NCV7420 LIN Transceiver with Voltage Regulator Evaluation Board User's Manual

ON Semiconductor®

http://onsemi.com

EVAL BOARD USER'S MANUAL

Introduction

This document describes the NCV7420EVB board for the ON Semiconductor NCV7420 LIN Transceiver with Voltage Regulator. The functionality and major parameters can be evaluated with the NCV7420EVB board.

The NCV7420 is a fully featured local interconnect network (LIN) transceiver designed to interface between a LIN protocol controller and the physical bus.

The NCV7420 LIN device is a member of the in-vehicle networking (IVN) transceiver family of ON Semiconductor that integrates a LIN v2.1 physical transceiver and a low-drop voltage regulator. It is designed to work in harsh automotive environment and is submitted to the TS16949 qualification flow.

Evaluation Board Features

- One-row Pin Header Connecting to all Circuit Signals Enables Easy Insertion of the Evaluation Board into a more Complex Application Setup. The Header Can be Alternatively Assembled Either Perpendicular or Parallel with the Board Plane
- Oscilloscope Test-points on all Circuit Signals
- Reverse Protection and Decoupling on the Main (Battery) Supply
- Decoupling on VCC Regulator Output
- Filtering Circuit on the Switch-monitoring WAKE Input
- On-board Local Wakeup Switch
- LIN-bus Termination and Optional ESD Protection

NCV7420 Key Features

- LIN-Bus Transceiver
 - LIN Compliant to Specification Revision 2.1 (Backward Compatible to Versions 2.0 and 1.3) and SAE J2602
 - Bus Voltage ±45 V
 - + Transmission Rate up to 20 kBaud
 - Integrated Slope Control for Improved EMI Compatibility
- Protection
 - · Thermal Shutdown
 - Indefinite Short-circuit Protection on Pins LIN and WAKE Towards Supply and Ground
 - Load Dump Protection (45 V)
 - Bus Pins Protected against Transients in an Automotive Environment
 - ESD Protection Level for LIN, INH, WAKE and Vbb up to ±12 kV
- Voltage Regulator
 - Two Device Versions: Output Voltage 3.3 V or 5 V for Loads up to 50 mA
 - Over-current Limitation
 - INH Output for Auxiliary Purposes (Switching of an External Pull-up or Resistive Divider Towards Battery, Control of an External Voltage Regulator etc.)

Typical Applications

- Automotive
- Industrial Network

Figure 1. NCV7420EVB

The EMC immunity of the Master-node device can be further enhanced by adding a capacitor between the LIN

output and ground (CLIN). The optimum value of this

capacitor is determined by the length and capacitance of the

LIN bus, the number and capacitance of Slave devices, the

pull-up resistance of all devices (Master and Slave), and the

required time constant of the system.

Getting Started

Master/Slave Configuration

The NCV7420 evaluation board can be configured as Master or Slave node. Furthermore, Master node LIN bus pull-up resistance (R_{LIN}) can be tied to VBB supply line or to INH pin (See the figures below).

Figure 2. Master with Pull-up to VBB

VBB INH VBB INH VBB NCV7420 LIN Bus C_{LIN}

Figure 3. Master with Pull-up to INH Figure 4. Slave Configuration

Basic Connection

A simple LIN network configuration is shown in the figure below. One Master and one Slave node is required (Master/Slave Configuration).

Figure 5. NCV7420 Evaluation Setup Connection

Functional Description

Overall Functional Description

NCV7420 is designed as a master or slave node for the LIN communication interface with an integrated 3.3 V or 5 V voltage regulator having a current capability up to 50 mA for supplying any external components (microcontroller).

NCV7420 contains the LIN transmitter, LIN receiver, voltage regulator, power-on-reset (POR) circuits and thermal shutdown (TSD). The LIN transmitter is optimized for the maximum specified transmission speed of 20 kBaud with EMC performance due to reduced slew rate of the LIN output.

The junction temperature is monitored via a thermal shutdown circuit that switches the LIN transmitter and voltage regulator off when temperature exceeds the TSD trigger level.

NCV7420 has four operating states (normal mode, low slope mode, stand-by mode, and sleep mode) that are determined by the input signals EN, WAKE, STB, and TxD.

Operating States

NCV7420 provides four operating states, two modes for normal operation with communication, one stand-by without communication and one low power mode with very low current consumption - see Figure 6 and Table 1.

Table 1. MODE SELECTION

Mode	Vcc	RxD	INH	LIN transceiver	30 k Ω on LIN
Normal – Slope (Note 1)	ON	Low = Dominant State High = Recessive State	High if STB = High during state transition; Floating otherwise	Normal Slope	ON
Normal – Low Slope (Note 2)	ON	Low = Dominant State High = Recessive State	High if STB = High during state transition; Floating otherwise	Low Slope	ON
Stand-by (Note 3)	ON	Low after LIN wakeup, high otherwise (Note 4)	Floating	OFF	OFF
Sleep	OFF	Clamped to Vcc (Note 4)	Floating	OFF	OFF

1. The normal slope mode is entered when pin EN goes HIGH while TxD is in HIGH state during EN transition.

2. The low slope mode is entered when pin EN goes HIGH while TxD is in LOW state during EN transition. LIN transmitter gets on only after TxD returns to high after the state transition.

3. The stand-by mode is entered automatically after power-up.

4. In Stand-by and Sleep mode, the High state is achieved by internal pull-up resistor to VCC.

Figure 6. NCV7420 State Diagram

Additional details of the NCV7420 operation and parameters can be found in the corresponding datasheet [1].

Schematic

Figure 7. NCV7420 LIN Transceiver with Voltage Regulator Evaluation Board Schematic

Bill of Materials

Table 2. NCV7420 Evaluation Boa	rd Bill of Materials
---------------------------------	----------------------

Designator	Description	Value	Footprint	Manufacturer	Manufacturer Part Number
C1	Capacitor SMD	1.0 nF	CAP0805	PHYCOMP	2238 580 15623
R1, R2	Resistor SMD	2.0 kΩ 1206 0.25 W	R1206	WELWYN	WCR 1206 2K 2%
R3	Resistor SMD	10 kΩ	R0805	MULTICOMP	MC 0.1W 0805 1% 10K
C7	Capacitor SMD	10 nF	CAP0603	EPCOS	B37931K5103K60
C5	Capacitor SMD X7R	10 μF 10 V X7R	CAP1206	KEMET	C1206C106K8RAC
C3	Electrolytic Capacitor SMD	10 μF 50 V	6.3 x 6.3 SMD	NICHICON	UUD1H100MCL1GS
R4	Resistor SMD	33 kΩ	R0805	MULTICOMP	MC 0.1W 0805 1% 33K
C4	Capacitor SMD	100 nF	CAP0603	KEMET	C0603C104K5RAC
C2	Capacitor SMD (Optional)	(Optional)	CAP0805	(Optional)	(Optional)
D1	Diode SMD	MRA4003	SMA	ON Semiconductor	MRA4003T3G
D4	LIN bus ESD protection diode	ESD LIN	SOD323	(Optional)	(Optional)
L1	Resistor SMD (Optional Ferrite)	0R	R0805	MULTICOMP	MC 0.1W 0805 0R
J1	SIL HEADER 12 Pins Right Angle	HEADER 1X12	HDR1x12	MOLEX	90121-0772
D2, D3	Switching Diode SMD	MMSD4148	SOD123	ON Semiconductor	MMSD4148T1G
U1	LIN Transceiver with 3.3 V or 5 V Voltage Regulator	NCV7420	SOIC14	ON Semiconductor	3.3 V: NCV7420D24R2G 5 V: NCV7420D26R2G
SCOPEGND	SCOPEGND; Wire Bridge	SCOPEGND	SCOPEGND	-	-
SW1	SWITCH SMD SPNO 6 x 6 mm	SMD SWITCH	PB300	TYCO ELECTRONICS	FSM2JSMA
FT1, FT2, FT3, FT4	Rubber feet 12,7 x 12,7 x 5,8	SUPPORT FEET	FEET 12,7 x 12,7	ЗМ	SJ5018BLACK
TP1, TP2, TP4, TP5, TP7, TP8, TP10, TP11, TP12	Testpin 200 SER. Hole 1.0 Black	TP S200 H1.0 BLACK	TESTPIN2	VERO	20-2137

PCB Drawings

Assembly Drawings

Figure 8. NCV7420EVB PCB **Top Assembly Drawing**

Figure 10. NCV7420EVB PCB Top Composite Drawing

PCB Preview

Figure 12. NCV7420EVB PCB Top Side View

Figure 9. NCV7420EVB PCB **Bottom Assembly Drawing**

Figure 11. NCV7420EVB PCB Bottom Composite Drawing (Mirrored)

Figure 13. NCV7420EVB PCB Bottom Side View

References

[1] On Semiconductor, NCV7420 Product Preview Revision 0.5, July 2010

onsemi, ONSEMi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

The evaluation board/kit (research and development board/kit) (hereinafter the "board") is not a finished product and is not available for sale to consumers. The board is only intended for research, development, development, development, and evaluation purposes and will only be used in laboratory/development areas by persons with an engineering/technical training and familiar with the risks associated with handling electrical/mechanical components, systems and subsystems. This person assumes full responsibility/liability for proper and safe handling. Any other use, resale or redistribution for any other purpose is strictly prohibited.

THE BOARD IS PROVIDED BY ONSEMI TO YOU "AS IS" AND WITHOUT ANY REPRESENTATIONS OR WARRANTIES WHATSOEVER. WITHOUT LIMITING THE FOREGOING, ONSEMI (AND ITS LICENSORS/SUPPLIERS) HEREBY DISCLAIMS ANY AND ALL REPRESENTATIONS AND WARRANTIES IN RELATION TO THE BOARD, ANY MODIFICATIONS, OR THIS AGREEMENT, WHETHER EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING WITHOUT LIMITATION ANY AND ALL REPRESENTATIONS AND WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, AND THOSE ARISING FROM A COURSE OF DEALING, TRADE USAGE, TRADE CUSTOM OR TRADE PRACTICE.

onsemi reserves the right to make changes without further notice to any board.

You are responsible for determining whether the board will be suitable for your intended use or application or will achieve your intended results. Prior to using or distributing any systems that have been evaluated, designed or tested using the board, you agree to test and validate your design to confirm the functionality for your application. Any technical, applications or design information or advice, quality characterization, reliability data or other services provided by **onsemi** shall not constitute any representation or warranty by **onsemi**, and no additional obligations or liabilities shall arise from **onsemi** having provided such information or services.

onsemi products including the boards are not designed, intended, or authorized for use in life support systems, or any FDA Class 3 medical devices or medical devices with a similar or equivalent classification in a foreign jurisdiction, or any devices intended for implantation in the human body. You agree to indemnify, defend and hold harmless onsemi, its directors, officers, employees, representatives, agents, subsidiaries, affiliates, distributors, and assigns, against any and all liabilities, losses, costs, damages, judgments, and expenses, arising out of any claim, demand, investigation, lawsuit, regulatory action or cause of action arising out of or associated with any unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of any products and/or the board.

This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and may not meet the technical requirements of these or other related directives.

FCC WARNING – This evaluation board/kit is intended for use for engineering development, demonstration, or evaluation purposes only and is not considered by **onsemi** to be a finished end product fit for general consumer use. It may generate, use, or radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment may cause interference with radio communications, in which case the user shall be responsible, at its expense, to take whatever measures may be required to correct this interference.

onsemi does not convey any license under its patent rights nor the rights of others.

LIMITATIONS OF LIABILITY: **onsemi** shall not be liable for any special, consequential, incidental, indirect or punitive damages, including, but not limited to the costs of requalification, delay, loss of profits or goodwill, arising out of or in connection with the board, even if **onsemi** is advised of the possibility of such damages. In no event shall **onsemi**'s aggregate liability from any obligation arising out of or in connection with the board, under any theory of liability, exceed the purchase price paid for the board, if any.

The board is provided to you subject to the license and other terms per **onsemi**'s standard terms and conditions of sale. For more information and documentation, please visit www.onsemi.com.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS: Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales