

Output voltage accuracy test:

- 1) Apply no load.
- 2) Apply input voltage $V_{IN} = V_{OUT-NOM} + 1V$ and $V_{IN} >= 2.7V$.
- 3) Measure output voltage V_{OUT-SNS}.

Notes:

• V_{IN} and I_{LOAD} could be changed in ranges specified in datasheet to measure line and load regulation.

Quiescent current test:

1) Apply no load.

- 2) Apply input voltage $V_{IN} = V_{OUT-NOM} + 1V$ and $V_{IN} >= 2.7V$.
- 3) Measure input current I_{IN} (note that I_Q is I_{IN} at no load).

Notes:

- V_{IN} could be changed in range specified in datasheet.
- I_{LOAD} must be zero at this test to measure I_Q .
- At ADJ device version the current through R₁/R₂ resistor divider is added to quiescent current of the LDO. The value of I_{R1R2} could be computed as I_{R1R2} = V_{OUT} / (R₁ + R₂) and then could be subtracted from measured input current I_{IN} to obtain LDO's quiescent current I_Q = I_{IN} I_{R1R2}.

Dropout voltage test:

- 1) Apply desired load current (for example 150mA).
- 2) Apply input voltage $V_{IN} = V_{OUT-NOM} + 1V$ and $V_{IN} >= 2.7V$.
- 3) Decrease input voltage (V_{IN}) until measured output voltage (V_{OUT-SNS}) falls out of regulation to level V_{OUT-SNS} = V_{OUT-NOM} 100mV.
- 4) Compute dropout voltage $V_{DO} = V_{IN-SNS} V_{OUT-SNS}$.

Notes:

During this testing the LDO is heated up by dissipated power P_{DIS} = (V_{IN} − V_{OUT}) * I_{OUT} so take in mind that measured dropout voltage could be higher than a typical value specified at T_J = 25degC.