NCV7685 RGB KIT

Test Procedure

© 2020 ON Semiconductor

Revision History

Revision	Comments	Release Date	By
0.1	Initial revision	$2020-03-09$	Austin. Shang

Warning:

 Please Protecting Your Eyes ! ! !Wear Dark Sunglasses

(Y)

Cover the LEDs with Dimming Plate when Power on

- Visual Inspection of Board and Components

Results (Pass/Fail)	Estimated Time	Items and Criticals	Comments
	$<60 \mathrm{~s}$	1. No broken for board and components. 2. No shorted for components.	Only obvious issues can found by visual inspection.

Figure 1. SoC and Driver components side

Figure 2. LEDs side

■ Electrical characteristics testing
Power on the kit with 12-24V power supplier, measure the voltage of the VS, VLED and VDD with voltmeter.
$>$ VS Voltage

Results (Pass/Fail)	Estimated Time	Items and Criticals	Comments
	$<60 \mathrm{~s}$	$0.3-0.7 \mathrm{~V}$ lower than Vsupllier(12-24V)	

$>$ VLED Voltage

Results (Pass/Fail)	Estimated Time	Items and Criticals	Comments
	$<60 \mathrm{~s}$	typically 3.8V	$\pm 0.2 \mathrm{~V}$

> VDD Voltage

Results (Pass/Fail)	Estimated Time	Items and Criticals	Comments
	$<60 \mathrm{~s}$	typically 3.3V	$\pm 0.2 \mathrm{~V}$

■ Programming RSL10 Flash Memory
Following the document of "RSL10_stand_alone_flash_loader.pdf" to setup "FlashLoader.exe" tool, and programming the "RSL10 RGB LEDs Kit" with "RGB_1V6F.hex" file.

1. Install "J Link" driver.
\square
2. Install "Flash Loader" tool.
3. Power on the kit, and connect the $10-$ Pins programming header of J_Link.

4. Launch "Flash Loader" and load "RGB_1V6F.hex" file to finish programming.

- Functions testing

Power on the kit with 12-24V power supplier, test each defined functions.
> "Welcome" animation

Results (Pass/Fail)	Estimated Time	Items and Criticals	Comments
	$<60 \mathrm{~s}$	All LEDs keep white 0.5S; Single LED in red, green and blue in sequence total last 1.92S; 	LEDs turn blue in turn total last $0.8 \mathrm{~S} ;$ LEDs turn red in turn total last $0.8 \mathrm{~S} ;$ LEDs turn green in turn total last $0.8 \mathrm{~S} ;$
timing and color are			
correct; please do not			
care about the accurate			
period.			

> Status Indicator Mode

Results (Pass/Fail)	Estimated Time	Items and Criticals	Comments
	$>10 \mathrm{~min}$	Keep all Switches off (0000); (0:off; 1:on; (S4-S3-S2-S1)) The color of LEDs changes in gradient from green to orange, then to red; and goes back from red to green.	Just check whether the timing and color are correct; please do not care about the accurate period.

> Second Clock Mode

Results (Pass/Fail)	Estimated Time	Items and Criticals	Comments
	$>1 \mathrm{~min}$	Keep Switches(S4-S3-S2-S1) to 0001; (0:off; 1:on) Every second, only one LED in blue lights up clockwise direction in turn.	Just check whether the timing and color are correct; please do not care about the accurate period.

> Flash Mode

Results (Pass/Fail)	Estimated Time	Items and Criticals	Comments
	$>1 \mathrm{~min}$	Keep Switches to 0010; (S4-S3-S2-S1) (0:off; 1:on) All LEDs flash in red, keep on 200ms and keep off 200ms	Just check whether the timing and color are correct; please do not care about the accurate period.

> Fading Mode

Results (Pass/Fail)	Estimated Time	Items and Criticals	Comments
	$>5 \mathrm{~min}$	Keep Switches to 0011; (S4-S3-S2-S1) (0:off; 1:on) All LEDs fading in green, the period is about 51s.	Just check whether the timing and color are correct; please do not care about the accurate period.

> Fading Mode

Just Keep Switch S4 on and never mind of the setting of S2, S3, S4, the board comes into BLE mode. User use general mobile App to control LED's color and intensity for individual or all LEDs. For example, using "Light Blue" in IOS; "BLE Scanner" or" nRF Connect" in Android OS. It shows a green "smile face" firstly, and then changes the color and intensity according to the received five bytes data by BLE. The first three bytes stands for R, G, B values to mix the color, and the fourth data stands for intensity (4 level brightness For V1). The fifth byte stands for LED number, if this value is greater than 0x0f, all LEDs response.

Results (Pass/Fail)	Estimated Time	Items and Criticals	Comments
	>20min	Keep Switches to (1XXX); (S4-S3-S2-S1) (0:off; 1:on; X: don’t care)	Protocol: (R, G, B, I, LED_No) ; The first byte is intensity value for RED; LED_No is LED's number,
		"smile face" for standby in BLE mode	No data received
		Sent data: $0 \times 80,0 \times 00,0 \times 80,0 \times F F, 0 \times 00$	LEDO turn into Purple with max intensity; Others keep previous color and intensity;
		Sent data: $0 \times \mathrm{FF}, 0 \times 00,0 \times 00,0 \times 3 F, 0 \times 01$	LED1 turn into Red with min intensity;
		Sent data: $\mathrm{X}, \mathrm{X}, \mathrm{X}, 0 \times 00,0 \times 10$ X : don't care of the value	All LEDs turn into off;
		Sent data: 0x00, 0xBF, 0xFF, 0xFF, 0x10	All LEDs in deep sky blue with max intensity
		Sent data: $\mathrm{X}, \mathrm{X}, \mathrm{X}, \mathrm{X}, \mathrm{X}$	Sent five bytes following the protocol to test as you want;

Figure 3. Standby interface in BLE Mode

Figure 4. Standby interface in BLE Mode

Figure 5. LED Number

> BLE Apps

The Generic BLE App is needed to test on the mobile phone, user can use "Light Blue" in IOS; "BLE Scanner" or" nRF Connect" in Android OS.

IOS APP:

LightBlue

[^0]Here is an example using "Light Blue" App to control RGB lighting board:

1. Find and choose Peripheral of "NCV7685 RGB Kit."
2. Tap "Send RGB Setting" character.
3. Set RGB and Intensity values.
4. The board change color, intensity and LED_No.

Figure 6. Using 'Light Blue' App to control the board

- Assembling

Assemble the demo board as shown below

[^0]: Android APP: BLE Scanner
 nRF Connect

