ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

User Guide for FEBFSQ500L_H257v1 Evaluation Board

Compact, Green-Mode Controller FSQ500L 5.1 V / 400 mA Flyback Design

Featured Fairchild Product: FSQ500L

Direct questions or comments about this evaluation board to: "Worldwide Direct Support"

Fairchild Semiconductor.com

1

Table of Contents

Introduction	. 3
1.1. General Description	. 3
1.2. Features	. 3
Specifications	
Photographs & PCB Layout	. 5
Function Test Report	
4.1. Input Current	. 6
4.2. Input Wattage at No-Load Condition	. 7
4.3. Burst Mode Test	
4.4. Soft-Start Test	. 8
4.5. Turn-On Delay Test	. 9
4.6. DC Output Rising Time	. 9
4.7. Line and Load Regulation	
4.8. Efficiency	11
4.9. Output Ripple and Noise	11
4.10. Step Load Response	12
4.11. Over-Current Protection	13
4.12. Hold-up Time	13
4.13. Short Circuit Protection	14
4.14. Maximum Duty Ratio	15
4.15. Power Off	15
4.16. Over-Temperature Protection (OTP)	15
4.17. Voltage Stress of Drain and Secondary Rectifier	16
4.18. EMI Waveforms	17
4.19. Surge Test	18
4.20. ESD Test	18
Schematic	19
Transformer Specification	20
Bill of Materials	
Revision History	24
	1.1. General Description 1.2. Features Specifications Photographs & PCB Layout. Function Test Report. 4.1. Input Current 4.2. Input Wattage at No-Load Condition 4.3. Burst Mode Test. 4.4. Soft-Start Test 4.5. Turn-On Delay Test 4.6. DC Output Rising Time 4.7. Line and Load Regulation 4.8. Efficiency. 4.9. Output Ripple and Noise. 4.10. Step Load Response 4.11. Over-Current Protection. 4.12. Hold-up Time 4.13. Short Circuit Protection 4.14. Maximum Duty Ratio 4.15. Power Off. 4.16. Over-Temperature Protection (OTP). 4.17. Voltage Stress of Drain and Secondary Rectifier 4.19. Surge Test. 4.20. ESD Test Schematic Transformer Specification Bill of Materials

This user guide supports the evaluation kit for the FSQ500L. It should be used in conjunction with the FSQ500L datasheet as well as Fairchild's application notes and technical support team. Please visit Fairchild's website at <u>www.fairchildsemi.com</u>.

1. Introduction

This engineering report describes a 2.04 W power supply using a FSQ500L. This power supply is targeted for a flyback converter replaces linear power supplies with low cost and small size.

1.1. General Description

This device combines a current-mode Pulse Width Modulator (PWM) with a SenseFET and high-voltage regulator connected from the DRAIN pin to supply the V_{CC} . This device does not need to use bias winding and associated external components.

Using a SOT-223 package, FSQ500L reduces total size and weight while increasing efficiency, productivity, and system reliability. Using FSQ500L, this design example for 2.04 W can be implemented with few external components and minimized cost.

1.2. Features

- Single-Chip 700 V SenseFET Power Switch
- Precision Fixed Operating Frequency: 130 kHz
- No-load consumption 250 mW at 265 V_{AC} with Burst Mode and Down to 60 mW with External Bias
- Internal Startup Switch
- Soft-Start Time Tuned by External Capacitor
- Under-Voltage Lockout (UVLO) with Hysteresis
- Pulse-by-Pulse Current Limit
- Overload Protection (OLP) and Internal Thermal Shutdown Function (TSD) with Hysteresis
- Auto-Restart Mode
- No Need for Auxiliary Bias Winding

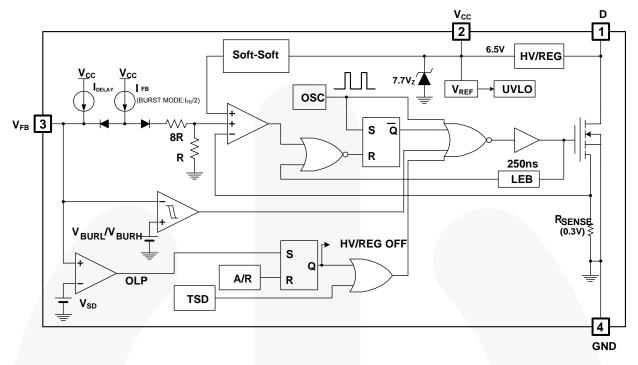


Figure 1. Internal Block Diagram

2. Specifications

Table 1.	Summary of	Features and F	Performance

Description	Min.	Max.	Unit
Input			
Voltage	90	264	V _{AC}
Frequency	47	63	Hz
Output			
Output Voltage 1		5.1	V
Output Current 1	0	0.4	A
Total Output Power		9	
Full-load Output Power	0	2.04	W
Peak Output Power			W

3. Photographs & PCB Layout

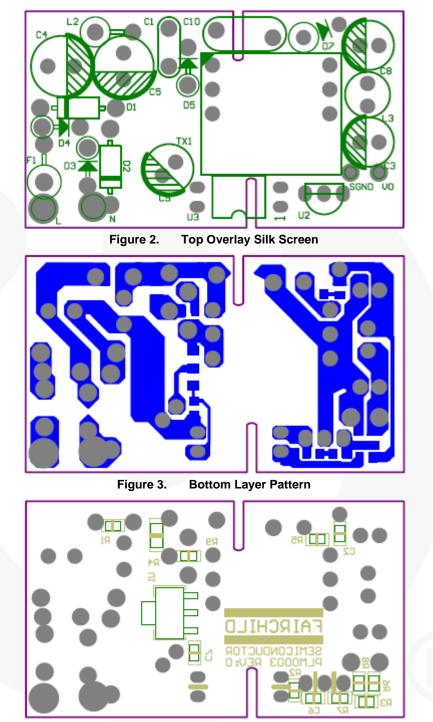


Figure 4. Bottom Overlay Silk Screen

4. Function Test Report

Test Model	FEBFSQ500L_H257v1	
Test Date	June.23, 2008	
Test Temperature	Ambient	
Test Equipment	AC source: 6800 AC POWER SOURCE Electronic load: Chroma 63030 Power meter: WT210 Oscilloscope: LeCory 24Xs	
Test Items	1Input Current2Input Wattage at No-Load Condition3Burst Mode Test4Soft-Start Test5Turn-On Delay Test6DC Output Rising Time7Line and Load Regulation8Efficiency9Output Ripple and Noise10Step Load Response11Over-Current Protection12Hold-Up Time13Short Circuit Protection14Maximum Duty Ratio15Power Off16Over-Temperature Protection (OTP)17Voltage Stress of Drain and Secondary Rectifier18EMI Waveforms19Surge Test20ESD Test	

4.1. Input Current

4.1.1. Test Condition

Measure the AC input current at maximum loading.

Table 2. Test Result

Input Voltage	Input Current
85 V _{AC} / 60 Hz	57.62 mA
264 V _{AC} / 50 Hz	35.73 mA

4.2. Input Wattage at No-Load Condition

4.2.1. Test Condition

Measure the input wattage and output voltage at no load.

Table 3. Test Result

Input Voltage	Input Wattage	Output Voltage	Specification
85 V _{AC} / 60 Hz	0.094 W	5.224 V	
120 V _{AC} / 60 Hz	0.116 W	5.224 V	< 0.25 W
230 V _{AC} / 50 Hz	0.209 W	5.224 V	< 0.25 W
264 V _{AC} / 50 Hz	0.242 W	5.224 V	

4.3. Burst Mode Test

4.3.1. Test Condition

Measure the waveform and frequency in Burst Mode at no load.

Figure 5. 85 V_{AC} / 60 Hz at No Load (Ch 1: Vo, Ch 2: V_{DS} , Ch 3: V_{FB})

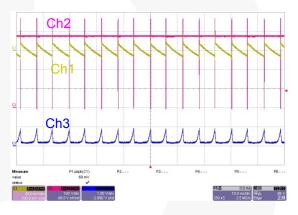
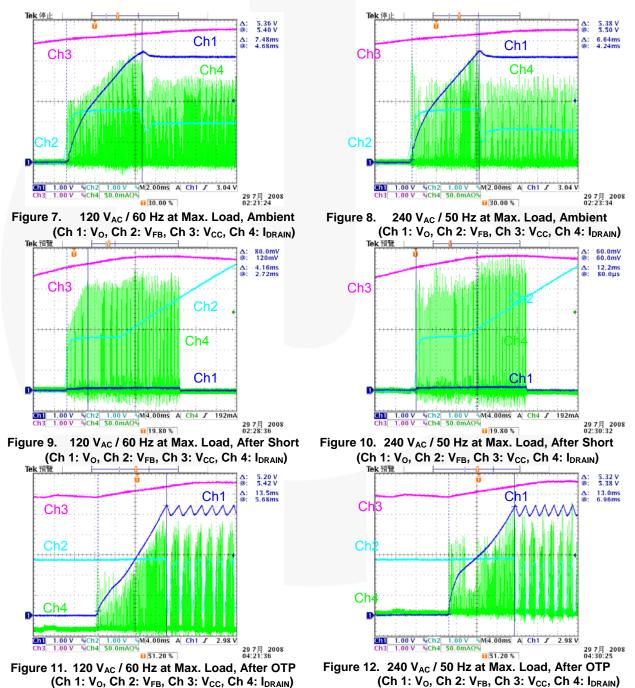


Figure 6. 264 V_{AC} / 50 Hz at No Load (Ch 1: Vo, Ch 2: V_{DS}, Ch 3: V_{FB})


4.4. Soft-Start Test

4.4.1. Test Condition

Measure the soft-start waveform at maximum load with ambient, after short, after OTP.

Table 4. Test Result

Input Voltage	Soft-Start Time	
120 V _{AC} / 60 Hz	14 ms Under	
240 V _{AC} / 50 Hz	14 ms Under	

4.5. Turn-On Delay Test

4.5.1. Test Condition

Set the output at maximum loading. Measure the interval between AC plug-in and stable output.

Table 5. Test Result

Input Voltage	Maximum Load
85 V _{AC} / 60 Hz	89.60 ms
264 V _{AC} / 50 Hz	99.08 ms

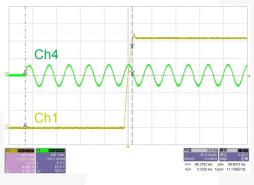
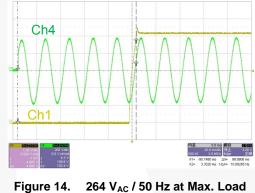



Figure 13. 85 V_{AC} / 60 Hz at Max. Load (Ch 1: V₀, Ch 4: V_{AC})

(Ch 1: V_0 , Ch 4: V_{AC})

4.6. DC Output Rising Time

4.6.1. Test Condition

Set output at maximum loading and no loading. Measure the time interval between 10% and 90% of output voltage during startup.

Table 6. Test Result

Input Voltage	Maximum Load	No Load	Specification
85 V _{AC} / 60 Hz	5.26 ms	4.04 ms	< 20 ms
264 V _{AC} / 50 Hz	5.05 ms	3.63 ms	< 20 ms

Ch1

Ch3

時登 0.00 ms 2.00 ms.Miv 2.00 kS 10 MS/s Edge 正婚

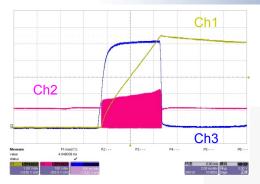


Figure 15. 85 V_{AC} / 60 Hz at No Load (Ch 1: V₀, Ch 2: V_{DS}, Ch 3: V_{FB})

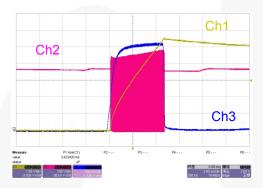
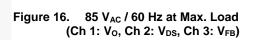


Figure 17. 264 V_{AC} / 50 Hz at No Load (Ch 1: V₀, Ch 2: V_{DS}, Ch 3: V_{FB})


4.7. Line and Load Regulation

4.7.1. Test Condition

Measure line and load regulation according to Table 7 (with output cable).

Table 7	Test Result	
Table 7.	lest Result	

Input Voltage	Output Voltage at Max. Load	Output Voltage at Min. Load	Load Regulation
85 V _{AC} / 60 Hz	5.224 V	5.224 V	0%
115 V _{AC} / 60 Hz	5.224 V	5.224 V	0%
132 V _{AC} / 60 Hz	5.224 V	5.224 V	0%
180 V _{AC} / 50 Hz	5.224 V	5.224 V	0%
230 V _{AC} / 50 Hz	5.224 V	5.224 V	0%
264 V _{AC} / 50 Hz	5.224 V	5.224 V	0%
Line Regulation	0%	0%	

Ch2

P1:rise(C1 5.267390 m

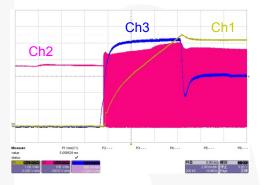


Figure 18. 264 V_{AC} / 50 Hz at Max. Load (Ch 1: V₀, Ch 2: V_{DS}, Ch 3: V_{FB})

SEMICONDUCTOR®

4.8. Efficiency

4.8.1. Test Condition

Output at maximum load.

Table 8. Test Result

Input Voltage	Input Wattage	Output Wattage	Efficiency
85 V _{AC} / 60 Hz	3.17 W	2.09 W	65.93%
120 V _{AC} / 60 Hz	3.15 W	2.09 W	66.34%
230 V _{AC} / 50 Hz	3.691 W	2.09 W	56.62%
264 V _{AC} / 50 Hz	3.933 W	2.09 W	53.14%

Table 9. Test Result

	Efficiency				
Input Voltage	25% Load	50% Load	75% Load	100% Load	Average
115 V _{AC} / 60 Hz	55.31%	58.88%	64.43%	66.22%	61.21%
230 V _{AC} / 50 Hz	43.01%	46.97%	50.96%	56.62%	49.41%

4.9. Output Ripple and Noise

4.9.1. Test Condition

Ripple and noise are measured by using a 20 MHz-bandwidth limited oscilloscope with a 10 μ F capacitor paralleled with a high-frequency 0.1 μ F capacitor across each output.

Table 10. Test Result

Input Voltage	Maximum Load	Minimum Load
85 V _{AC} / 60 Hz	16 mV	69 mV
120 V _{AC} / 60 Hz	19 mV	69 mV
240 V _{AC} / 50 Hz	16 mV	53 mV
264 V _{AC} / 50 Hz	16 mV	50 mV

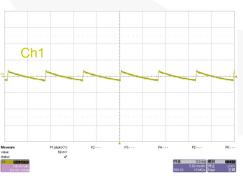
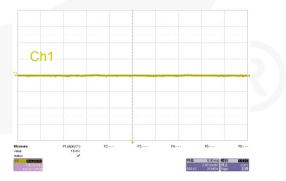
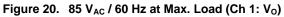
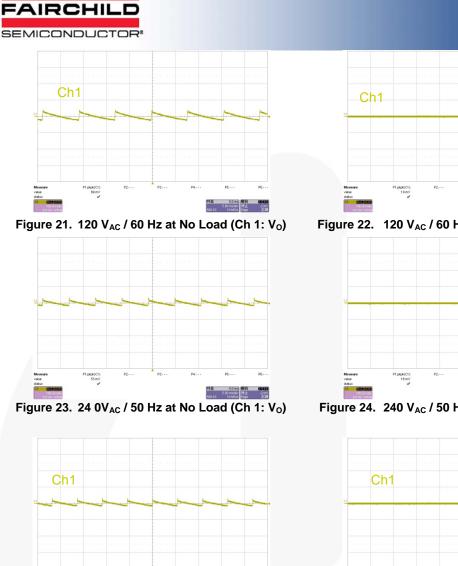
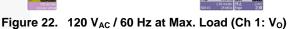





Figure 19. 85 V_{AC} / 60 Hz at No Load (Ch 1: V_0)



 Menune
 P1 pipt(1)
 P2 ...
 P2 ...
 P4 ...
 P5 ...
 P6 ...

 offer
 50 m²
 50 m²

Figure 25. 264 V_{AC} / 50 Hz at No Load (Ch 1: V_o)

ww.fairchilds

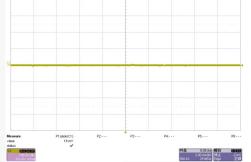


Figure 24. 240 V_{AC} / 50 Hz at Max. Load (Ch 1: V_o)

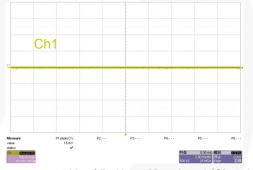


Figure 26. 264 V_{AC} / 50 Hz at Max. Load (Ch 1: $V_{O})$

4.10. Step Load Response

4.10.1. Test Condition

Dynamic loading (20%~80% of the full load, 5 ms duty cycle, 2.5 A/µs rise/fall time).

Input Voltage	Overshoot	Undershoot
85 V _{AC} / 60 Hz	70 mV	53 mV
264 V _{AC} / 50 Hz	61 mV	119 mV

Table 11. Test Result (20%~80% of the Full Load)

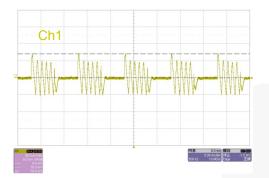


Figure 27. 85 V_{AC} / 60 Hz (Ch 1: V₀)

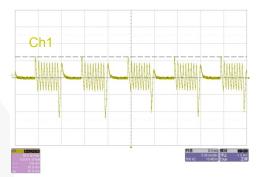


Figure 28. 264 V_{AC} / 50 Hz (Ch 1: V₀)

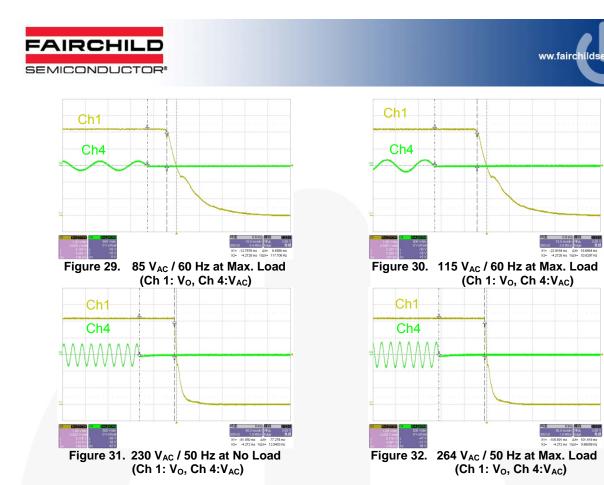
4.11. Over-Current Protection

4.11.1. Test Condition

Increase output loading gradually and measure the maximum output power.

Table 12. Test Result

Input Voltage	Output Current
85 V _{AC} / 60 Hz	0.611 A
120 V _{AC} / 60 Hz	0.650 A
240 V _{AC} / 50 Hz	0.836 A
264 V _{AC} / 50 Hz	0.881 A


4.12. Hold-up Time

4.12.1. Test Condition

Set output at maximum load. Measure the time interval between AC off and output voltage falling to the lower limit of the rated value. The AC waveform should be off at zero phase.

Table 13. Test Result

Input Voltage	Hold-up Time
85 V _{AC} / 60 Hz	8.49 ms
115 V _{AC} / 60 Hz	18.64 ms
230 V _{AC} / 50 Hz	77.27 ms
264 V _{AC} / 50 Hz	101.41 ms

4.13. Short Circuit Protection

4.13.1. Test Condition

Short the output of the power supply. The power supply should enter "Auto Restart Mode" protection with less than 2 W input voltage.

Input Voltage	Input Wattage at Maximum Load	Input Wattage at Minimum Load	Specification
120 V _{AC} / 60 Hz	0.574 W	0.572 W	Pin < 2 W
240 V _{AC} / 50 Hz	0.82 W	0.824 W	PIII < 2 VV

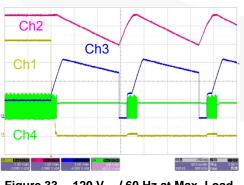


Figure 33. 120 V_{AC} / 60 Hz at Max. Load (Ch 1: V₀, Ch 2: V_{CC}, Ch 3: V_{FB}, Ch 4:V_{DS})

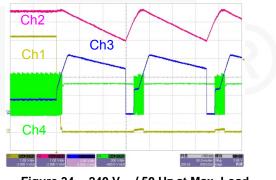
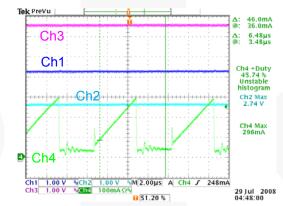
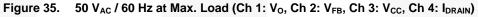


Figure 34. 240 V_{AC} / 50 Hz at Max. Load (Ch 1: V₀, Ch 2: V_{CC}, Ch 3: V_{FB}, Ch 4:V_{DS})





4.14. Maximum Duty Ratio

4.14.1. Test Condition

Set the output at maximum loading. Decrease the input voltage with 5 V_{AC} step. Verify the FB voltage is under overload state (between 2.7~4 V). Measure the maximum duty and waveform.

4.15. Power Off

4.15.1. Test Condition

Set the output at the maximum load. Remove power.

Figure 36. 120 V_{AC} / 60 Hz at Max. Load (Ch 1: V₀, Ch 2: V_{CC}, Ch 3: V_{FB}, Ch 4:V_{DS})

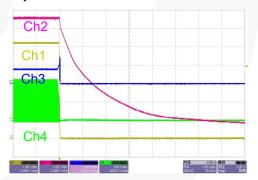


Figure 37. 240 V_{AC} / 50 Hz at Max. Load (Ch 1: V₀, Ch 2: V_{CC}, Ch 3: V_{FB}, Ch 4:V_{DS})

4.16. Over-Temperature Protection (OTP)

4.16.1. Test Condition

Set the output at maximum loading. Heat the IC with a heatgun, measure the waveform to enable the OTP, and disable the OTP.

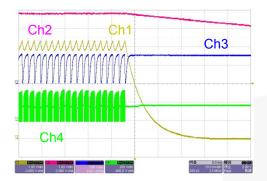


Figure 38. 120 V_{AC} / 60 Hz at Max. Load, Enable (Ch 1: V₀, Ch 2: V_{CC}. Ch 3: V_{FB}, Ch 4: V_{DS})

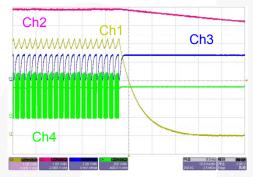


Figure 40. 240 V_{AC} / 50 Hz at Max. Load, Enable (Ch 1: V₀, Ch 2: V_{FB}. Ch 3: V_{CC}, Ch 4:V_{DS})

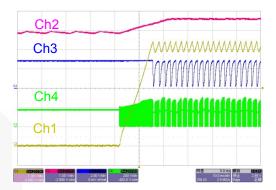


Figure 39. 120 V_{AC} / 60 Hz at Max. Load, Disable (Ch 1: V₀, Ch 2: V_{CC}. Ch 3: V_{FB}, Ch 4: V_{DS})

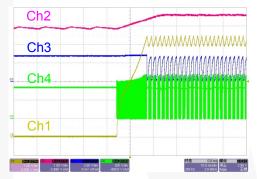


Figure 41. 240 V_{AC} / 50 Hz at Max.Load, Disable (Ch 1: V₀, Ch 2: V_{FB}. Ch 3: V_{CC}, Ch 4:V_{DS})

4.17. Voltage Stress of Drain and Secondary Rectifier

4.17.1. Test Condition

Measure the voltage stress of drain and secondary rectifiers under conditions specified in the table below.

4.17.2. Test Result

	Stress On MOSFET	Rating	Stress On Output Rectifier	Rating
85 V _{AC} / 60 Hz, Maximum Load	231 V		19.4 V	
85 V _{AC} / 60 Hz, Maximum Load, Startup	234 V		18.8 V	
85 V _{AC} / 60 Hz, Maximum Load, Output Short	212 V		13.8 V	K
264 V _{AC} / 50 Hz, Maximum Load	500 V	600 V	41.3 V	60 V
264 V _{AC} / 50 Hz, Maximum Load, Startup	496 V		41.3 V	
264 V _{AC} / 50 Hz, Maximum Load, Output Short	471 V		35.6 V	
264 V_{AC} / 50 Hz, Maximum Load, Turns Off	494 V		41.3 V	

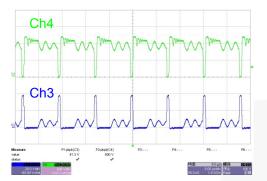


Figure 42. 264 V_{AC} / 50 Hz at Max. Load, Operating (Ch 3: V_{ak_rectifier}, Ch 4:V_{DS_MOS})

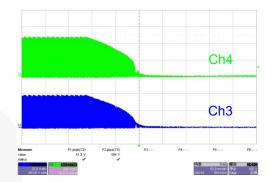
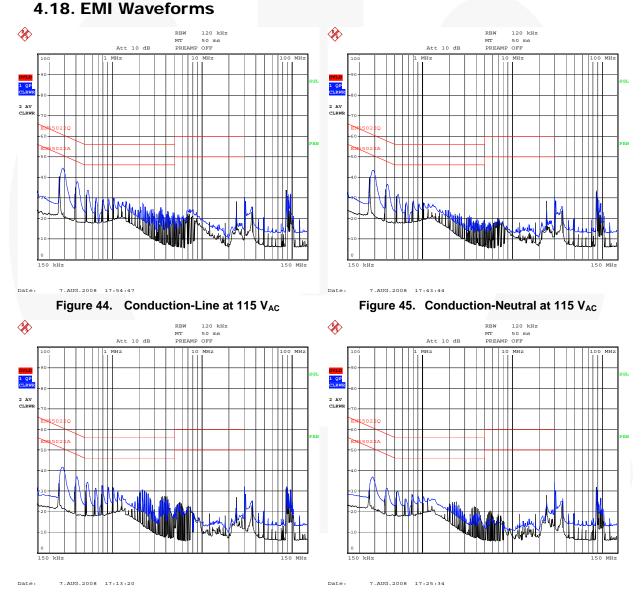
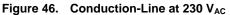




Figure 43. 264 V_{AC} / 50 Hz at Max. Load, Power Off (Ch 3: V_{ak_rectifier}, Ch 4:V_{DS_MOS})

4.19. Surge Test

Mode	Polarity	Phase	Voltage	Condition
	±	0°	Voltage 4.4 KV 4.4 KV	Pass
	±	90°		Pass
L-PE	±	180°		Pass
	±	270°		Pass
	±	0°	4.4 KV	Pass
N-PE	±	90°		Pass
IN-PE	±	180°	4.4 KV	Pass
	±	270°		Pass

4.20. ESD Test

Air Discharge (16.5 KV)		Contact Discharge (8.8 KV)		
Pass	Pass	Pass Pass		

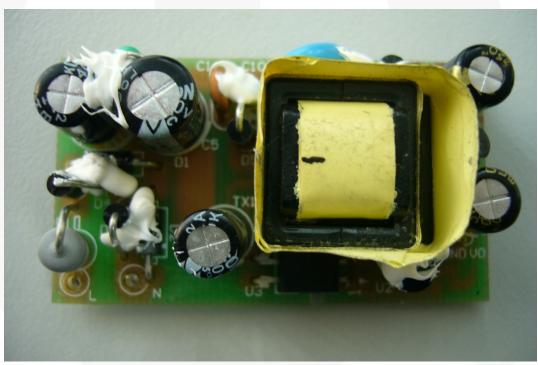


Figure 48. ESD Test Setup

5. Schematic

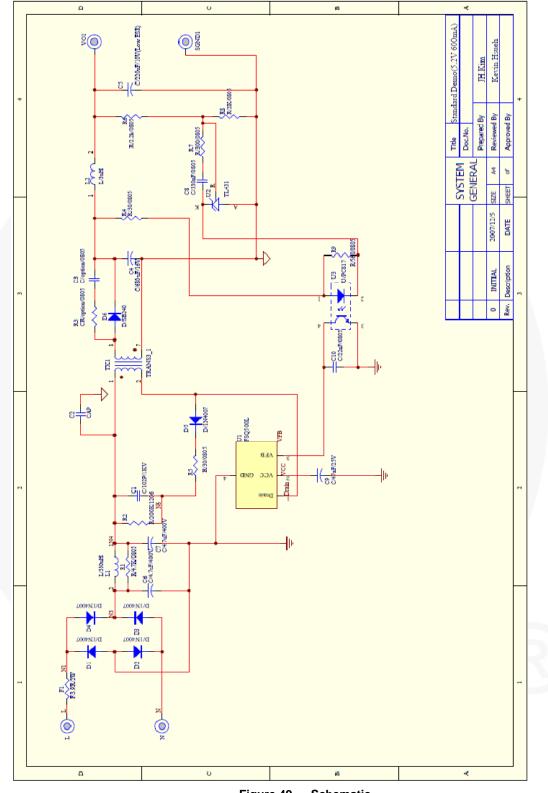
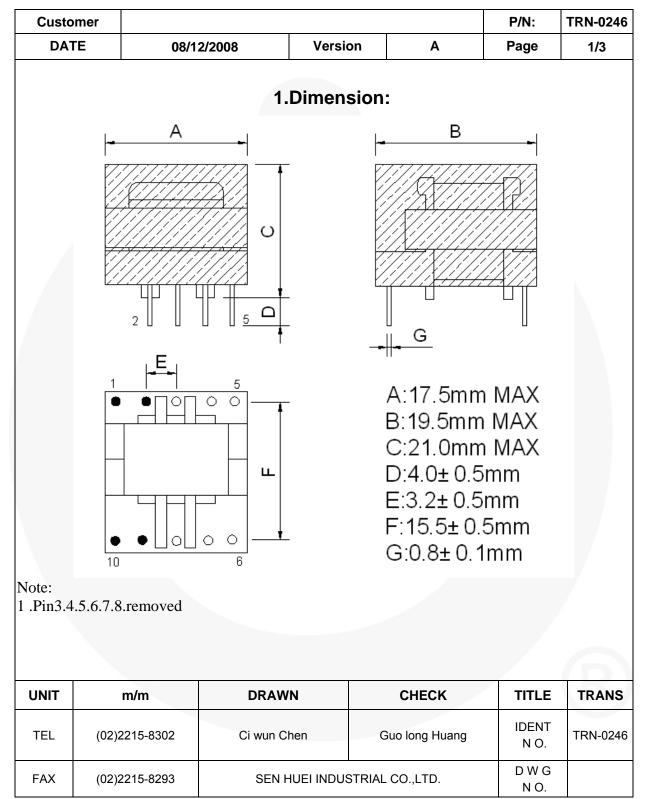



Figure 49. Schematic

6. Transformer Specification

Customer				P/N:	TRN-0246		
DATE	08/12/2008	Version	Α	Page	2/3		
	2.Schematic:						
Ns (10-9)	000000	20000	00000		Tape 5T		
Shield		20000			Tape 2T		
Np (2-1))00000()00000()00000(
Shield	000000	00000)00000(Гаре 4Т		

	TERM	MINAL		T _s INSULATION B	BARRIER	
NO	S	F	WIRE		Ts	S
w1	1	х	0.15*1	46	4	
w2	2	1	0.2*1	104	2	
w3	1	х	0.15*1	46	5	
w4	10	9	TEX-E 0.4*1	9	2	
			CORE ROUNDING TAPE		3	

Custom	er				P/N:	TRN-0246
DATE	08/12/	2008	Version	Α	Page	3/3
		3.Electrial	Specifica	tion:		
3.1 Inductar	nce test: at 100 KHz	2 ,1 V				
P(2	e-1): 800 μH ±5%					
3.2 DC Res	istance test at 25°C					
	1) . w O May (path	ive d)				
	(not for Ω): $XX \Omega$ Max. (not for Ω): $XX \Omega$ Max.	·				
	0-9) : xx Ω Max. (not	lixed)				
3.3 Hi-pot te	est :					
AC	3.0 KV /60 Hz/5 mA 1.5 KV /60 Hz/5 mA 1.5 KV /60 Hz/5 mA	hi-pot for one mir	nute between	ori to core.		
3.4 Insulatio	on test :					
	e insulation resistance st Be over 100 M Ω .	e is between pri to	o sec and wind	dings to core m	neasured by	DC 500 V,
3.5 Termina	al strength :					
1.0	Kg on terminals for 3	0 seconds, test t	he breakdown			
UNIT	m/m	DRAWN		CHECK	TITL	E TRANS
TEL	(02)2215-8302	Ci wun Chen	G	uo long Huang	IDEN N O	1 I RN-0246
FAX	(02)2215-8293					
Singnan F	Lane 128, Sec. 2, Rd., Jhonghe City, punty 235, Taiwan	SEN HUE	I INDUSTRIAL	CO.,LTD.	D W O	

7. Bill of Materials

Item Number	Part Reference	Part Number	Quantity	Description (Manufacturer)	
1	F1	TAPING	1	Metal-Oxide Resistor 1 W-S 10Ω ±5%	
2	R3 R9	REEL	2	SMD Resistor 0805 30 Ω ±5%	
3	R7	REEL	1	SMD Resistor 0805 300 $\Omega \pm 5\%$	
4	R2	REEL	1	SMD Resistor 0805 1 KΩ ±1%	
5	R8	REEL	1	SMD Resistor 0805 2 KΩ ±1%	
6	R6	REEL	1	SMD Resistor 0805 2K2Ω ±1%	
7	R1	REEL	1	SMD Resistor 0805 4K7Ω ±1%	
8	R4	REEL	1	SMD Resistor 1206 200 KΩ ±5%	
9	C5	8*11	1	Electrolytic Capacitor 4.7 µF 400 V 105°C	
10	C9	6*11	1	Electrolytic Capacitor 47 µF 50 V 105°C	
11	C4	6*11	1	Electrolytic Capacitor 1 µ 400 V 105°C	
12	C8	6.3*11 LEK (Low ESR)	1	Electrolytic Capacitor 330 µF/10 V 105°C	
13	C3	(Low ESR) ky10/220-L	1	Electrolytic Capacitor 220 µF/16 V 105°C	
14	C1	Z5V	1	Ceramic Capacitor 102P 1 KV +80/-20%	
15	C10	9.4*3.6	1	Y2 Capacitor 222P 250 V ±20%	
16	C7	REEL	1	MLCC 0805 ±10% 223P 50 V	
17	C6	REEL	1	MLCC 0805 ±10% 224P 50 V	
18	L2	EC36-471K	1	Fixed Inductors 470 µH ±10%	
19	L3	DR475C 15 µH	1	Inductor TRN0235	
20	TX1	EE16,L=800 µH,4PIN	1	TRN0246 Transformer	
21	D1, D2, D3, D4, D5	1N4007	5	Diode 1 A/1000 V DIP	
22	D7	SB260	1	Schottky Diode 2 A/600 V DO-15	
23	U1		1	SMD IC FSQ500L	
24	U2	TO92	1	REGULATOR TL431ACZ-AP ±1% (Fairchild Semiconductor)	
25	U3		1	IC PC817 DIP	
26	PCS		1	PCB PLM-0003 REV0	

8. Revision History

Rev.	Date	Description
1.0.0		Change User Guide EVB number from FEB257_001 to FEBFSQ500L_H257v1
1.0.1	3/6/12	Formatting & Editing pass by Tech Docs prior to posting
1.0.2	2/21/13	Change IC pin numbering on Figure 49

WARNING AND DISCLAIMER

Replace components on the Evaluation Board only with those parts shown on the parts list (or Bill of Materials) in the Users' Guide. Contact an authorized Fairchild representative with any questions.

This board is intended to be used by certified professionals, in a lab environment, following proper safety procedures. Use at your own risk. The Evaluation board (or kit) is for demonstration purposes only and neither the Board nor this User's Guide constitute a sales contract or create any kind of warranty, whether express or implied, as to the applications or products involved. Fairchild warrantees that its products meet Fairchild's published specifications, but does not guarantee that its products work in any specific application. Fairchild reserves the right to make changes without notice to any products described herein to improve reliability, function, or design. Either the applicable sales contract signed by Fairchild and Buyer or, if no contract exists, Fairchild's standard Terms and Conditions on the back of Fairchild invoices, govern the terms of sale of the products described herein.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As use	herein:1.
Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.	 A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts be either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

EXPORT COMPLIANCE STATEMENT

These commodities, technology, or software were exported from the United States in accordance with the Export Administration Regulations for the ultimate destination listed on the commercial invoice. Diversion contrary to U.S. law is prohibited.

U.S. origin products and products made with U.S. origin technology are subject to U.S Re-export laws. In the event of re-export, the user will be responsible to ensure the appropriate U.S. export regulations are followed.