onsemi

Silicon Carbide (SiC) Module – 30 mohm SiC M3S MOSFET, 1200 V, 2-PACK Half Bridge Topology, F1 Package

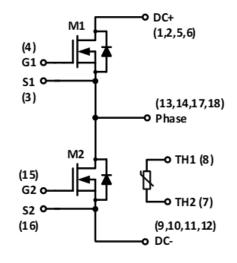
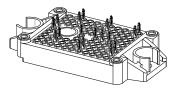
The NXH030P120M3F1 is a power module containing $30 \text{ m}\Omega / 1200 \text{ V}$ SiC MOSFET half-bridge and a thermistor in an F1 package.

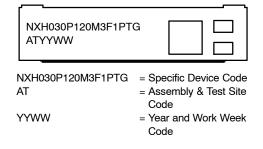
Features

- $30 \text{ m}\Omega / 1200 \text{ V}$ M3S SiC MOSFET Half-Bridge
- Thermistor
- Options with Pre-Applied Thermal Interface Material (TIM) and without Pre-Applied TIM
- Press-Fit Pins
- These Devices are Pb-Free, Halide Free and are RoHS Compliant

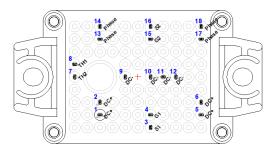
Typical Applications

- Solar Inverter
- Uninterruptible Power Supplies
- Electric Vehicle Charging Stations
- Industrial Power


Figure 1. NXH030P120M3F1 Schematic Diagram

This document contains information on a product under development. **onsemi** reserves the right to change or discontinue this product without notice.



PIM18 33.8x42.5 (PRESS FIT) CASE 180BW

MARKING DIAGRAM

PIN CONNECTIONS

See Pin Function Description for pin names

ORDERING INFORMATION

See detailed ordering and shipping information on page 4 of this data sheet.

DATA SHEET <u>www.onsemi.com</u>

Semiconductor Components Industries, LLC, 2023 July, 2024 – Rev. P3

PIN FUNCTION DESCRIPTION

Pin	Name	Description
1	DC+	DC Positive Bus connection
2	DC+	DC Positive Bus connection
3	S1	M1 Kelvin Source (High side switch)
4	G1	M1 Gate (High side switch)
5	DC+	DC Positive Bus connection
6	DC+	DC Positive Bus connection
7	TH2	Thermistor Connection 2
8	TH1	Thermistor Connection 1
9	DC-	DC Negative Bus connection
10	DC-	DC Negative Bus connection
11	DC-	DC Negative Bus connection
12	DC-	DC Negative Bus connection
13	PHASE	Center point of half bridge
14	PHASE	Center point of half bridge
15	G2	M2 Gate (Low side switch)
16	S2	M2 Kelvin Source (Low side switch)
17	PHASE	Center point of half bridge
18	PHASE	Center point of half bridge

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
SIC MOSFET			•
Drain-Source Voltage	V _{DSS}	1200	V
Gate-Source Voltage	V _{GS}	+22/-10	V
Continuous Drain Current @ $T_c = 80^{\circ}C (T_J = 175^{\circ}C)$	۱ _D	42	А
Pulsed Drain Current ($T_J = 150^{\circ}C$)	I _{Dpulse}	117	А
Maximum Power Dissipation ($T_J = 175^{\circ}C$)	P _{tot}	100	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	175	°C
THERMAL PROPERTIES			
Storage Temperature Range	T _{stg}	-40 to 150	°C
INSULATION PROPERTIES			
Isolation Test Voltage, t = 1 s, 60 Hz	V _{is}	4800	V _{RMS}
Creepage Distance		12.7	mm
CTI		600	
Substrate Ceramic Material		Al ₂ O ₃	
Substrate Ceramic Material Thickness		0.32	mm

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe

Operating parameters.

RECOMMENDED OPERATING RANGES

Rating		Min	Max	Unit
Module Operating Junction Temperature	TJ	-40	150	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS (T_{.1} = 25°C unless otherwise noted)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit		
SIC MOSFET CHARACTERISTICS								
Zero Gate Voltage Drain Current	V_{GS} = 0 V, V_{DS} = 1200 V, T_J = 25°C	I _{DSS}	-	-	100	μA		
Drain-Source On Resistance	V_{GS} = 18 V, I _D = 30 A, T _J = 25°C	R _{DS(ON)}	-	30.6	38.5	mΩ		
	V_{GS} = 18 V, I _D = 30 A, T _J = 125°C		-	49.5	-	1		
	V_{GS} = 18 V, I _D = 30 A, T _J = 150°C		-	57.2	-	1		
	V_{GS} = 18 V, I _D = 30 A, T _J = 175°C		-	66	-	1		
Gate-Source Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 15 \text{ mA}$	V _{GS(TH)}	2.04	2.6	4.4	V		
Gate Leakage Current	V_{GS} = -10 V / 22 V, V_{DS} = 0 V	I _{GSS}	-1	-	1	μA		
Internal Gate Resistance		R _{GINT}	-	3.3	-	Ω		
Input Capacitance	V_{DS} = 800 V, V_{GS} = 0 V, f = 1 MHz	C _{ISS}	-	2271	-	pF		
Reverse Transfer Capacitance		C _{RSS}	-	11.6	-	1		
Output Capacitance		C _{OSS}	-	153	-	1		
Total Gate Charge	V_{DS} = 800 V, V_{GS} = –3/18 V, I_D = 30 A	Q _{G(TOTAL)}	-	110	-	nC		
Gate-Source Charge		Q _{GS}	-	19	-	nC		
Gate-Drain Charge		Q _{GD}	-	33	-	nC		

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit	
SIC MOSFET CHARACTERISTICS							
Turn-on Delay Time	$T_J = 25^{\circ}C$	t _{d(on)}	-	19.6	-	ns	
Rise Time	V_{DS} = 800 V, I _D = 30 A V _{GS} = -3 V / 18 V, R _G = 3.9 Ω	t _r	-	6.6	-		
Turn-off Delay Time	7	t _{d(off)}	-	84.8	-		
Fall Time	7	t _f	-	9.4	-		
Turn-on Switching Loss per Pulse		E _{ON}	-	610	_	μJ	
Turn-off Switching Loss per Pulse	1	E _{OFF}	-	54	-	1	
Turn-on Delay Time	$T_J = 150^{\circ}C$	t _{d(on)}	_	18.8	-	ns	
Rise Time	V_{DS} = 800 V, I _D = 30 A V _{GS} = -3 V / 18 V, R _G = 3.9 Ω	t _r	_	5.6	-	-	
Turn-off Delay Time		t _{d(off)}	_	93	-	1	
Fall Time	1	t _f	_	9	-	1	
Turn-on Switching Loss per Pulse	1	E _{ON}	_	800	-	μJ	
Turn-off Switching Loss per Pulse	1	E _{OFF}	_	89	-	1	
Diode Forward Voltage	$V_{GS} = -3 \text{ V}, \text{ I}_{SD} = 30 \text{ A}, \text{ T}_{J} = 25^{\circ}\text{C}$	V _{SD}	_	4.67	6	V	
	$V_{GS} = -3 \text{ V}, \text{ I}_{SD} = 30 \text{ A}, \text{ T}_{J} = 125^{\circ}\text{C}$		_	4.45	-	1	
	$V_{GS} = -3 \text{ V}, \text{ I}_{SD} = 30 \text{ A}, \text{ T}_{J} = 150^{\circ}\text{C}$		_	4.4	-	1	
Thermal Resistance - Chip-to-Case	M1, M2	R _{thJC}	-	0.95	-	°C/W	
Thermal Resistance - Chip-to-Heatsink	Thermal grease, Thickness = 2 Mil +2%, A = 2.8 W/mK	R _{thJH}	-	1.54	-	°C/W	
THERMISTOR CHARACTERISTICS	•					•	
Nominal Resistance	T = 25°C	R ₂₅	-	5	-	kΩ	
	T = 100°C	R ₁₀₀	-	493	-	Ω	
	T = 150°C	R ₁₅₀	-	159.5	-	Ω	
		+				ļ	

 B-value
 B (25/100), tolerance ±3%
 3436
 K

 Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
 State
 K

0.15 mA, Non-self-heating Effect

B (25/50), tolerance ±3%

 $\Delta R/R$

 P_D

 P_D

-5

_

_

_

_

_

0.1

34.2

1.4

3375

5

_

_

_

_

%

mW

mW

mW/K

Κ

T = 100°C

5 mA

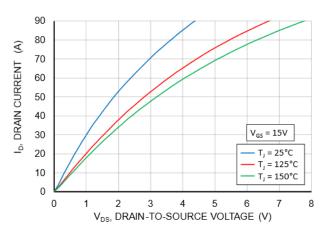
ORDERING INFORMATION

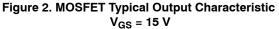
Power Dissipation Constant

Power Dissipation – Recommended Limit

Power Dissipation – Absolute Maximum

Deviation of R₁₀₀


B-value


Orderable Part Number	Marking	Package	Shipping
NXH030P120M3F1PTG	NXH030P120M3F1PTG	F1HALFBR: Case 180BW Press-fit Pins with pre-applied thermal interface material (TIM) (Pb-Free / Halide Free)	28 Units / Blister Tray

TYPICAL CHARACTERISTIC

M1/M2 SiC MOSFET CHARACTERISTIC

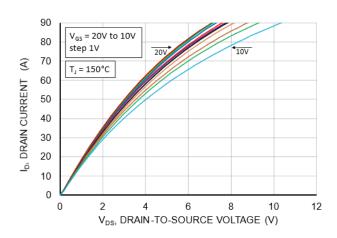
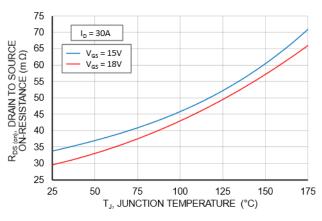



Figure 4. MOSFET Typical Output Characteristic V_{GS} = var.

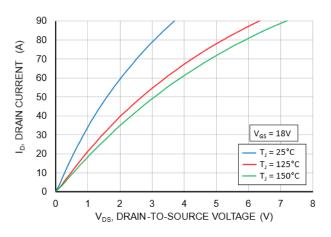


Figure 3. MOSFET Typical Output Characteristic V_{GS} = 18 V

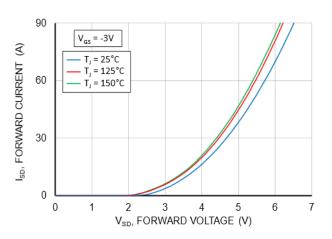


Figure 5. Body Diode Forward Voltage

Figure 7. Reverse Bias Safe Operating Area (RBSOA)

TYPICAL CHARACTERISTIC (continued) M1/M2 SiC MOSFET CHARACTERISTIC

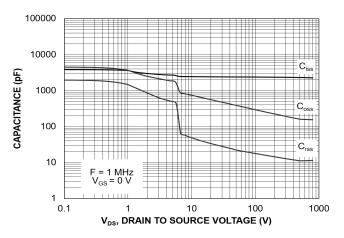


Figure 8. Capacitance vs. Drain to Source Voltage

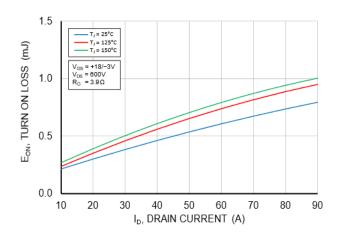


Figure 10. Switching On Loss vs. Drain Current $V_{DS} = 600 V$

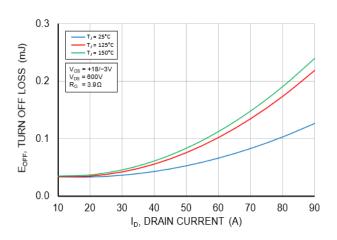


Figure 12. Switching Off Loss vs. Drain Current $V_{DS} = 600 V$

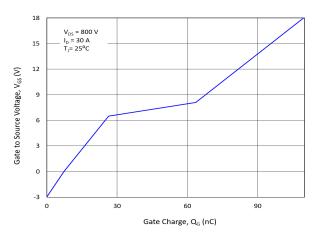


Figure 9. Gate to Source Voltage vs. Gate Charge

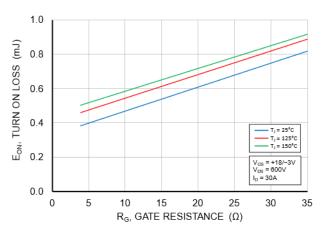
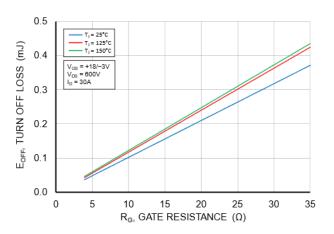
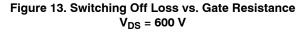




Figure 11. Switching On Loss vs. Gate Resistance V_{DS} = 600 V

TYPICAL CHARACTERISTIC (continued) M1/M2 SiC MOSFET CHARACTERISTIC

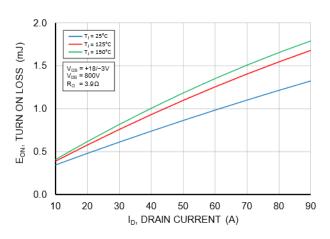


Figure 14. Switching On Loss vs. Drain Current V_{DS} = 800 V

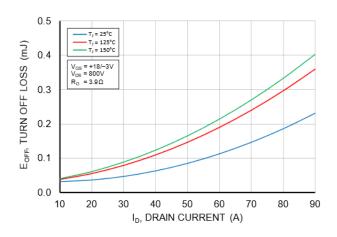


Figure 16. Switching Off Loss vs. Drain Current V_{DS} = 800 V

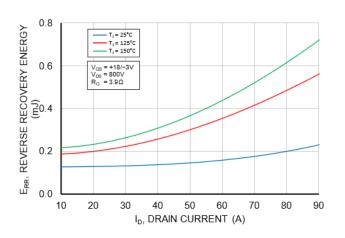


Figure 18. Reverse Recovery Energy vs. Drain Current, V_{DS} = 800 V

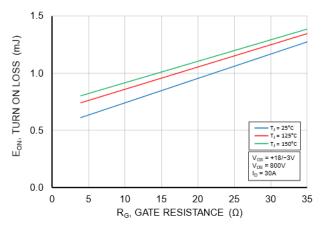


Figure 15. Switching On Loss vs. Gate Resistance V_{DS} = 800 V

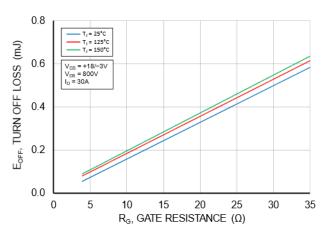
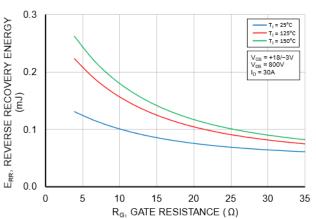
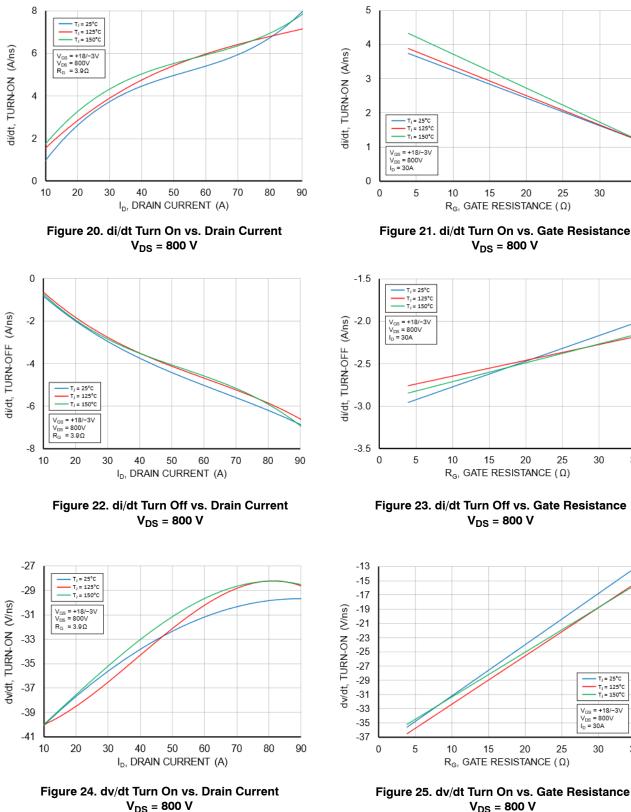
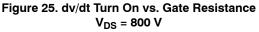


Figure 17. Switching Off Loss vs. Gate Resistance V_{DS} = 800 V


Figure 19. Reverse Recovery Energy vs. Gate Resistance, V_{DS} = 800 V

TYPICAL CHARACTERISTIC (continued) M1/M2 SiC MOSFET CHARACTERISTIC

V_{GS} = +18/-3V V_{DS} = 800V I_D = 30A R_{G} , GATE RESISTANCE (Ω)

V_{DS} = 800 V

V_{DS} = 800 V

T, = 25°C T, = 125°C T, = 150°C

TYPICAL CHARACTERISTIC (continued) M1/M2 SiC MOSFET CHARACTERISTIC

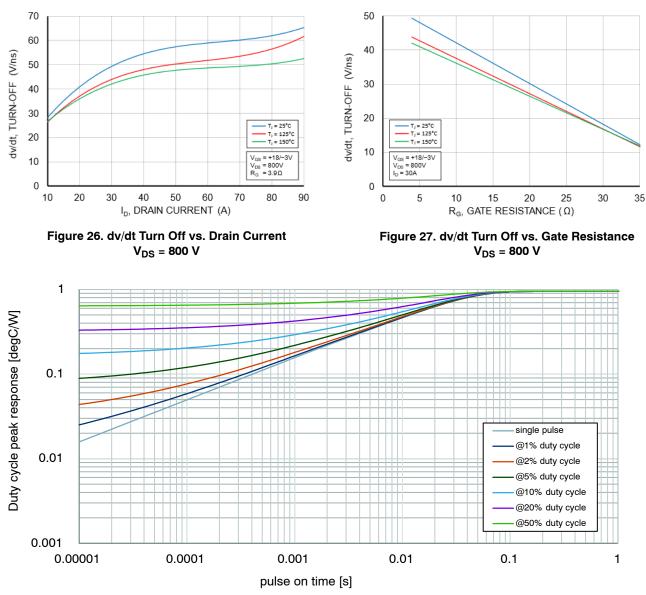


Figure 28. Duty Cycle Response vs. Pulse On Time

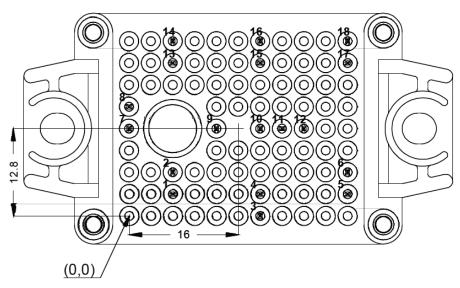
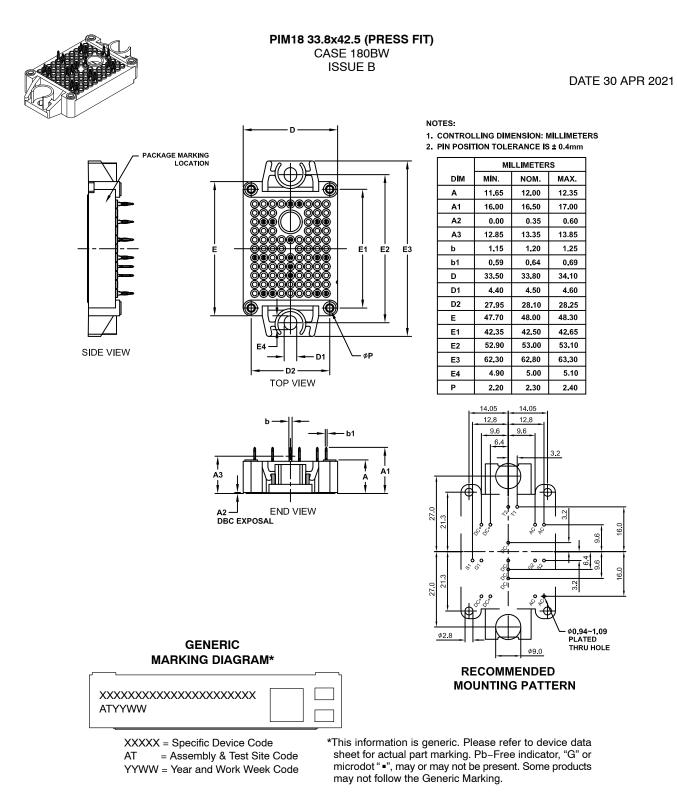


Table 1. CAUER NETWORKS

Cauer Element #	Rth (K/W)	Cth (Ws/K)
1	0.0008598	0.0006888
2	0.0060273	0.0001577
3	0.0131590	0.0002630
4	0.0651160	0.0013257
5	0.1977800	0.0040903
6	0.3716200	0.0208140
7	0.1618000	0.5875200

PIN POSITION INFORMATION

scale = 2.5 : 1



$S\,$ Pin position

Pin #	Х	Y	Function	Pin #	X	Y	Function
1	6.4	3.2	DC+	10	19.2	12.8	DC-
2	6.4	6.4	DC+	11	22.4	12.8	DC-
3	19.2	0.0	S1	12	25.6	12.8	DC-
4	19.2	3.2	G1	13	6.4	22.4	Phase
5	32.0	3.2	DC+	14	6.4	25.6	Phase
6	32.0	6.4	DC+	15	19.2	22.4	G2
7	0.0	12.8	TH2	16	19.2	25.6	S2
8	0.0	16.0	TH1	17	32.0	22.4	Phase
9	12.8	12.8	DC-	18	32.0	25.6	Phase

 DOCUMENT NUMBER:
 98AON19723H
 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

 DESCRIPTION:
 PIM18 33.8x42.5 (PRESS FIT)
 PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales