Self-Service CSSPMG)

User Guide

Outline of User Guide

1	Introduction to Self-Service PLECS Model Generator: What is it and What are the benefits
2	Step by Step Tool Flow
3	Deploying PLECS Models in Elite Power Simulator and PLECS Stand Alone

Outline of User Guide

1	Introduction to Self-Service PLECS Model Generator: What is it and What are the benefits
2	

PLECS Basics

- PLECS is a system level simulator that facilitates the modeling and simulation of complete systems with optimized device models for maximum speed and accuracy.
 PLECS is not a SPICE-based circuit simulator, where the focus is on low-level behavior of circuit components.
- Power transistors are treated as simple switches that can be easily configured to demonstrate losses associated with conduction and switching transitions.
- The PLECS models, referred to as "thermal models", are composed of lookup tables for conduction and switching losses, along with a thermal chain in the form of a Cauer or Foster equivalent network.
- During simulation, PLECS interpolates and/or extrapolates using the loss tables to get the bias point conduction and switching losses for the circuit operation. Access the onsemi Elite Power Simulator powered by plecs

www.onsemi.com/elite-power-simulator

onsemi's State-of-the-Art PLECS Models:

 Typical industry PLECS models are composed of measurement-based loss tables that are consistent with datasheets provided by the manufacturer.

There are four major problems with this approach:

- 1. The switching energy loss data is dependent on the parasitics of the measurements set ups and circuits.
- 2. The conduction and switching energy loss data is limited and thus is often not dense enough to ensure accurate interpolation and minimal extrapolation by PLECS.
- 3. The loss data is based on nominal semiconductor process conditions only.
- 4. The switching energy loss data comes from datasheet double pulse generated loss data. This means the PLECS models are only valid for hard switching topology simulation. The models are highly inaccurate if used in soft switching topology simulation.
- onsemi's Self-Service PLECS Model Generator (SSPMG) provides solutions to all four problems.
- Ultimate power is delivered to the user to build PLECS models tailored for the user's application.
 Unleash the power here: <u>www.onsemi.com/self-plecs-generator</u>

Measurement Parasitics Influence on Switching Performance

Switching Schematic with Parastics

Example DatasheetParameterSwitching
LossEon [uJ]490Eoff [uJ]221Etotal [uJ]711

Custome	Application
Parameter	Switching Loss
Eon [uJ]	415
Eoff [uJ]	231
Etotal [uJ]	646

atomo o n Amulio ation

- Crucial to understand that the lab test circuit's passives, parasitics, gate driver performance, etc. all affect losses.
- Where does this leave the user for a PLECS model? The user application will surely have a different environment than any of the component supplier's lab and board setups.

DNSemi

Public Information © onsemi 2024

Loss Table Density and Limits Influence Results

- Datasheet data is often not dense enough to ensure accurate <u>interpolation</u> by PLECS in nonlinear environments.
- Datasheet data limits often do not bound the entire operating range causing highly inaccurate <u>extrapolation</u> by PLECS.

Corner PLECS Models

- Conventional PLECS models based on measurements are only valid for the typical or nominal process case in manufacturing. onsemi has developed accurate corner PLECS models based on real manufacturing distribution.
- Physics dictates that worst case conduction and switching losses do not happen simultaneously for example.
- Depending on the application, the influence of conduction and switching energy losses on the overall system
 performance will vary. The onsemi corner PLECS models provide the user the flexibility to investigate the entire
 correlated space.
- Corner models currently available for EliteSiC and T10M 40V products. More T10 and FS7 IGBT corner models are coming soon.
- Accurate corner and statistical modeling covered in detail in
 - SiC MOSFET Corner and Statistical SPICE Model Generation Proceeding of International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 154-147, September 2020

Process Condition	R _{DSon} , V _{th} , BV	Capacitance, Device RG	Conduction Loss	Switching Energy Loss
Nominal	Nominal	Nominal	Nominal	Nominal
Best Case Conduction Loss, Worst Case Switching Loss	Low	High	Low	High
Worst Case Conduction Loss, Best Case Switching Loss	High	Low	High	Low
				MASOO

Full Switching Energy Losses

Full Switching Simulation*

onsemi provides industry first Full Switching PLECS models valid for hard, soft, and partial soft switching including Synchronous Rectifier Operations. Example Full Switching topologies include DC-DC LLC and CLLC Resonant, Dual Active Bridge, and Phase Shifted Full Bridge.

*The Double Pulse Test is **NOT** representative of Soft Switching. Using double pulse switching energy losses in the simulation of a Soft Switching Topology is highly inaccurate.

Access SSPMG with MYON Account

Onsemi

Outline of User Guide

Step 1: Select Product

🛆 Home	😫 Requests	🕮 User Guide	Application Note	Elite Power Simulator	🖂 Support
Product Selection 2	Process Condition —	3 Swit	ching Type	Characteristics ——	— 5 Circuit Schematic
Select Your Preferred Product Filter by selecting product type, technology, and	l voltage				
Product Type [*] Discrete	Discre	ete or Modu	le		~
Product Technology M3 (SiC MOSFETs)	Devic	e Type* & T	echnology Ger	neration	~
Product Voltage 1200V	Blocki	ng Voltage			~
Product [*] NTH4L022N120M3S	Produ	ct list filtere	d based on pre	evious choices	~

*EliteSiC MOSFETs, Field Stop 7 (FS7) IGBTs, and T10 Si MOSFETs are supported.

Onsemi

Next Step

Step 2: Set Process Condition

🛆 Home 🗎 🗎 Requ	iests 🛛 🕮 User Gu	ide 🛛 🗐 Application Note	e Elite Power Simulato	r 🖂 Support	
Product Selection Process	Condition 3	Switching Type	- • Characteristics	— 5 Circuit Schema	atic
Preferred Process Condition What is your preferred process condition? Process Condition Nominal		Corner mo for EliteSic More T10 corner mod	dels currently onl C and T10M 40V Si MOSFET and dels are coming s	y available / products. FS7 IGBT oon.	`
Previous Step		Ů Reset		Next	t Step
Process Condition	R _{DSon} , V _{th} , BV	Capacitance, Device RG	Conduction Loss	Switching Energy Loss	
Nominal	Nominal	Nominal	Nominal	Nominal	
Best Case Conduction Loss, Worst Case Switching Loss	Low	High	Low	High	
Worst Case Conduction Loss, Best Case Switching Loss	High	Low	High	Low	

Step 3: Set Switching Type

<u> </u>	lome	😫 Requests	🕮 User Guide	Application No	te Elite Power Simulator	⊠ Support
1 Product Selectio	n 2	Process Condition —	3 Sw	itching Type	— 4 Characteristics ——	— 5 Circuit Schematic
Switching T What is your pref	ype erred switching type?	Regular <u>Hard</u> Sv	vitching or	<u>Full</u> Switching	g including transitior	n from Hard to Soft
Switching Type Regular Double Pulse Test	er Model for Main Swite	ch operation only, valid for Hard Sw	itching Sw	vitching Type II Switching Model for Main Swi	tch and Synchronous Rectifier Operations, val	lid for Hard-, Soft- and Partial Soft-Switching
High Side Choice [*] NTH4L022N120M3S	Option fo Half bridg	r Hard Switching	g: dge with id	eal diode or E	liteSiC Schottky die	ode
Previous Step			c	Reset		Next Step
Choose the switc	hing type bas	sed on the intended	application o	r topology.	6 11 1	

- If hard switching chosen, user has choice for high side device to be in half bridge configuration or quarter bridge with ideal diode or EliteSiC Schottky diode on the high side.
- Full Switching is valid for hard, soft, and partial soft switching. Example Full Switching topologies include DC-DC LLC and CLLC Resonant, Dual Active Bridge, and Phase Shifted Full Bridge.
- Subsequent step 4 "Characteristics" change slightly based on the Switching Type.

Step 3: Quarter Bridge with EliteSiC Schottky Diode

🛆 Home	😫 Requests	🕮 User Guide	Application Note	Elite Power Simulator	⊠ Support
Product Selection	2 Process Condition —	3 Swi	itching Type	Characteristics ——	— 5 Circuit Schematic
Switching Type What is your preferred switching type?					
Regular Double Pulse Tester Model for Main S	Switch operation only, valid for Hard Swi	itching			~
High Side Choice * SiC Diode					~
Technology (SiC Diode) D3	Technology Ge	eneration			~
Voltage (SiC Diode) 1200V	Blocking Voltag	ge			~
Product (SiC Diode) * NDSH50120C	Product list filte	ered based	l on previous cl	noices	~
Previous Step		Ċ	Reset		Next Step
 User should make sure E 	EliteSiC Schottky diod	le current rati	ng is suitable with	the low side switch.	
	٩	ublic Information	@ ancomi 2024		onsemi

Step 4: Set Characteristics (Hard Switching)

- Drain current can be in 1st and/or 3rd quadrant, so positive and/or negative.
- Diode Current is for diode <u>forward</u> conduction mode at the low VGS condition. Values are given in absolute scale.
- Default Gate Drive conditions are the recommended values. User can change Low and High VGS within a specified range that ensures proper device operation.
 If

(Stop-Start)/(Step Size) != Integer then last point=Stop. Example: Start=1 Stop=9 Step Size=3 Simulated points are: 1 4 7 9

Step 4: Set Characteristics (Full-Soft Switching)

- Full Switching Changes:
 - Drain current is 1st and 3rd quadrant, so positive and negative when a switching event happens
- Full Switching Additions:
 - dl/dt: in the resonant inductor when the switching event happens. This dl/dt is directly linked to the resonant inductor voltage by the Faraday's law of induction E=L*di/dt. "didt" is a PLECS circuit parameter passed into the PLECS model to evaluate the losses in soft switching.
 - Max Delay: maximum dead time allowed between high side and low side switches for the resonant transition to occur
 - Resonant Inductor

Step 5: Circuit Schematic (Half Bridge Discrete)

- Table of parameters matches circuit schematic.
- Default parameters are generally 0, allowing user to just enter needed values.
- Min and Max Gate Resistance parameter facilitate RG scaling in the PLECS model.
- Gate drive signal can be modeled through Rdriver, TF, and TR.
- Several passives can be set directly from Würth Elektronik component library. (See next slides)

Würth Elektronik Components

- User can directly choose Würth Elektronik components for several passive elements in the switching circuit.
- Green box around the element denotes the standard value.
- Red box denotes an element was set through the Würth Elektronik library.
- The highlighted elements are clicked on directly to make the choice.

Public Information © onsemi 2024

Würth Elektronik Components

Würth Elektronik Components

Please choose inductor type for Lload

Step 5: Circuit Schematic (Quarter Bridge Discrete)

Step 5: Circuit Schematic (Half Bridge Module)

Step 5: Circuit Schematic (Full-Soft Switching)

Step 5: Circuit Parameters – Full list

nput Filter	^
RCF (Ω)	0.2m
LCF (H)	2n
CF (F)	3n
LFH (H)	5n
RLFH (Ω)	0.1m
LFL (H)	5n
RLFL (Ω)	0.1m

Devices Layout Parasitics	^
LDH (H)	2n
RDH (H)	0.1m
LSH (H)	2n
RSH (Ω)	0.1m
RDL (Ω)	0.1m
LDL (H)	2n
LSL (H)	2n
RSL (Ω)	0.1m

Switching Loop Parasitics	^
RloopH (Ω)	0.1m
LloopH (H)	2n
RloopL (Ω)	0.1m
LloopL (H)	2n

Load Inductor Parasitics	^
Rload (Ω)	5m
Cload (F)	22p

EMI Damping	^
Rdamp (Ω)	100
Cdamp (F)	47p
CO (F)	100p
Rsnub (Ω)	1
Csnub (F)	200p

Current Measurement	^
Rshunt (Ω)	1m
Rshunt Location	RSL

Gate Drive Circuit	^	
RGoff (Default OFF Gate Resistance, $\boldsymbol{\Omega})$	2	
RGon (Default ON Gate Resistance, Ω)	2	
RGoffMIN (Min OFF Gate Resistance, $\boldsymbol{\Omega})$	2	
RGoffMAX (Max OFF Gate Resistance, Ω)	10	
RGonMIN (Min ON Gate Resistance, Ω)	2	
RGonMAX (Max ON Gate Resistance, Ω)	10	
LGH (H)	5n	
LKH (H)	5n	
LGL (H)	5n	
LKL (H)	5n	

Gate Driver	^
Rdriver (Gate driver internal resistance, $\boldsymbol{\Omega})$	1
TR (Gate drive rise time, s)	50n
TF (Gate drive fall time, s)	50n

Onsemi

Step 5 : Input Filter Parameters

Input Filter	^
RCF (Ω)	0.2m
LCF (H)	2n
CF (F)	3n
LFH (H)	5n
RLFH (Ω)	0.1m
LFL (H)	5n
RLFL (Ω)	0.1m

LFx (with RLFx as series resistance) is the PCB leakage inductance or a discrete filtering inductor.

The simple filter capacitor or decoupling capacitor CF includes ESL(LCF) and ESR(RCF) parameters.

Alternatively, Würth capacitors can be chosen with fully characterized parasitics.

Step 5 : Switching Loop Leakage Inductances

Switching Loop Parasitics	^
RloopH (Ω)	0.1m
LloopH (H)	2n
RloopL (Ω)	0.1m
LloopL (H)	2n

The switching loop inductance (in between the decoupling capacitor and the switching cell) is represented by Lloopx (with Rloopx as series resistance) on the positive and negative branch.

Step 5 : Interconnections leakage inductances

Devices Layout Parasitics	^
LDH (H)	2n
RDH (H)	0.1m
LSH (H)	2n
RSH (Ω)	0.1m
RDL (Ω)	0.1m
LDL (H)	2n
LSL (H)	2n
RSL (Ω)	0.1m

Drain and Source interconnections can also be modeled by inductances (with series resistances). There are 4 in total for the two switching devices.

Onsemi

Step 5 : Load parameters

Load Inductor Parasitics	^
Rload (Ω)	5m
Cload (F)	22p

For simple inductor, the inductor quality or performances are defined by an equivalent series resistance (Rload) and an equivalent parallel parasitic capacitor (Cload).

Alternatively, Würth inductors can be chosen with fully characterized parasitics.

Step 5 : Current Sense parameters

Current Measurement	^
Rshunt (Ω)	1m
Rshunt Location	RSL 🗘

A current sense measurement based on a shunt resistor can be included in the loop in various places:

- in switching device Drain,
- in switching device Source
- in switching inductor

If the shunt is in either the device drain or source, the interconnection series resistance can be increased accordingly.

Step 5 : Gate Drive Circuit parameters

Gate Drive Circuit	^
RGoff (Default OFF Gate Resistance, Ω)	2
RGon (Default ON Gate Resistance, $\boldsymbol{\Omega})$	2
RGoffMIN (Min OFF Gate Resistance, $\boldsymbol{\Omega})$	2
RGoffMAX (Max OFF Gate Resistance, $\boldsymbol{\Omega})$	10
RGonMIN (Min ON Gate Resistance, Ω)	2
RGonMAX (Max ON Gate Resistance, Ω)	10
LGH (H)	5n
LKH (H)	5n
LGL (H)	5n
LKL (H)	5n

The gate drive circuit includes two parasitic inductances LGx and LKx for interconnection and split gate resistors (RGon and RGoff) to control turn-on and turn-off speed.

Step 5 : Driver extra parameters

Gate Driver	^
Rdriver (Gate driver internal resistance, $\boldsymbol{\Omega})$	1
TR (Gate drive rise time, s)	50n
TF (Gate drive fall time, s)	50n

The driver is model by a pulse voltage source with Minimum and Maximum (ON and OFF) voltage defined in Step 4.

In Step 5, the user defines the Rise (TR) and Fall (TF) times. The user can also give the driver internal resistance value Rdriver.

Step 5 : EMI Damping parameters

EMI Damping	^
Rdamp (Ω)	100
Cdamp (F)	47p
CO (F)	100p
Rsnub (Ω)	1
Csnub (F)	200p

For EMI reduction, two damping circuits can be added.

Between Drain to Source, a parallel capacitor linearizes the switching device output capacitor. A snubber circuit can also be added.

Between Gate and (Kelvin) Source, an R-C series damping network will damp the Miller effect ringing.

Step 6: Submit Request

- From the Circuit Schematic Tab, once the circuit parameters are entered, Submit Request button becomes active.
- User clicks on Submit Request and is brought to the Request Details page
- Requests take several minutes to complete depending on the density of the input characteristics.
- Modules take longer due to higher complexity compared to discretes.

Step 7: Review Request Details Page

Details

- The Request Details page provides user with
 - Details of the input parameters
 - Plots of the simulation results
 - Status field:
 - Pending simulation in queue
 - Running simulation running
 - Done simulation completed
 - PLECS Model (XML File) download
 - Recall button: Enable users to recall the current request into a new request where changes can be made before submitting the new request. The current request is maintained.

🛆 Home	Requests	🕮 User Guide	Application Note	Elite Power Simulator	⊠ Support
Request #2123 Characteristics for this request.				Status: Done	∑ XML File 2° Recall
Details Plots			PLECS M	odel Download	
Category	Parameters	-		<u>-</u>	
Product Information	^			LDH RioopH LloopH	LFH RLFH
Product Number	NTH4L022N120M3S		— и	7	
Product Type	discrete	, I I	RGoff		
Product Technology	МЗ	Rdriver	RGon LGH		
Product Voltage	1200V		Cdamp		
Process Condition	Nominal	Rload) VGH LKH	Csnub	225
Switching Type	Regular Double Pulse Tester	{			
High Side Choice	NTH4L022N120M3S				
Gate Drive Conditions	^			2011	LCF
Low VGS (V)	-3		oad	0 ^{RSH}	
High VGS (V)	18				
Conduction Parameters	~				CF
Switching Parameters	~			RDL	
Temperature List	25 75 125 175			Ĭ	
Gate Driver	~	í l			
Gate Drive Circuit	~	Rdriver	RGon		
EMI Damping	~		Cdamp	QL	
Load Inductor Parasitic	~	¢			
Device Layout Parasitics	~	l			
Switching Loop Parasitics	~			LSL	
Input Filter	~			}	
Current Measurement	~			RSL Ricopi Licopi	LFL RLFL

Step 7: Review Request Details Page – Plots Tab

- The Plots tab provides users with multiple plots representing the data in the XML file.
 - Eoff, Eon, Err vs. ID (current) for different temperatures and voltage @default RG
 - Eoff at negative ID is essentially Err.
 - Eoff, Eon, Err vs. RG for different currents @maximum temperature and voltage.
 - Transistor conduction plot
 VDSon vs. ID for different
 temperatures.
 - Diode conduction plot Vsd vs.
 ID for different temperatures.

Example Full Switching Model Results

Onsemi

Example Full Switching Model Results

Onsemi

Example Full Switching Model Results: 3D View

Step 8: Review Requests Summary Page

1	🗅 Home	🗟 Reques	sts	🕮 User	Guide 🗐 A	pplication Note	Elite Po	wer Simulator	🖂 Support
	Request List Search through the requ	est list and find				Note*	Sort and User wi	d Search thes i ll only see t	se fields heir requests
#	Requester	Product Type	Technology	Voltage	Device Name	Process Condition	Status	Last Update D	Model Recall
263	James Victory	discrete	M3	1200V	NTH4L022N120M3S	Nominal	Done 20	23-03-10 14:34:56	XML 😤 Recall
262	James Victory	discrete	M3	1200V	NTH4L022N120M3S	Nominal	Done 20	23-03-10 13:32:19	ML XML
261	lames Victory	discroto	M3	1200V	NTH4L022N120M3S	Nominal	Downlo	ad ^{0:45}	M) XML 😤 Recall
254	James Vic Click (on reque	est #	200V	NTH4L022N120M3S	Nominal	XML Mo	odel ^{3:25}	XML 😤 Recall
253	James Vic Reques	access t Details	Page	200V	NTH4L022N120M3S	Nominal	Done 20	23-03-09 21:51:40	🔊 XML 😤 Recall
251	James Vic		or ayc	200V	NTH4L022N120M3S	Nominal	Done 20	23-03-09 21-40-24	Recall
250	James Victory	discrete	M3	1200V	NTH4L022N120M3S	Nominal		ecall request	Into
249	James Victory	discrete	M3	1200V	NTH4L022N120M3S	Nominal	Done 20		ML XML
247	James Victory	discrete	M3	1200V	NTH4L022N120M3S	Nominal	Done 20	23-03-09 17:30:30	XML 😤 Recall
	H I of 4 IM IM 20 ✓ View 1 - 20 of 66 Image Image								

Onsemi

FAQ: Common Causes of SSPMG Failed Runs

- Very small switching current step (<1A) causing very long simulation times while not really improving the accuracy of the table model.
- Switching currents too close to 0 (<1A): In the EOFF extraction, 1% ID point by IEC standard will yield very small currents which can cause extraction errors due to leakage. For example, when ID=0.1A,the 1%ID will be only 1mA,which could be less than the leakage for some high temperature conditions.
- Switching load voltages are too low. Very low Vload can cause errors in the EON extraction, in which we need to measure 3% VDS by IEC standard.
- Switching load voltage too close to the device breakdown voltage BV can cause issues if there is overshoot of VDS in turn off. If the overshoot is higher than BV, the breakdown current will generate strange behaviors.
- For full switching, users may put very small negative current. For these inputs, there would be only 1 or 2 points for negative current yielding poor results. There should be at least 3 points in the negative current range.
 - Iswitch_min=-1
 Iswitch_max=50
 Iswitch_step=5
 - Iswitch_min=-10 Iswitch_max=50 Iswitch_step=5
- Very large dl/dt could cause convergence issues or very strange behavior.
- In general user should check ranges of parasitics. Unreasonably large inductors, resistors, and capacitors can cause issues. For example, large CLOAD/CO could cause very long turn on/off edge.

Outline of User Guide

Deploying SSPMG PLECS Models in the Elite Power Simulator

Load SSPMG models into Elite Power Simulator

In Device Configuration Tab, user can select to upload SSPMG generated model

Application	Device Selection	3 Device C	onfiguration	Circ	uit Parameters
MOSFET configuration	1				
Device name: NTH4L02	2N120M3S				
Number of parallel devices				Turn-or	gate resistance R _{g-on,ext}
Value *				Value *	•
I				4.5	
Turn-off gate resistance R _{g-o}	if,ext				
Value *					
4.5					-
Loss model type					0.0003
Nominal loss data	lest case conduction loss/worst case switching loss	Worst case conduction loss/best case switching loss	Opload PLECS custom loss mo	odel from onsemi's SSPMG tool	0.0002
Model data file		C C			0.0015 E [.
Select model file	rowse for SSPMG XM	IL file			1,000 800 600 400 200 p 10 20 Jan [A]
Previous Step					-200 -10 0 0.03

Load SSPMG models into PLECS Stand Alone

- First download PLECS models from Elite Power Simulator and follow instructions in "Install.txt" file.
 - To install the onsemi SiC library components and corresponding thermal descriptions (XML files), simply add this directory (containing the "onsemiThermalDescriptions/" folder, "onsemiComponentLibrary_public.plecs" PLECS model, and "info.xml" file) into the list of thermal description search paths in the Thermal tab of the PLECS Preferences window. Click the Refresh button on the left side of the list and click OK to load the onsemi files into PLECS. Then a new entry in the PLECS Library Browser should appear "onsemi Block Library" containing several components that can be dragged into your own circuit models and directly be used with the provided thermal descriptions.
- Create subfolder sspmg here and place SSPMG XML files in this directory. Note folder can be any name.

onsemi > onsemi-thermal-descriptions > onsemiThermalDescriptions > onsemi				
* ^ Name	Date modified			
X SiCDiodes	6/7/2023 5:38 AM			
SiCModules	6/7/2023 5:38 AM			
SiCMOSFETs	6/7/2023 5:38 AM			
sspmg	6/7/2023 5:42 AM			
A DS_Store	5/23/2023 10:13 AM			

Load SSPMG models into PLECS Stand Alone

- Place an onsemi SiC-Si MOSFET or Si IGBT in PLECS schematic.
- Double click MOSFET/IGBT symbol and browse for SSPMG XML file.

Load SSPMG models into PLECS Stand Alone

Questions?

Have questions, comments, or need support with your Self-Service PLECS Model Generator needs? We're here to help! Write us an email at **sspmg@onsemi.com**.

• Self-Service PLECS Model Generator:

www.onsemi.com/self-plecs-generator

• Elite Power Simulator:

www.onsemi.com/elite-power-simulator

Onsemí

Intelligent Technology. Better Future.

Follow Us @onsemi

www.onsemi.com