typical Reverse Recovery Energy vs. R<sub>G</sub>

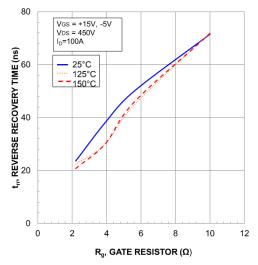



Figure 21. Typical Reverse Recovery Time vs. R<sub>G</sub>

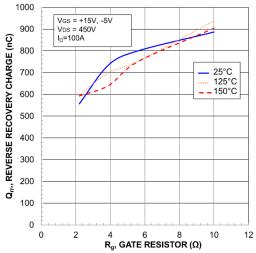



Figure 23. Typical Reverse Recovery Charge vs. R<sub>G</sub>

#### **TYPICAL CHARACTERISTICS**

M1/M2 MOSFET COMMUTATE D1/D2 DIODE

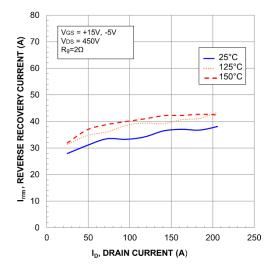



Figure 24. Typical Reverse Recovery Current vs. ID

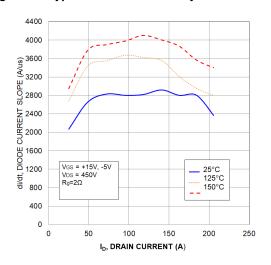



Figure 26. Typical di/dt vs. ID

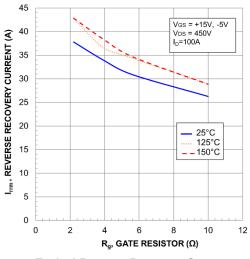



Figure 25. Typical Reverse Recovery Current vs. R<sub>G</sub>

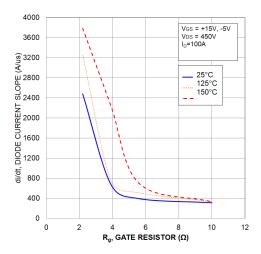



Figure 27. Typical di/dt vs. R<sub>G</sub>

#### TYPICAL CHARACTERISTICS

M1/M2 MOSFET COMMUTATE D1/D2 DIODE

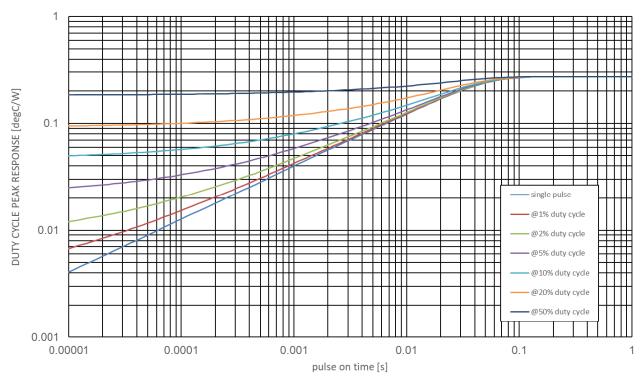



Figure 28. SiC MOSFET Junction-to-Case Transient Thermal Impedance

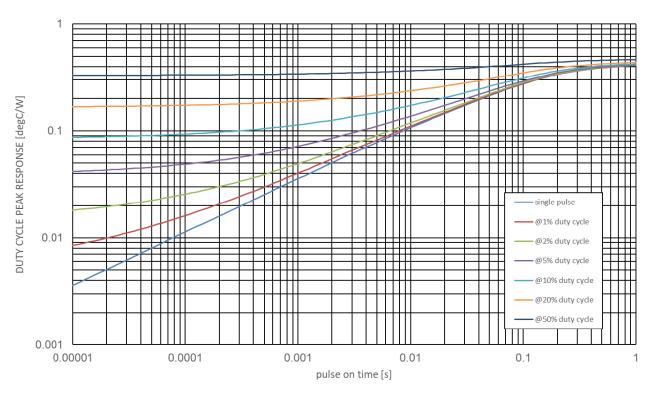
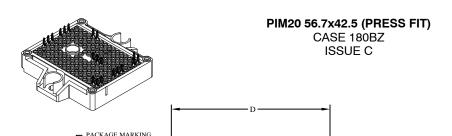


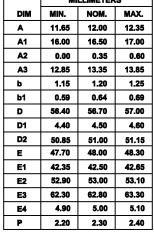

Figure 29. SiC Diode Junction-to-Case Transient Thermal Impedance


#### **REVISION HISTORY**

| Revision | Description of Changes           | Date      |
|----------|----------------------------------|-----------|
| 5        | New OPN Added – NXH020U90MNF2PG. | 5/14/2025 |

**DATE 20 AUG 2021** 



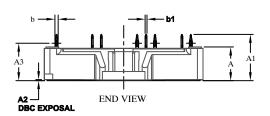

SIDE VIEW



E2

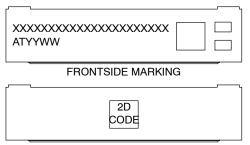
- 1. CONTROLLING DIMENSION: MILLIMETERS
- 2. PIN POSITION TOLERANCE IS ± 0.4mm

|     | MILLIMETERS |       |       |  |
|-----|-------------|-------|-------|--|
| DIM | MIN.        | NOM.  | MAX.  |  |
| Α   | 11.65       | 12.00 | 12.35 |  |
| A1  | 16.00       | 16.50 | 17.00 |  |
| A2  | 0.00        | 0.35  | 0.60  |  |
| A3  | 12.85       | 13.35 | 13.85 |  |
| b   | 1.15        | 1.20  | 1.25  |  |
| b1  | 0.59        | 0.64  | 0.69  |  |
| D   | 56.40       | 56.70 | 57.00 |  |
| D1  | 4.40        | 4.50  | 4.60  |  |
| D2  | 50.85       | 51.00 | 51.15 |  |
| E   | 47.70       | 48.00 | 48.30 |  |
| E1  | 42.35       | 42.50 | 42.65 |  |
| E2  | 52.90       | 53.00 | 53.10 |  |
| E3  | 62.30       | 62.80 | 63.30 |  |
| E4  | 4.90        | 5.00  | 5.10  |  |
| P   | 2.20        | 2.30  | 2.40  |  |




20.8

Ø9.0


**RECOMMENDED** 

**MOUNTING PATTERN** 



TOP VIEW

#### **GENERIC MARKING DIAGRAM\***



#### **BACKSIDE MARKING**

XXXXX = Specific Device Code = Assembly & Test Site Code

YYWW = Year and Work Week Code

\*This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot " • ", may or may not be present. Some products may not follow the Generic Marking.

| PIM20 56.7X42.5 (PR | ESS FIT)                                                                                                                                        | PAGE 1 OF 1 |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 98AON19726H         | Electronic versions are uncontrolled except when accessed directly from<br>Printed versions are uncontrolled except when stamped "CONTROLLED of |             |
|                     | , nor tonon and donor in mining.                                                                                                                |             |

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the v special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

**DESCRIPTION:** 

**DOCUMENT NUMBER:** 

Ø0.94~1.09 PLATED THRU HOLE

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

#### ADDITIONAL INFORMATION

**TECHNICAL PUBLICATIONS:** 

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ 

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales