Test Procedure for the NCV7425GEVB

ON Semiconductor®

21/10/2011

Required Equipment

- Oscilloscope
- Bench Power Supply
- Voltmeter
- Signal Generator

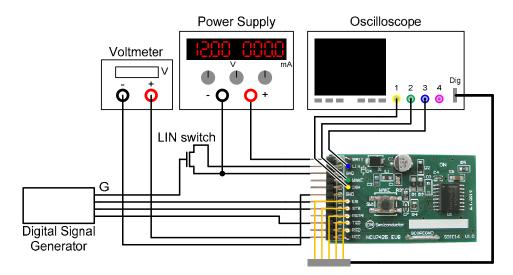


Figure 1: Test Setup Configuration

Test procedure Step 1 (Power-up sequence, Standby mode):

- 1. Connect the setup as shown above.
- 2. Set STB, EN and TxD and G (LIN Switch Gate) to LOW.
- 3. Apply an input voltage, $V_{BAT} = 12 V$
- 4. Set STB and TxD to HIGH
- 5. Check V_{CC}, LIN, INH, RxD and RSTN State
- 6. Check I_{BAT}. Caution should be taken with oscilloscope digital probes resistance which could have influence on overall I_{BAT} current.

Table 1: Desired Results

I_{BAT} = Typ. 40 µA, Max. 60 µA (Measured with disconnected digital probes, no V _{CC} Load)
$V_{CC} = ON$
LIN = RECESSIVE
INH = FLOATING
RxD = HIGH
RSTN = HIGH

Test procedure Step 2 (Transition to Normal mode):

- 1. Set EN HIGH
- 2. Check V_{CC}, LIN, INH, RxD and RSTN State
- 3. Check IBAT. Caution should be taken with oscilloscope digital probes resistance which could have influence on overall IBAT current.

Table 2: Desired Results

I_{BAT} = Typ. 0.64 mA, Max 1 mA (Measured with disconnected digital probes, no V _{CC} Load)				
$V_{CC} = ON$				
LIN = RECESSIVE				
INH = ON				
RxD = HIGH				
RSTN = HIGH				

Test procedure Step 3 (Transmit in Normal mode):

- 1. Set TxD to LOW, wait <6ms, set TxD HIGH (Generate LIN Dominant state)
- 2. Observe LIN and RxD. Start observation with TxD falling edge.

Table 3: Desired Results

LIN = Contain one Dominant pattern		
RxD = Contain one Dominant pattern		

Test procedure Step 4 (Transition to Sleep mode):

- 1. Set STB to LOW
- 2. Set EN LOW
- 3. Set TxD LOW (to simulate a microcontroller without power supply being connected to TxD)
- 4. Check I_{BAT}, V_{CC}, INH, RxD and RSTN State

Table 4: Desired Results

$I_{BAT} = Typ. 11 \ \mu A, Max 20 \ \mu A$
$V_{CC} = OFF$
INH = FLOATING
RxD = LOW
RSTN = LOW

Test procedure Step 5 (Local Wakeup):

- 1. In Sleep, press Local Wakeup switch
- 2. Set STB and TxD to HIGH
- 3. Check V_{CC}, INH, RxD and RSTN State
- 4. Check I_{BAT} . Caution should be taken with oscilloscope digital probes resistance which could have influence on overall I_{BAT} current.

Table 5: Desired Results

I_{BAT} = Typ. 40 µA, Max. 60 µA (Measured with disconnected digital probes, no V _{CC} Load)				
$V_{CC} = ON$				
INH = FLOATING				
RxD = HIGH – Signaling Wakeup source – Local Wakeup				
RSTN = HIGH				

Test procedure Step 6 (Remote Wakeup):

- 1. In Sleep, generate Remote Wakeup pattern: Set G HIGH, wait >150 us, set G LOW
- 2. Set STB and TxD to HIGH
- 3. Check V_{CC}, INH, RxD and RSTN State
- 4. Check I_{BAT}. Caution should be taken with oscilloscope digital probes resistance which could have influence on overall I_{BAT} current.

Table 6: Desired Results

$I_{BAT} = Typ. 0.37 \text{ mA} - 3.3 \text{V}$ version	
$I_{BAT} = Typ. 0.56 \text{ mA} - 5V \text{ version}$	
(RxD 10 k Ω pull-up to V _{CC} + 40 μ A Standby current consumption)	
(Measured with disconnected digital probes, no V _{CC} Load)	
$V_{CC} = ON$	
INH = FLOATING	
RxD = LOW – Signaling Wakeup source – Remote Wakeup	
RSTN = HIGH	

DC Characteristics

	MIN	ТҮР	MAX
LIN DOMINANT			2 V
LIN RECESSIVE	V _{BAT} - 1 V		
INH HIGH	V _{BAT} - 0.75 V		
VCC ON (3.3 V version)	3.19 V	3.3 V	3.41 V
VCC ON (5 V version)	4.83 V	5.0 V	5.17 V
RxD LOW			0.65 V
RxD HIGH	V _{CC} -0.65 V		