

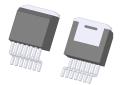
Silicon Carbide (SiC) Cascode JFET – EliteSiC, Power N-Channel, TO-263-7, 750 V, 58 mohm

UJ4C075060B7S

Description

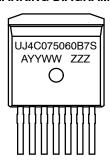
The UJ4C075060B7S is a 750 V, 58 m Ω G4 SiC FET. It is based on unique 'cascode' circuit configuration, in which a normally-on SiC JFET is co-packaged with a Si MOSFET to produce a normally-off SiC FET device. The device's standard gate-drive characteristics allows for a true "drop-in replacement" to Si IGBTs, Si FETs, SiC MOSFETs or Si superjunction devices. Available in the TO-263-7 package, this device exhibits ultra-low gate charge and exceptional reverse recovery characteristics, making it ideal for switching inductive loads and any application requiring standard gate drive.

Features


- On-Resistance $R_{DS(on)}$: 58 m Ω (typ)
- Operating Temperature: 175 °C (max)
- Excellent Reverse Recovery: $Q_{rr} = 70 \text{ nC}$
- Low Body Diode V_{FSD}: 1.31 V
- Low Gate Charge: $Q_G = 37.8 \text{ nC}$
- Threshold Voltage V_{G(th)}: 4.8 V (typ) Allowing 0 to 15 V Drive
- Low Intrinsic Capacitance
- ESD Protected: HBM Class 2
- TO-263-7 Package for Faster Switching, Clean Gate Waveforms

1

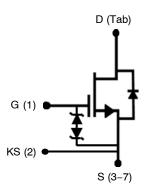
• This Device is Pb-Free, Halogen Free and is RoHS Compliant


Typical Applications

- EV Charging
- PV Inverters
- Switch Mode Power Supplies
- Power Factor Correction Modules
- Motor Drives
- · Induction Heating

TO-263-7 CASE 418BA

MARKING DIAGRAM



UJ4C075060B7S = Specific Device Number

A = Assembly Location

YY = Year WW = Work Week ZZZ = Lot ID

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information on page 8 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter	Test Conditions	Value	Unit
V _{DS}	Drain-Source Voltage		750	V
V _{GS}	Gate-Source Voltage	DC	-20 to +20	V
		AC (f > 1 Hz)	-25 to +25	V
I _D	Continuous Drain Current (Note 1)	T _C = 25 °C	25.8	Α
		T _C = 100 °C	19	Α
I _{DM}	Pulsed Drain Current (Note 2)	T _C = 25 °C	76	Α
E _{AS}	Single Pulsed Avalanche Energy (Note 3)	L = 15 mH, I _{AS} = 1.8 A	24.3	mJ
dv/dt	SiC FET dv/dt Ruggedness	V _{DS} ≤ 500 V	200	V/ns
P _{tot}	Power Dissipation	T _C = 25 °C	128	W
T _{J,max}	Maximum Junction Temperature		175	°C
T _J , T _{STG}	Operating and Storage Temperature		-55 to 175	°C
T _{solder}	Reflow Soldering Temperature	Reflow MSL 1	245	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Limited by $T_{J,max}$.

2. Pulse width t_p limited by $T_{J,max}$.

3. Starting $T_J = 25$ °C.

THERMAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		-	0.9	1.17	°C/W

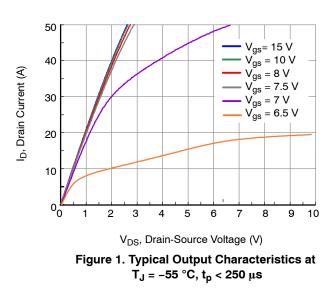
ELECTRICAL CHARACTERISTICS (T_J = +25 $^{\circ}$ C unless otherwise specified)

Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
TYPICAL	PERFORMANCE – STATIC	•					•
BV _{DS}	Drain-source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$		750	_	_	V
I _{DSS}	Total Drain Leakage Current	V _{DS} = 750 V, V _{GS} = 0 V	V, T _J = 25 °C	-	0.7	40	μΑ
		$V_{DS} = 750 \text{ V}, V_{GS} = 0 \text{ V}$	V, T _J = 175°C	-	15	_	
I _{GSS}	Total Gate Leakage Current	$V_{DS} = 0 \text{ V}, T_{J} = 25 \text{ °C}, \ V_{GS} = -20 \text{ V} / +20 \text{ V}$		-	4.7	±20	μΑ
R _{DS(on)}	Drain-source On-resistance	V _{GS} = 12 V, I _D = 20 A	T _J = 25 °C	_	58	74	mΩ
			T _J = 125 °C	-	106	_	
			T _J = 175 °C	-	147	-	
V _{G(th)}	Gate Threshold Voltage	V _{DS} = 5 V, I _D = 10 mA		4	4.8	6	V
R _G	Gate Resistance	f = 1 MHz, open drain		-	4.5	-	Ω
TYPICAL	PERFORMANCE - REVERSE DIODE						
I _S	Diode Continuous Forward Current (Note 1)	T _C = 25 °C		-	_	25.8	Α
I _{S,pulse}	Diode Pulse Current (Note 2)	T _C = 25 °C		_	_	76	Α
V_{FSD}	Forward Voltage	V _{GS} = 0 V, I _S = 10 A, T	_J = 25 °C	-	1.31	1.75	V
		$V_{GS} = 0 \text{ V}, I_{S} = 10 \text{ A}, T$	_J = 175 °C	_	1.8	-	
Q _{rr}	Reverse Recovery Charge	$\begin{array}{c} V_{DS} = 400 \; V, \; I_{S} = 20 \; A, \; V_{GS} = 0 \; V, \\ R_{G \; EXT} = 20 \; \Omega, \; di/dt = 1200 \; A/\mu s, \\ T_{J} = 25 \; ^{\circ} C \end{array}$		-	70	_	nC
t _{rr}	Reverse Recovery Time			-	11	=	ns
Q_{rr}	Reverse Recovery Charge	$V_{DS} = 400 \text{ V}$, $I_{S} = 20 \text{ A}$, $V_{GS} = 0 \text{ V}$, $R_{G EXT} = 20 \Omega$, $di/dt = 1200 \text{ A}/\mu \text{s}$, $T_{1} = 150 \text{ °C}$		-	77	-	nC
t _{rr}	Reverse Recovery Time			_	13	_	ns

ELECTRICAL CHARACTERISTICS (T_J = +25 °C unless otherwise specified) (continued)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
TYPICAL	PERFORMANCE – DYNAMIC					
C _{iss}	Input Capacitance	V _{DS} = 400 V, V _{GS} = 0 V,	-	1420	-	pF
Coss	Output Capacitance	f = 100 kHz	-	41	-	
C _{rss}	Reverse Transfer Capacitance		_	2.7	_	
C _{oss(er)}	Effective Output Capacitance, Energy Related	V _{DS} = 0 V to 400 V, V _{GS} = 0 V	-	50	-	pF
C _{oss(tr)}	Effective Output Capacitance, Time Related		-	94	-	pF
E _{oss}	C _{OSS} Stored Energy	V _{DS} = 400 V, V _{GS} = 0 V	-	4	-	μJ
Q_{G}	Total Gate Charge	V _{DS} = 400 V, I _D = 20 A,	-	37.8	-	nC
Q_{GD}	Gate-Drain Charge	V _{GS} = 0 V to 15 V	_	8	_	
Q _{GS}	Gate-Source Charge		_	11.8	_	
t _{d(on)}	Turn-on Delay Time	Notes 4	_	15	_	ns
t _r	Rise Time	V _{DS} = 400 V, I _D = 20 A, Gate Driver = 0 V to +15 V,	_	21	_	
t _{d(off)}	Turn-off Delay Time	Turn-on $R_{G EXT} = 1 \Omega$,	-	75	_	
t _f	Fall Time	Turn-off $R_{G,EXT} = 20 \Omega$,	_	11	_	
E _{ON}	Turn-on Energy	Inductive Load, FWD: same device with	_	132	_	μJ
E _{OFF}	Turn-off Energy	$V_{GS} = 0 \text{ V}$ and $R_{G} = 20 \Omega$, $T_{J} = 25 ^{\circ}\text{C}$	_	29	_	,
E _{TOTAL}	Total Switching Energy		_	161	_	
t _{d(on)}	Turn-on Delay Time	Notes 4	_	12	_	ns
t _r	Rise Time	V_{DS} = 400 V, I_{D} = 20 A, Gate Driver = 0 V to +15 V, Turn-on $R_{G,EXT}$ = 1 Ω , Turn-off $R_{G,EXT}$ = 20 Ω , Inductive Load, FWD: same device with	_	23	_	
t _{d(off)}	Turn-off Delay Time		_	83	_	
t _f	Fall Time		_	12	_	
E _{ON}	Turn-on Energy		_	148	_	μJ
E _{OFF}	Turn-off Energy	$V_{GS} = 0 \text{ V and } R_G = 20 \Omega,$	_	37	_	
E _{TOTAL}	Total Switching	T _J = 150 °C	_	185	_	
t _{d(on)}	Turn-on Delay Time	Notes 5 and 6	_	10	_	ns
t _r	Rise Time	$V_{DS} = 400 \text{ V}, I_{D} = 20 \text{ A},$	_	22	_	
t _{d(off)}	Turn-off Delay Time	Gate Driver = 0 V, to +15 V, Turn-on $R_{G,EXT}$ = 1 Ω ,	_	32	_	
t _f	Fall Time	Turn-off $R_{G,EXT} = 5 \Omega$,	_	8	_	
E _{ON}	Turn-on Energy Including R _S Energy	Inductive Load, FWD: same device with	_	96	_	μJ
E _{OFF}	Turn-off Energy Including R _S Energy	$V_{GS} = 0 \text{ V}$ and $R_{G} = 5 \Omega$,	_	36	_	,
E _{TOTAL}	Total Switching Energy	RC snubber: $R_S = 10 \Omega$ and $C_S = 100 pF$, $T_J = 25 °C$	_	132	_	
E _{RS_ON}	Snubber R _S Energy During Turn-on		_	0.7	_	
E _{RS_OFF}	Snubber R _S Energy During Turn-off		_	1	_	
t _{d(on)}	Turn-on Delay Time	Notes 5 and 6	+ -	14	_	ns
t _r	Rise Time	Notes 3 and 0 $V_{DS} = 400 \text{ V}$, $I_D = 20 \text{ A}$, $I_D = 20 \text$	_	23	_	
t _{d(off)}	Turn-off Delay Time		_	45	_	
t _f	Fall Time		_	10	_	
E _{ON}	Turn-on Energy Including R _S Energy		_	140	_	μJ
E _{OFF}	Turn-off Energy Including R _S Energy		-	25	_	μο
E _{TOTAL}	Total Switching Energy		-	165	_	
_	Snubber R _S Energy During Turn-on			0.7	_	
E _{RS_ON}	Snubber R _S Energy During Turn-off		-	1		
E _{RS_OFF}	ametric performance is indicated in the Electrica			ļ	_	<u> </u>

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


4. Measured with the half-bridge mode switching test circuit in Figure 23.

5. Measured with the half-bridge mode switching test circuit in Figure 24.

6. The switching energies (turn-on energy, turn-off energy and total energy) presented in this table include the device RC snubber energy

- losses.

TYPICAL PERFORMANCE DIAGRAMS

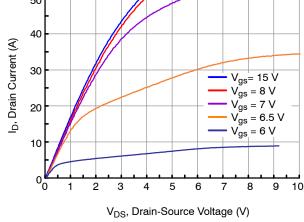


Figure 2. Typical Output Characteristics at $T_J = 25~^{\circ}\text{C}, \, t_p < 250~\mu\text{s}$

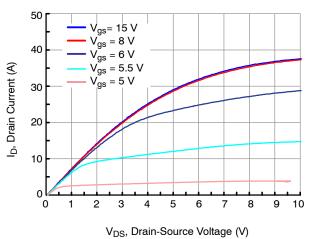


Figure 3. Typical Output Characteristics at T_{J} = 175 $^{\circ}C,\,t_{p}<$ 250 μs

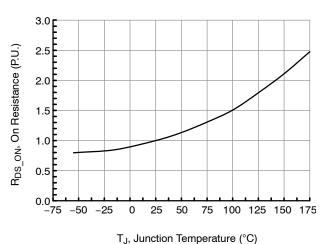


Figure 4. Normalized On-Resistance vs. Temperature at $V_{GS} = 12 \text{ V}$ and $I_D = 20 \text{ A}$

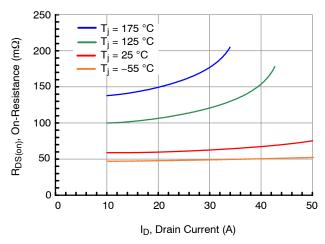


Figure 5. Typical Drain-Source On-Resistances at $V_{GS} = 12 \text{ V}$

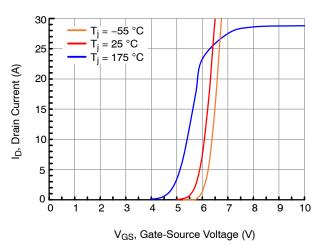


Figure 6. Typical Transfer Characteristics at $V_{DS} = 5 \text{ V}$

TYPICAL PERFORMANCE DIAGRAMS (continued)

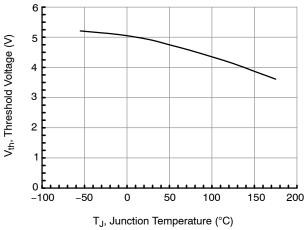


Figure 7. Threshold Voltage vs. Junction Temperature at V_{DS} = 5 V and I_{D} = 10 mA

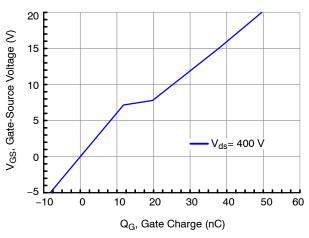


Figure 8. Typical Gate Charge at I_D = 20 A

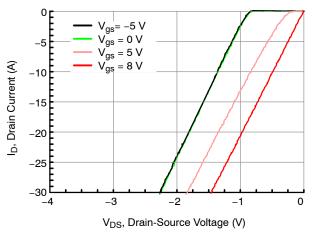


Figure 9. 3^{rd} Quadrant Characteristics at $T_J = -55$ °C

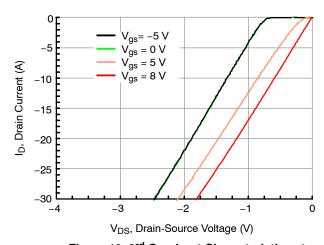


Figure 10. 3^{rd} Quadrant Characteristics at $T_J = 25$ °C

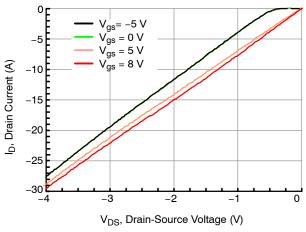


Figure 11. 3^{rd} Quadrant Characteristics at $T_J = 175$ °C

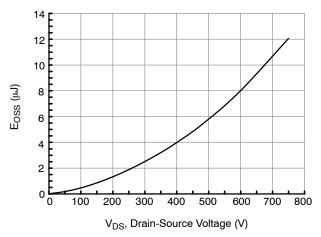


Figure 12. Typical Stored Energy in C_{OSS} at $V_{GS} = 0 \text{ V}$

TYPICAL PERFORMANCE DIAGRAMS (continued)

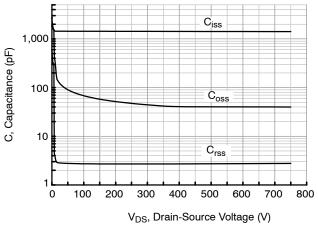


Figure 13. Typical Capacitances at f = 100 kHz and V_{GS} = 0 V

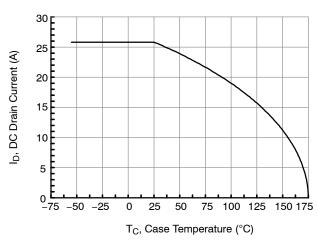


Figure 14. DC Drain Current Derating

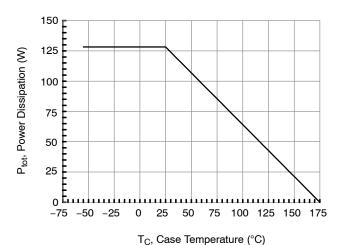


Figure 15. Total Power Dissipation

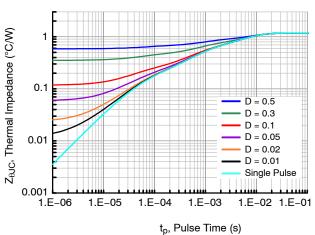


Figure 16. Maximum Transient Thermal Impedance

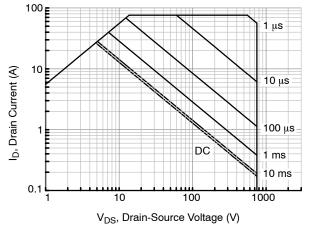


Figure 17. Safe Operation Area at T_C = 25 °C, D = 0, Parameter t_p

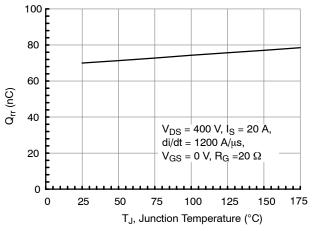


Figure 18. Reverse Recovery Charge Q_{rr} vs. Junction Temperature

TYPICAL PERFORMANCE DIAGRAMS (continued)

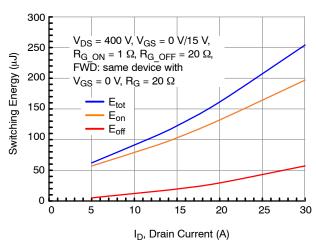
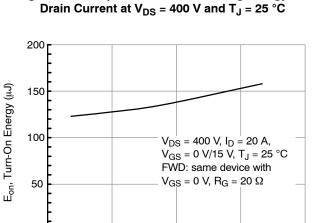



Figure 19. Clamped Inductive Switching Energy vs. Drain Current at V_{DS} = 400 V and T_J = 25 °C

 $R_{G\ EXT}$, Total External Turn-On $R_{G\ }(\Omega)$

10

15

20

5

Figure 21. Clamped Inductive Switching Turn-On Energy vs. R_{G.EXT ON}

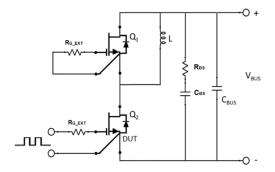


Figure 23. Schematic of the Half-Bridge Mode Switching Test Circuit. Note, a Bus RC Snubber (R_{BS} = 2.5 Ω , C_{BS} = 100 nF) is Used to Reduce the Power Loop High.

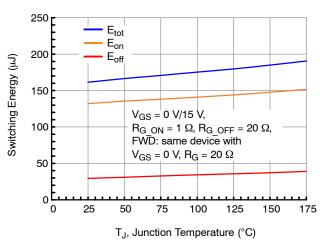


Figure 20. Clamped Inductive Switching Energy vs. Junction Temperature at V_{DS} = 400 V, and I_D = 20 A

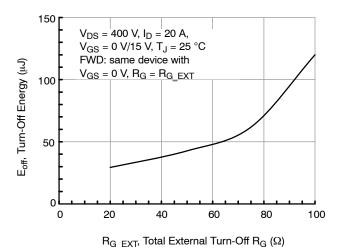


Figure 22. Clamped Inductive Switching Turn-Off Energy vs. R_{G,EXT_OFF}

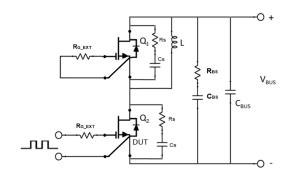


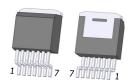
Figure 24. Schematic of the Half-Bridge Mode **Switching Test Circuit with Device RC Snubbers** (R_S = 10 Ω , C_S = 100 pF) and a bus RC Snubber $(R_{BS} = 2.5 \Omega, C_{BS} = 100 nF).$

APPLICATIONS INFORMATION

SiC FETs are enhancement-mode power switches formed by a high-voltage SiC depletion-mode JFET and a low-voltage silicon MOSFET connected in series. The silicon MOSFET serves as the control unit while the SiC JFET provides high voltage blocking in the off state. This combination of devices in a single package provides compatibility with standard gate drivers and offers superior performance in terms of low on-resistance ($R_{DS(on)}$), output capacitance (C_{oss}), gate charge (Q_G), and reverse recovery charge (Q_{rr}) leading to low conduction and switching losses. The SiC FETs also provide excellent reverse conduction capability eliminating the need for an external anti-parallel diode.

Like other high performance power switches, proper PCB layout design to minimize circuit parasitics is strongly recommended due to the high dv/dt and di/dt rates. An external gate resistor is recommended when the FET is

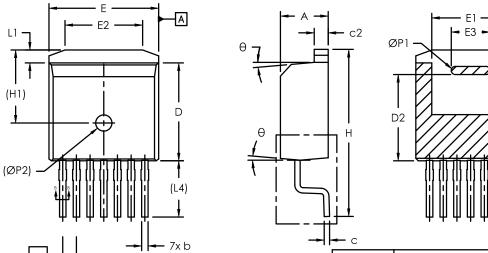
working in the diode mode in order to achieve the optimum reverse recovery performance. For more information on SiC FET operation, see www.onsemi.com.

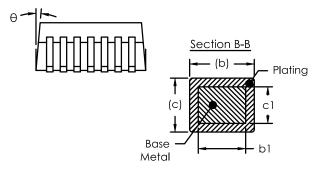

A snubber circuit with a small $R_{(G)}$, or gate resistor, provides better EMI suppression with higher efficiency compared to using a high $R_{(G)}$ value. There is no extra gate delay time when using the snubber circuitry, and a small $R_{(G)}$ will better control both the turn-off $V_{(DS)}$ peak spike and ringing duration, while a high $R_{(G)}$ will damp the peak spike but result in a longer delay time. In addition, the total switching loss when using a snubber circuit is less than using high $R_{(G)}$, while greatly reducing $E_{(OFF)}$ from mid-to-full load range with only a small increase in $E_{(ON)}$. Efficiency will therefore improve with higher load current. For more information on how a snubber circuit will improve overall system performance, visit the **onsemi** website at www.onsemi.com.

ORDERING INFORMATION

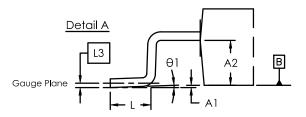
Part Number	Marking	Package	Shipping [†]
UJ4C075060B7S	UJ4C075060B7S	TO-263-7 (Pb-Free, Halogen Free)	800 units / Tape and Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.




TO-263-7 10.18x9.08x4.43, 1.27P CASE 418BA ISSUE B

DATE 17 APR 2025


D1

(H3)

⊕ 0.25mm **M** B A **M**

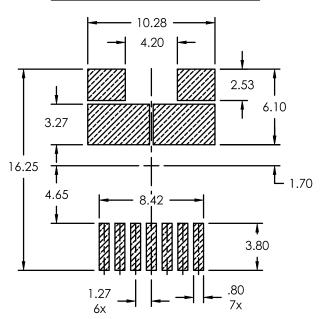
NI	<u> </u>	tes	
- 1 7	O	163	

- 1. Dimensioning and Tolerancing as per ASME Y14.5M, 2018.
- 2. Controlling Dimension: Millimeters
- 3. Package body sides exclude mold flash and gate burrs.
- 4. Dimension L is measured on gauge plane.
- 5. Dimension c1 and b1 applies to base metal only.

Min Nom Max A 4.30 4.43 4.56 A1 0.00 0.13 0.25 A2 2.45 2.60 2.75 b 0.50 0.60 0.70 b1 0.50 - - c 0.40 - - c2 1.20 1.30 1.40 D 8.93 9.08 9.23 D1 5.85 6.00 6.15 D2 7.90 8.00 8.10 e 1.27 BSC E 10.08 10.18 10.28 E1 6.82 7.22 7.62 E2 6.50 7.55 8.60 E3 3.50 3.60 3.70 H 15.00 15.50 16.00 H1 6.78 REF H3 7.30 REF 1.42 L1 0.98 1.20 1.42 L3 0.25 BSC 1.44	SYM		MILLIMETERS			
A1 0.00 0.13 0.25 A2 2.45 2.60 2.75 b 0.50 0.60 0.70 b1 0.50 - - c 0.40 0.50 0.60 c1 0.40 - - c2 1.20 1.30 1.40 D 8.93 9.08 9.23 D1 5.85 6.00 6.15 D2 7.90 8.00 8.10 e 1.27 BSC E 10.08 10.18 10.28 E1 6.82 7.22 7.62 E2 6.50 7.55 8.60 E3 3.50 3.60 3.70 H 15.00 15.50 16.00 H1 6.78 REF H3 7.30 REF L 1.90 2.20 2.50 L1 0.98 1.20 1.42 L3 0.25 BSC 1.44 5.22 REF ØP1 0.65 0.75 0.85	311/1	Min	Nom	Мах		
A2 2.45 2.60 2.75 b 0.50 0.60 0.70 b1 0.50 - - c 0.40 0.50 0.60 c1 0.40 - - c2 1.20 1.30 1.40 D 8.93 9.08 9.23 D1 5.85 6.00 6.15 D2 7.90 8.00 8.10 e 1.27 BSC E 10.08 10.18 10.28 E1 6.82 7.22 7.62 E2 6.50 7.55 8.60 E3 3.50 3.60 3.70 H 15.00 15.50 16.00 H1 6.78 REF H3 7.30 REF L 1.90 2.20 2.50 L1 0.98 1.20 1.42 L3 0.25 BSC 1.4 5.22 REF ØP1 0.65 0.75 0.85 ØP2 1.50 REF 5°	Α	4.30	4.43	4.56		
b 0.50 0.60 0.70 b1 0.50 - - c 0.40 0.50 0.60 c1 0.40 - - c2 1.20 1.30 1.40 D 8.93 9.08 9.23 D1 5.85 6.00 6.15 D2 7.90 8.00 8.10 e 1.27 BSC E 10.08 10.18 10.28 E1 6.82 7.22 7.62 E2 6.50 7.55 8.60 E3 3.50 3.60 3.70 H 15.00 15.50 16.00 H1 6.78 REF H3 7.30 REF L 1.90 2.20 2.50 L1 0.98 1.20 1.42 L3 0.25 BSC L4 5.22 REF ØP1 0.65 0.75 0.85 ØP2 1.50 REF	A1	0.00	0.13	0.25		
b1 0.50 - - c 0.40 0.50 0.60 c1 0.40 - - c2 1.20 1.30 1.40 D 8.93 9.08 9.23 D1 5.85 6.00 6.15 D2 7.90 8.00 8.10 e 1.27 BSC E 10.08 10.18 10.28 E1 6.82 7.22 7.62 E2 6.50 7.55 8.60 E3 3.50 3.60 3.70 H 15.00 15.50 16.00 H1 6.78 REF H3 7.30 REF. L 1.90 2.20 2.50 L1 0.98 1.20 1.42 L3 0.25 BSC L4 5.22 REF ØP1 0.65 0.75 0.85 ØP2 1.50 REF 5°	A2	2.45	2.60	2.75		
C 0.40 0.50 0.60 c1 0.40 - - c2 1.20 1.30 1.40 D 8.93 9.08 9.23 D1 5.85 6.00 6.15 D2 7.90 8.00 8.10 e 1.27 BSC E E 10.08 10.18 10.28 E1 6.82 7.22 7.62 E2 6.50 7.55 8.60 E3 3.50 3.60 3.70 H 15.00 15.50 16.00 H1 6.78 REF H3 7.30 REF L 1.90 2.20 2.50 L1 0.98 1.20 1.42 L3 0.25 BSC L4 5.22 REF ØP1 0.65 0.75 0.85 ØP2 1.50 REF 5°	b	0.50	0.60	0.70		
C1 0.40 - - C2 1.20 1.30 1.40 D 8.93 9.08 9.23 D1 5.85 6.00 6.15 D2 7.90 8.00 8.10 e 1.27 BSC E 10.08 10.18 10.28 E1 6.82 7.22 7.62 E2 6.50 7.55 8.60 E3 3.50 3.60 3.70 H 15.00 15.50 16.00 H1 6.78 REF H3 7.30 REF. L 1.90 2.20 2.50 L1 0.98 1.20 1.42 1.42 L3 0.25 BSC 1.42 5.22 REF ØP1 0.65 0.75 0.85 ØP2 1.50 REF 5°	b1	0.50	-	=		
C2 1.20 1.30 1.40 D 8.93 9.08 9.23 D1 5.85 6.00 6.15 D2 7.90 8.00 8.10 e 1.27 BSC E 10.08 10.18 10.28 E1 6.82 7.22 7.62 E2 6.50 7.55 8.60 E3 3.50 3.60 3.70 H 15.00 15.50 16.00 H1 6.78 REF H3 7.30 REF. L 1.90 2.20 2.50 L1 0.98 1.20 1.42 L3 0.25 BSC L4 5.22 REF ØP1 0.65 0.75 0.85 ØP2 1.50 REF 6 5°	С	0.40	0.50	0.60		
D 8.93 9.08 9.23 D1 5.85 6.00 6.15 D2 7.90 8.00 8.10 e 1.27 BSC E 10.08 10.18 10.28 E1 6.82 7.22 7.62 E2 6.50 7.55 8.60 E3 3.50 3.60 3.70 H 15.00 15.50 16.00 H1 6.78 REF H3 7.30 REF. L 1.90 2.20 2.50 L1 0.98 1.20 1.42 L3 0.25 BSC L4 5.22 REF ØP1 0.65 0.75 0.85 ØP2 1.50 REF Θ 5°	c1	0.40	-	-		
D1 5.85 6.00 6.15 D2 7.90 8.00 8.10 e 1.27 BSC E 10.08 10.18 10.28 E1 6.82 7.22 7.62 E2 6.50 7.55 8.60 E3 3.50 3.60 3.70 H 15.00 15.50 16.00 H1 6.78 REF H3 7.30 REF. L 1.90 2.20 2.50 L1 0.98 1.20 1.42 L3 0.25 BSC L4 5.22 REF ØP1 0.65 0.75 0.85 ØP2 1.50 REF 6 5°	c2	1.20	1.30	1.40		
D2 7.90 8.00 8.10 e 1.27 BSC E 10.08 10.18 10.28 E1 6.82 7.22 7.62 E2 6.50 7.55 8.60 E3 3.50 3.60 3.70 H 15.00 15.50 16.00 H1 6.78 REF H3 7.30 REF. L 1.90 2.20 2.50 L1 0.98 1.20 1.42 L3 0.25 BSC L4 5.22 REF ØP1 0.65 0.75 0.85 ØP2 1.50 REF Θ 5°	D	8.93	9.08	9.23		
e 1.27 BSC E 10.08 10.18 10.28 E1 6.82 7.22 7.62 E2 6.50 7.55 8.60 E3 3.50 3.60 3.70 H 15.00 15.50 16.00 H1 6.78 REF H3 7.30 REF. L 1.90 2.20 2.50 L1 0.98 1.20 1.42 L3 0.25 BSC L4 5.22 REF ØP1 0.65 0.75 0.85 ØP2 1.50 REF Θ 5°	D1	5.85	6.00	6.15		
E 10.08 10.18 10.28 E1 6.82 7.22 7.62 E2 6.50 7.55 8.60 E3 3.50 3.60 3.70 H 15.00 15.50 16.00 H1 6.78 REF H3 7.30 REF. L 1.90 2.20 2.50 L1 0.98 1.20 1.42 L3 0.25 BSC L4 5.22 REF ØP1 0.65 0.75 0.85 ØP2 1.50 REF	D2	7.90	8.00	8.10		
E1 6.82 7.22 7.62 E2 6.50 7.55 8.60 E3 3.50 3.60 3.70 H 15.00 15.50 16.00 H1 6.78 REF H3 7.30 REF. L 1.90 2.20 2.50 L1 0.98 1.20 1.42 L3 0.25 BSC L4 5.22 REF ØP1 0.65 0.75 0.85 ØP2 1.50 REF		1.27 BSC				
E2 6.50 7.55 8.60 E3 3.50 3.60 3.70 H 15.00 15.50 16.00 H1 6.78 REF H3 7.30 REF. L 1.90 2.20 2.50 L1 0.98 1.20 1.42 L3 0.25 BSC L4 5.22 REF ØP1 0.65 0.75 0.85 ØP2 1.50 REF Θ 5°	Е	10.08	10.18	10.28		
E3 3.50 3.60 3.70 H 15.00 15.50 16.00 H1 6.78 REF H3 7.30 REF. L 1.90 2.20 2.50 L1 0.98 1.20 1.42 L3 0.25 BSC L4 5.22 REF ØP1 0.65 0.75 0.85 ØP2 1.50 REF Θ 5°	E1	6.82	7.22	7.62		
H 15.00 15.50 16.00 H1 6.78 REF H3 7.30 REF. L 1.90 2.20 2.50 L1 0.98 1.20 1.42 L3 0.25 BSC L4 5.22 REF ØP1 0.65 0.75 0.85 ØP2 1.50 REF Θ 5°	E2	6.50	7.55	8.60		
H1 6.78 REF H3 7.30 REF. L 1.90 2.20 2.50 L1 0.98 1.20 1.42 L3 0.25 BSC L4 5.22 REF ØP1 0.65 0.75 0.85 ØP2 1.50 REF Θ 5°	E3	3.50	3.60	3.70		
H3 7.30 REF. L 1.90 2.20 2.50 L1 0.98 1.20 1.42 L3 0.25 BSC L4 5.22 REF ØP1 0.65 0.75 0.85 ØP2 1.50 REF Θ 5°	Н	15.00	15.50	16.00		
L 1.90 2.20 2.50 L1 0.98 1.20 1.42 L3 0.25 BSC L4 5.22 REF ØP1 0.65 0.75 0.85 ØP2 1.50 REF θ 5°	H1		6.78 REF			
L1 0.98 1.20 1.42 L3 0.25 BSC L4 5.22 REF ØP1 0.65 0.75 0.85 ØP2 1.50 REF Θ 5°	Н3		7.30 REF.			
L3 0.25 BSC L4 5.22 REF ØP1 0.65 0.75 0.85 ØP2 1.50 REF Θ 5°		1.90	2.20	2.50		
L4 5.22 REF ØP1 0.65 0.75 0.85 ØP2 1.50 REF Θ 5°	L1	0.98	1.20	1.42		
ØP1 0.65 0.75 0.85 ØP2 1.50 REF θ 5°	L3					
ØP2 1.50 REF Θ 5°	L4	5.22 REF				
θ 5°	ØP1	0.65 0.75 0.85				
	ØP2					
01 20	θ					
	θ1	3°				

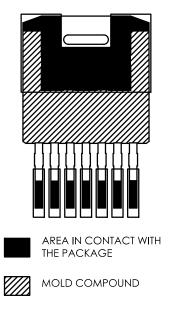
DOCUMENT NUMBER:	98AON13800G	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-263-7 10.18x9.08x4.43, 1.27P		PAGE 1 OF 2	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.


TO-263-7 10.18x9.08x4.43, 1.27PCASE 418BA ISSUE B

DATE 17 APR 2025

RECOMMENDED PCB FOOTPRINT


10.48 - 4.00 - 2.68 (7.90) - 8.52 - 3.90

RECOMMENDED STENCIL APERTURE

NOTE: LAND PATTERN AND STENCIL APERTURE DIMENSIONS SERVE ONLY AS AN INITIAL GUIDE. END-USER PCB DESIGN RULES AND TOLERANCES SHOULD ALWAYS PREVAIL.

PCB FOOTPRINT with PACKAGE OVERLAY

DOCUMENT NUMBER:	98AON13800G Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED		uncontrolled except when accessed directly from the Document Repository. controlled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-263-7 10.18x9.08x4.43, 1.27P		PAGE 2 OF 2	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales