

Diode - Power, Bare Die

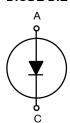
Gen VII, Fast Recovery 1200 V, 75 A

PCFF75H120SWF

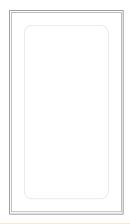
Features

- Advanced Gen VII Technology
- Fast and Soft Recovery
- Maximum Junction Temperature 175°C
- Low Forward Voltage: $V_F = 1.78 \text{ V (Typ.)}$ @ $I_F = 75 \text{ A}$
- Easy to Parallel Operation

Typical Applications


- Solar
- Energy Storage
- Industrial Motor Control

MECHANICAL PARAMETERS


Parameter	Value	Unit	
Die Size (w/ Scribe Lane)	3,900 x 7,000	μm²	
Anode Pad Size	2,917 x 6,017	μm²	
Scribe Lane Width	80	μm	
Die Thickness	119	μm	
Top Metal	6 μm AlSiCu		
Back Metal	1.65 μm Ti/NiV/Ag		
Topside Passivation	Silicon Nitride plus Polyimide		
Wafer Diameter	200 mm		
Max Possible Die Per Wafer	910		
Recommended Storage Environment	In original container, in dry nitrogen, < 6 months at an ambient temperature of 23°C		

$$V_R = 1200 V$$

 $I_F = 75 A$

DIODE DIE

DIE OUTLINE

ORDERING INFORMATION

Device	Inking	Shipping		
PCFF75H120SWF	Yes	Sawn Wafer on Tape		

PCFF75H120SWF

ABSOLUTE MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter		Ratings	Unit
Repetitive Peak Reverse Voltage	V_{RRM}	1200	V
DC Forward Current, limited by T _{J max} (Note 1)	I _F	75	Α
Pulsed Forward Current, tp limited by T _{J max} (Note 2)	I _{FM}	225	Α
Operating Junction Temperature	T_J	-40 to +175	°C
Storage Temperature Range	Tstg	+18 to +28	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. Nominal forward current at $Tc = 100^{\circ}C$ when assembled in power module
- 2. Not subject to production test verified by design/characterization.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
STATIC CHARACTERISTICS (Test	ed on Wafers)	•		•	•		•
Breakdown Voltage	V_{BR}	I _R = 1 mA		1200	-	_	V
Reverse Leakage Current	I _R	V _R = 1200 V		-	-	10	μΑ
Forward Voltage	V _F	I _F = 75 A		-	1.78	2.08	V
ELECTRICAL CHARACTERISTICS	6 (Not subjected to ր	production test – verified by	design/charac	terization)			
Breakdown Voltage	V_{BR}	I _R = 1 mA	$T_J = -40^{\circ}C$	1200	-	_	V
Forward Voltage	V _F	I _F = 75 A	T _J = 175°C	-	1.9	_	V
Reverse Recovery Time	T _{rr}	I_F = 75 A, V_R = 600 V, dI_F/dt = 500 A/ μ s, T_J = 25°C		_	281.6	-	nS
Reverse Recovery Charge	Q _{rr}			_	3.5	_	μC
Reverse Recovery Current	I _{RRM}			_	24.6	_	Α
Reverse Recovery Time	T _{rr}	$I_F = 75 \text{ A}, V_R = 600 \text{ V},$ $dI_F/dt = 500 \text{ A}/\mu\text{s}, T_J = 175^{\circ}\text{C}$		-	440.2	_	nS
Reverse Recovery Charge	Q _{rr}			-	8.1	_	μC
Reverse Recovery Current	I _{RRM}			_	37.0	_	Α

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTE: Switching characteristics and thermal properties are depending strongly on module design and mounting technology.

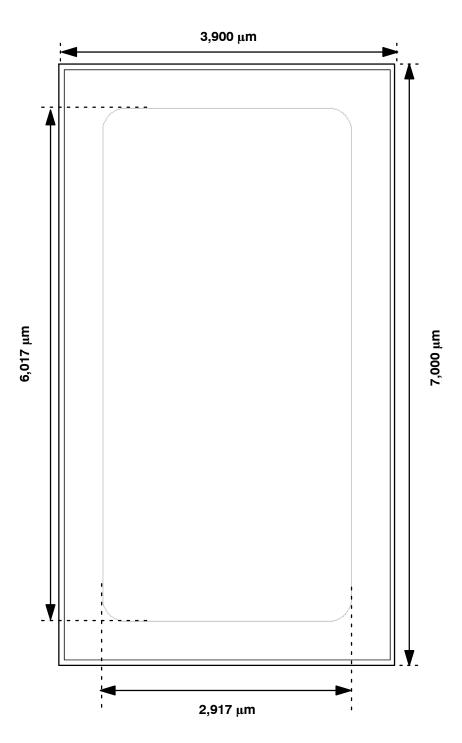


Figure 1. Die Layout

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales