AS0143AT Register and Variable Reference

AND9802/D

INTRODUCTION

This reference document describes the AS0143AT registers and variables accessible by the host.

How to Access Registers and Variables

The host can control the AS0143AT in three ways:

- By issuing commands to the embedded microcontroller
- By reading and writing firmware variables, which influence the operation of the embedded microcontroller
- By reading and writing hardware registers

In each case, the physical interface to the AS0143AT is the two-wire serial interface, using 16 -bit addresses. The AS0143AT Data Sheet describes the interface protocol of the two-wire serial interface in more detail.

Where possible, the AS0143AT should be controlled though commands and variables since these have been designed to provide correctly-sequenced control of the underlying hardware. In contrast, access to registers is discouraged, since it may cause undesired interaction with microcontroller operations.

Registers

Registers can be accessed by the two-wire serial interface with addresses in the range $0 x 0000-0 \times 7$ FFE. All registers are 16 -bits in size and register access only supports 16 -bit data read and write.

Variables

Variables correspond to locations in the memory space of the embedded microcontroller. Variables can be accessed by
the two-wire serial interface with addresses in the range $0 \times 8000-0 x F F F F$. Variables can be 8,16 or 32 -bit in size and variable access supports access of any 8-bit multiple.
Variables are divided into groups called "Drivers". Each variable is specified by a driver number ($0 . . .31$) and an offset. This document uses the notation VAR(driver_number, offset). Given a driver number and offset, the corresponding address is calculated like this:
Direct-Address $=0 \times 8000 \mid$ (driver_number $\ll 10$) \mid offset
For example, ae_rule_algo is $\operatorname{VAR}(0 x 09,0 x 0004)$. Its direct address is therefore $0 \times 8000|(9 \ll 10)| 4=0 x A 404$.

Host Command Interface

The AS0143AT supports a host command interface. The host issues a 16 -bit command to the device by performing a register write to the command register (SYSCTL 0x40). Each command has bit[15] $=1$. When the embedded microcontroller has completed execution of the command it writes a response to the command register. Each response has $\operatorname{bit}[15]=0$. When the host has issued a command, it can poll the command register waiting for bit[15] $=0$ to see that the command has completed and to read the command response.
The AS0143AT Host Command Interface Specification describes this interface in more detail.

Reserved

Do not change any of the reserved bits.

REGISTER MAP

The tables in this section show which locations are used within the 16 -bit address space. Locations that are not shown in the table are reserved for future use; to maintain compatibility with future designs they should not be read from or written to. Locations that are shown as "Reserved" should not be accessed. The default read values of registers are subject to change.

CAUTION: The effect of writing to reserved registers is undefined and includes the possibility of causing permanent electrical damage to the sensor.

Tables 1 below through 9 list registers and their default values. Tables 10 through 27 list variables and their default values. Register addresses are shown as 16 -bit values in both decimal and hexadecimal. Variable addresses are shown in VAR(driver_id, offset) format, and also as 16-bit hexadecimal values using the Direct-Address conversion shown above. Tables 28 through 36 list registers and their descriptions. Tables 37 through 54 list variables and their descriptions.

REGISTER LISTS AND DEFAULT VALUES

TABLE 1. CPIPE RGB PIPE REGISTERS
1 = read-only, always $1 ; 0=$ read-only, always $0 ; d=$ programmable; ? = read-only, dynamic

Register (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
R0×3332	HILIGHT_COLOR	000000000000 dddd	2 (0×0002)

TABLE 2. CPIPE YUV PIPE REGISTERS
1 = read-only, always $1 ; 0=$ read-only, always $0 ; d=$ programmable; ? = read-only, dynamic

Register (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
R0x3400	HUE1_Q1Q2	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3402	HUE2_Q1Q2	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3404	HUE3_Q1Q2	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3406	HUE4_Q1Q2	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3408	HUE5_Q1Q2	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x340A	HUE6_Q1Q2	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0×340C	HUE7_Q1Q2	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x340E	HUE8_Q1Q2	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0×3410	HUE9_Q1Q2	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3412	HUE10_Q3Q4	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3414	HUE11_Q3Q4	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3416	HUE12_Q3Q4	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0×3418	HUE13_Q3Q4	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

TABLE 2. CPIPE YUV PIPE REGISTERS

1 = read-only, always $1 ; 0$ = read-only, always 0; d = programmable; ? = read-only, dynamic

Register (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
R0x341A	HUE14_Q3Q4	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x341C	HUE15_Q3Q4	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x341E	HUE16_Q3Q4	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3420	HUE17_Q3Q4	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3422	HUE18_Q3Q4	00dd dddd 00dd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0×3424	PCR_COLOR_GAIN1_REGION_1	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0×3426	PCR_COLOR_GAIN1_REGION_10	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0×3428	PCR_COLOR_GAIN1_REGION_19	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x342A	PCR_COLOR_GAIN1_REGION_28	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x342C	PCR_COLOR_GAIN2_REGION_2	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x342E	PCR_COLOR_GAIN2_REGION_11	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3430	PCR_COLOR_GAIN2_REGION_20	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0×3432	PCR_COLOR_GAIN2_REGION_29	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0×3434	PCR_COLOR_GAIN3_REGION_3	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3436	PCR_COLOR_GAIN3_REGION_12	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3438	PCR_COLOR_GAIN3_REGION_21	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x343A	PCR_COLOR_GAIN3_REGION_30	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x343C	PCR_COLOR_GAIN4_REGION_4	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x343E	PCR_COLOR_GAIN4_REGION_13	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3440	PCR_COLOR_GAIN4_REGION_22	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0×3442	PCR_COLOR_GAIN4_REGION_31	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0×3444	PCR_COLOR_GAIN5_REGION_5	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3446	PCR_COLOR_GAIN5_REGION_14	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0×3448	PCR_COLOR_GAIN5_REGION_23	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x344A	PCR_COLOR_GAIN5_REGION_32	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

TABLE 2. CPIPE YUV PIPE REGISTERS
1 = read-only, always $1 ; 0=$ read-only, always $0 ; d=$ programmable; ? = read-only, dynamic

Register (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
R0x344C	PCR_COLOR_GAIN6_REGION_6	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x344E	PCR_COLOR_GAIN6_REGION_15	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3450	PCR_COLOR_GAIN6_REGION_24	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3452	PCR_COLOR_GAIN6_REGION_33	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3454	PCR_COLOR_GAIN7_REGION_7	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3456	PCR_COLOR_GAIN7_REGION_16	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3458	PCR_COLOR_GAIN7_REGION_25	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x345A	PCR_COLOR_GAIN7_REGION_34	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x345C	PCR_COLOR_GAIN8_REGION_8	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x345E	PCR_COLOR_GAIN8_REGION_17	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3460	PCR_COLOR_GAIN8_REGION_26	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3462	PCR_COLOR_GAIN8_REGION_35	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3464	PCR_COLOR_GAIN9_REGION_9	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3466	PCR_COLOR_GAIN9_REGION_18	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3468	PCR_COLOR_GAIN9_REGION_27	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x346A	PCR_COLOR_GAIN9_REGION_36	000000000000 dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

TABLE 3. CPIPE RECONSTRUCT REGISTERS
1 = read-only, always $1 ; 0=$ read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Register (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
R0x3600	P_G1_P0Q0	dddd dddd dddd dddd	16 (0×0010)
R0×3602	P_G1_P0Q1	dddd dddd dddd dddd	0 (0×0000)
R0×3604	P_G1_P0Q2	dddd dddd dddd dddd	0 (0×0000)
R0×3606	P_G1_P0Q3	dddd dddd dddd dddd	0 (0×0000)
R0x3608	P_G1_P0Q4	dddd dddd dddd dddd	0 (0×0000)
R0×360A	P_R_P0Q0	dddd dddd dddd dddd	16 (0×0010)

TABLE 3. CPIPE RECONSTRUCT REGISTERS
1 = read-only, always $1 ; 0$ = read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Register (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
R0x360C	P_R_P0Q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x360E	P_R_P0Q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3610	P_R_P0Q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0×3612	P_R_P0Q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3614	P_B_POQ0	dddd dddd dddd dddd	$\begin{gathered} 16 \\ (0 \times 0010) \end{gathered}$
R0×3616	P_B_P0Q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0×3618	P_B_P0Q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x361A	P_B_P0Q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x361C	P_B_P0Q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x361E	P_G2_P0Q0	dddd dddd dddd dddd	$\begin{gathered} 16 \\ (0 \times 0010) \end{gathered}$
R0x3620	P_G2_P0Q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3622	P_G2_P0Q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3624	P_G2_P0Q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3626	P_G2_P0Q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3628	P_G1_P1Q0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x362A	P_G1_P1Q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x362C	P_G1_P1Q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x362E	P_G1_P1Q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3630	P_G1_P1Q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3632	P_R_P1Q0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0×3634	P_R_P1Q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0×3636	P_R_P1Q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0×3638	P_R_P1Q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x363A	P_R_P1Q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x363C	P_B_P1Q0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

TABLE 3. CPIPE RECONSTRUCT REGISTERS
1 = read-only, always $1 ; 0$ = read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Register (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
R0x363E	P_B_P1Q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3640	P_B_P1Q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3642	P_B_P1Q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0×3644	P_B_P1Q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3646	P_G2_P1Q0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0×3648	P_G2_P1Q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x364A	P_G2_P1Q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0×364C	P_G2_P1Q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x364E	P_G2_P1Q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0×3650	P_G1_P2Q0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3652	P_G1_P2Q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3654	P_G1_P2Q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0×3656	P_G1_P2Q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3658	P_G1_P2Q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x365A	P_R_P2Q0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x365C	P_R_P2Q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x365E	P_R_P2Q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3660	P_R_P2Q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3662	P_R_P2Q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3664	P_B_P2Q0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0×3666	P_B_P2Q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3668	P_B_P2Q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x366A	P_B_P2Q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0×366C	P_B_P2Q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x366E	P_G2_P2Q0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

TABLE 3. CPIPE RECONSTRUCT REGISTERS
1 = read-only, always $1 ; 0$ = read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Register (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
R0x3670	P_G2_P2Q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3672	P_G2_P2Q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3674	P_G2_P2Q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3676	P_G2_P2Q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3678	P_G1_P3Q0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x367A	P_G1_P3Q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x367C	P_G1_P3Q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x367E	P_G1_P3Q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3680	P_G1_P3Q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3682	P_R_P3Q0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3684	P_R_P3Q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3686	P_R_P3Q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3688	P_R_P3Q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x368A	P_R_P3Q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x368C	P_B_P3Q0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x368E	P_B_P3Q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3690	P_B_P3Q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3692	P_B_P3Q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3694	P_B_P3Q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3696	P_G2_P3Q0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0×3698	P_G2_P3Q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x369A	P_G2_P3Q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x369C	P_G2_P3Q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x369E	P_G2_P3Q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x36A0	P_G1_P4Q0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

TABLE 3. CPIPE RECONSTRUCT REGISTERS
1 = read-only, always $1 ; 0$ = read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Register (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
R0x36A2	P_G1_P4Q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x36A4	P_G1_P4Q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x36A6	P_G1_P4Q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x36A8	P_G1_P4Q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x36AA	P_R_P4Q0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x36AC	P_R_P4Q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x36AE	P_R_P4Q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x36B0	P_R_P4Q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x36B2	P_R_P4Q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x36B4	P_B_P4Q0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x36B6	P_B_P4Q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x36B8	P_B_P4Q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x36BA	P_B_P4Q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x36BC	P_B_P4Q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x36BE	P_G2_P4Q0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x36C0	P_G2_P4Q1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x36C2	P_G2_P4Q2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x36C4	P_G2_P4Q3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x36C6	P_G2_P4Q4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x36C8	CENTER_ROW	0000 Oddd dddd dddd	$\begin{gathered} 484 \\ (0 \times 01 E 4) \end{gathered}$
R0x36CA	CENTER_COLUMN	0000 dddd dddd dddd	$\begin{gathered} 644 \\ (0 \times 0284) \end{gathered}$

TABLE 4. CPIPE CONTROL REGISTERS

1 = read-only, always $1 ; 0=$ read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Register (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
R0x0000	CHIP_VERSION_REG	???? ???? ???? ????	$\begin{gathered} 100 \\ (0 \times 0064) \end{gathered}$
R0x0006	USER_DEFINED_DEVICE_ADDRESS_ID	dddd ddd0 dddd ddd0	$\begin{gathered} 47760 \\ \text { (0xBA90) } \end{gathered}$
R0x001A	RESET_AND_MISC_CONTROL	00dd ddd0 0??? Oddd	$\begin{gathered} 15876 \\ (0 \times 3 E 04) \end{gathered}$
R0x0020	MCU_BOOT_OPTIONS	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x0040	COMMAND_REGISTER	dddd dddd dddd dddd	$\begin{gathered} 32768 \\ (0 \times 8000) \end{gathered}$
R0x0058	CUSTOMER_REV	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

TABLE 5. SYSCTL REGISTERS
1 = read-only, always 1; 0 = read-only, always $0 ; \mathrm{d}=$ programmable; ? = read-only, dynamic

Register (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
R0x0000	CHIP_VERSION_REG	???? ???? ???? ????	98 (0×0062)

TABLE 6. CPIPE KERNEL REGISTERS

1 = read-only, always $1 ; 0=$ read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Register (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
R0×3220	DM_EDGE_TH	00000000 dddd dddd	12 $(0 \times 000 C)$
R0×3222	GRB_POS_THRESHOLDS	dddd dddd dddd dddd	4104 (0×1008)
R0×3224	GRB_NEG_THRESHOLDS	dddd dddd dddd dddd	4104 (0×1008)

TABLE 7. XDMA REGISTERS

1 = read-only, always $1 ; 0=$ read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Register (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
R0x0982	ACCESS_CTL_STAT	0000 Oddd dd0? ???d	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x098A	PHYSICAL_ADDRESS_ACCESS	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x098E	LOGICAL_ADDRESS_ACCESS	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x0990	MCU_VARIABLE_DATAO	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x0992	MCU_VARIABLE_DATA1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x0994	MCU_VARIABLE_DATA2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

TABLE 7. XDMA REGISTERS

1 = read-only, always $1 ; 0$ = read-only, always $0 ; \mathrm{d}=$ programmable; ? = read-only, dynamic

Register (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
R0x0996	MCU_VARIABLE_DATA3	dddd dddd dddd dddd	0 (0×0000)
R0x0998	MCU_VARIABLE_DATA4	dddd dddd dddd dddd	0 (0×0000)
R0x099A	MCU_VARIABLE_DATA5	dddd dddd dddd dddd	0 (0×0000)
R0x099C	MCU_VARIABLE_DATA6	dddd dddd dddd dddd	0 (0×0000)
R0x099E	MCU_VARIABLE_DATA7	dddd dddd dddd dddd	0 (0×0000)

Table 8. TX_SS
1 = read-only, always $1 ; 0$ = read-only, always $0 ; \mathrm{d}=$ programmable; ? = read-only, dynamic

Register (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
R0x3C02	TX_CRC_CONTROL	000000000000 00dd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3C04	TX_BLACK_CODE_MSW	00000000 dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3C06	TX_BLACK_CODE_LSW	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3C0C	TX_KS_LINE_LENGTH_PCK	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3C0E	TX_KS_FRAME_LENGTH_LINES	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3C10	TX_KS_LINE_VALID_START_ROW	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3C12	TX_KS_LINE_VALID_START_COL	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3C14	TX_KS_LINE_VALID_STOP_ROW	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3C16	TX_KS_LINE_VALID_STOP_COL	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3C18	TX_KS_FRAME_VALID_START_ROW	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3C1A	TX_KS_FRAME_VALID_START_COL	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3C1C	TX_KS_FRAME_VALID_LAST_ROW	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3C1E	TX_KS_FRAME_VALID_STOP_COL	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3C20	TX_KS_DATA_ENABLE_START_ROW	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3C22	TX_KS_DATA_ENABLE_START_COL	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3C24	TX_KS_DATA_ENABLE_STOP_ROW	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3C26	TX_KS_DATA_ENABLE_STOP_COL	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

Table 8. TX_SS
1 = read-only, always $1 ; 0$ = read-only, always 0; d = programmable; ? = read-only, dynamic

Register (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
R0x3C28	TX_KS_HSYNC_START_ROW	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3C2A	TX_KS_HSYNC_START_COL	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3C2C	TX_KS_HSYNC_STOP_ROW	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3C2E	TX_KS_HSYNC_STOP_COL	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3C30	TX_KS_VSYNC_START_ROW	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3C32	TX_KS_VSYNC_START_COL	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3C34	TX_KS_VSYNC_LAST_ROW	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3C36	TX_KS_VSYNC_STOP_COL	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3C84	TX_FRONTPORCH_BACKPORCH	dddd dddd dddd dddd	$\begin{gathered} 1542 \\ (0 \times 0606) \end{gathered}$
R0x3C98	TX_FRAME_COUNT_OFFSET_LO	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3C9A	TX_FRAME_COUNT_OFFSET_HI	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3C9C	TX_FRAME_COUNT_LO	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3C9E	TX_FRAME_COUNT_HI	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3CA0	TX_LINE_COUNT	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3CA2	TX_BT656_CONTROL	000000000000 dddd	$\begin{gathered} 2 \\ (0 \times 0002) \end{gathered}$
R0x3CB2	TX_XBAR_POS_00	000d dddd 000d dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3CB4	TX_XBAR_POS_01	000d dddd 000d dddd	$\begin{gathered} 257 \\ (0 \times 0101) \end{gathered}$
R0x3CB6	TX_XBAR_POS_02	000d dddd 000d dddd	$\begin{gathered} 514 \\ (0 \times 0202) \end{gathered}$
R0x3CB8	TX_XBAR_POS_03	000d dddd 000d dddd	$\begin{gathered} 771 \\ (0 \times 0303) \end{gathered}$
R0x3CBA	TX_XBAR_POS_04	000d dddd 000d dddd	$\begin{gathered} 1028 \\ (0 \times 0404) \end{gathered}$
R0x3CBC	TX_XBAR_POS_05	000d dddd 000d dddd	$\begin{gathered} 1285 \\ (0 \times 0505) \end{gathered}$
R0x3CBE	TX_XBAR_POS_06	000d dddd 000d dddd	$\begin{gathered} 1542 \\ (0 \times 0606) \end{gathered}$
R0x3CC0	TX_XBAR_POS_07	000d dddd 000d dddd	$\begin{gathered} 1799 \\ (0 \times 0707) \end{gathered}$
R0x3CC2	TX_XBAR_POS_08	000d dddd 000d dddd	$\begin{gathered} 2056 \\ (0 \times 0808) \end{gathered}$
R0x3CC4	TX_XBAR_POS_09	000d dddd 000d dddd	$\begin{gathered} 2313 \\ (0 \times 0909) \end{gathered}$

Table 8. TX_SS
1 = read-only, always 1; 0 = read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Register (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
R0x3CC6	TX_XBAR_POS_10	000d dddd 000d dddd	$\begin{gathered} 2570 \\ (0 \times 0 A O A) \end{gathered}$
R0x3CC8	TX_XBAR_POS_11	000d dddd 000d dddd	$\begin{gathered} 2827 \\ \text { (0x0BOB) } \end{gathered}$
R0x3CCA	TX_XBAR_POS_12	000d dddd 000d dddd	$\begin{gathered} 3084 \\ (0 \times 0 \mathrm{COC}) \end{gathered}$
R0x3CCC	TX_XBAR_POS_13	000d dddd 000d dddd	$\begin{gathered} 3341 \\ \text { (0xODOD) } \end{gathered}$
R0x3CCE	TX_XBAR_POS_14	000d dddd 000d dddd	$\begin{gathered} 3598 \\ (0 \times 0 E 0 E) \end{gathered}$
R0x3CD0	TX_XBAR_POS_15	000d dddd 000d dddd	$\begin{gathered} 3855 \\ (0 \times 0 F O F) \end{gathered}$
R0x3CD2	TX_XBAR_POS_16	000d dddd 000d dddd	$\begin{gathered} 4112 \\ (0 \times 1010) \end{gathered}$
R0x3CD4	TX_XBAR_POS_17	000d dddd 000d dddd	$\begin{gathered} \hline 4369 \\ (0 \times 1111) \end{gathered}$
R0x3CD6	TX_XBAR_POS_18	000d dddd 000d dddd	$\begin{gathered} 4626 \\ (0 \times 1212) \end{gathered}$
R0x3CD8	TX_XBAR_POS_19	000d dddd 000d dddd	$\begin{gathered} 4883 \\ (0 \times 1313) \end{gathered}$
R0x3CDA	TX_XBAR_POS_20	000d dddd 000d dddd	$\begin{gathered} 5140 \\ (0 \times 1414) \end{gathered}$
R0x3CDC	TX_XBAR_POS_21	000d dddd 000d dddd	$\begin{gathered} 5397 \\ (0 \times 1515) \end{gathered}$
R0x3CDE	TX_XBAR_POS_22	000d dddd 000d dddd	$\begin{gathered} 5654 \\ (0 \times 1616) \end{gathered}$
R0x3CE0	TX_XBAR_POS_23	000d dddd 000d dddd	$\begin{gathered} 5911 \\ (0 \times 1717) \end{gathered}$
R0x3CE2	TX_XBAR_POS_24	000d dddd 000d dddd	$\begin{gathered} 6168 \\ (0 \times 1818) \end{gathered}$
R0x3CE4	TX_XBAR_POS_25	000d dddd 000d dddd	$\begin{gathered} 6425 \\ (0 \times 1919) \end{gathered}$
R0x3CE6	TX_XBAR_POS_26	000d dddd 000d dddd	$\begin{gathered} 6682 \\ (0 \times 1 \mathrm{~A} 1 \mathrm{~A}) \end{gathered}$
R0x3CF0	TX_XBAR_METADATA_REMAP_0_1	000d dddd 000d dddd	$\begin{gathered} 3854 \\ \text { (0x0FOE) } \end{gathered}$
R0x3CF2	TX_XBAR_METADATA_REMAP_2_3	000d dddd 000d dddd	$\begin{gathered} \hline 4368 \\ (0 \times 1110) \end{gathered}$
R0x3CF4	TX_XBAR_METADATA_REMAP_4_5	000d dddd 000d dddd	$\begin{gathered} 4882 \\ (0 \times 1312) \end{gathered}$
R0x3CF6	TX_XBAR_METADATA_REMAP_6_7	000d dddd 000d dddd	$\begin{gathered} 5396 \\ (0 \times 1514) \end{gathered}$
R0x3CF8	TX_XBAR_METADATA_REMAP_8_9	000d dddd 000d dddd	$\begin{gathered} 5910 \\ (0 \times 1716) \end{gathered}$

Table 9. OTPM
1 = read-only, always $1 ; 0$ = read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Register (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
R0x3800	OTPM_DATA_0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3802	OTPM_DATA_1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3804	OTPM_DATA_2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3806	OTPM_DATA_3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3808	OTPM_DATA_4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x380A	OTPM_DATA_5	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x380C	OTPM_DATA_6	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x380E	OTPM_DATA_7	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0x3900	OTPM_CONTROL	0000 Oddd 0??d 0??d	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
R0×3902	OTPM_RECORD	dddd dddd dddd dddd	$\begin{gathered} 512 \\ (0 \times 0200) \end{gathered}$

TABLE 10. 0: MONITOR VARIABLES
1 = read-only, always $1 ; 0=$ read-only, always $0 ; d=$ programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0×8000	MON_MAJOR_VERSION	???? ???? ???? ????	2 (0×0002)
0×8002	MON_MINOR_VERSION	???? ???? ???? ????	4 (0×0004)
0×8004	MON_RELEASE_VERSION	???? ???? ???? ????	41219 $(0 \times A 103)$
0×8006	MON_HEARTBEAT	???? ???? ???? ????	0 (0×0000)
0×8012	MON_SYSTEM_USE_CASE	???? ????	0 (0×00)
0×8014	MON_WATCHDOG_COUNT	???? ???? ???? ????	0 (0×0000)
0×8016	MON_WATCHDOG_STATUS	???? ???d dddd dddd	0 (0×0000)
$0 \times 805 A$	MON_FLASH_CONFIG_VERSION_ID	???? ????	0 (0×00)

TABLE 11. 1: SEQUENCER VARIABLES

1 = read-only, always $1 ; 0$ = read-only, always 0; d = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0×8406	SEQ_ERROR_CODE	???? ????	0
(0×00)			

TABLE 12. 3: NETWORK CONFIGURATION
1 = read-only, always 1; 0 = read-only, always 0; d = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0x8C00	NET_CFG_PHY_FLAGS	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0x8C02	NET_CFG_PHY_TYPE	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0x8C03	NET_CFG_PHY_ADDRESS	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0x8C04	NET_CFG_PHY_MDIO_FREQ	dddd dddd dddd dddd dddd dddd dddd dddd	$\begin{gathered} 2500000 \\ (0 \times 002625 \mathrm{~A} 0) \end{gathered}$
0x8C08	NET_CFG_MAC_FLAGS	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0x8C09	NET_CFG_MAC_MODE	dddd dddd	$\begin{gathered} 1 \\ (0 \times 01) \end{gathered}$
0x8C0A	NET_CFG_MAC_DEFAULT_ADDRESS_0	dddd dddd dddd dddd	$\begin{gathered} 512 \\ (0 \times 0200) \end{gathered}$
0x8C0C	NET_CFG_MAC_DEFAULT_ADDRESS_2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0x8C0E	NET_CFG_MAC_DEFAULT_ADDRESS_4	dddd dddd dddd dddd	$\begin{gathered} 1 \\ (0 \times 0001) \end{gathered}$
0x8C10	NET_CFG_MAC_ERROR_DISABLES	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0x8C14	NET_CFG_NET_FLAGS	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0x8C16	NET_CFG_NET_CLOCK_FREQ	dddd dddd	$\begin{gathered} 25 \\ (0 \times 19) \end{gathered}$
$0 \times 8 \mathrm{C} 17$	NET_CFG_NET_TX_QUEUE_SIZE	dddd dddd	$\begin{gathered} 8 \\ (0 \times 08) \end{gathered}$
0x8C18	NET_CFG_NET_UDP_CMD_PORT	dddd dddd dddd dddd	$\begin{gathered} 50001 \\ (0 \times C 351) \end{gathered}$
0x8C1C	NET_CFG_IFC0_FEATURES	dddd dddd dddd dddd dddd dddd dddd dddd	$\begin{gathered} 73751 \\ (0 \times 00012017) \end{gathered}$
0x8C28	NET_CFG_IFC0_IPV4_ADDRESS	dddd dddd dddd dddd dddd dddd dddd dddd	$\begin{gathered} 3232235781 \\ (0 \times C 0 A 80105) \end{gathered}$
0x8C2C	NET_CFG_IFCO_IPV4_NETMASK	dddd dddd dddd dddd dddd dddd dddd dddd	$\begin{gathered} 4294967040 \\ (0 x F F F F F F 00) \end{gathered}$
0x8C88	NET_CFG_VID_FLAGS	dddd dddd dddd dddd dddd dddd dddd dddd	$\begin{gathered} 65536 \\ (0 \times 00010000) \end{gathered}$
0x8C8C	NET_CFG_VID_DEST_MAC_ADDRESS_0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0x8C8E	NET_CFG_VID_DEST_MAC_ADDRESS_2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0x8C90	NET_CFG_VID_DEST_MAC_ADDRESS_4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0x8C92	NET_CFG_VID_SRC_MAC_ADDRESS_0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0x8C94	NET_CFG_VID_SRC_MAC_ADDRESS_2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0x8C96	NET_CFG_VID_SRC_MAC_ADDRESS_4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0x8C98	NET_CFG_VID_VLAN_ID	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

TABLE 12. 3: NETWORK CONFIGURATION
1 = read-only, always 1; 0 = read-only, always 0; d = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0x8C9A	NET_CFG_VID_ETHERTYPE	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0x8C9C	NET_CFG_VID_STREAM_ID_0	dddd dddd dddd dddd	$\begin{gathered} 291 \\ (0 \times 0123) \end{gathered}$
0x8C9E	NET_CFG_VID_STREAM_ID_1	dddd dddd dddd dddd	$\begin{gathered} 17767 \\ (0 \times 4567) \end{gathered}$
0x8CA0	NET_CFG_VID_STREAM_ID_2	dddd dddd dddd dddd	$\begin{gathered} 35243 \\ (0 \times 89 A B) \end{gathered}$
0x8CA2	NET_CFG_VID_STREAM_ID_3	dddd dddd dddd dddd	$\begin{gathered} 52719 \\ (0 x C D E F) \end{gathered}$
0x8CA4	NET_CFG_VID_SOURCE_IP_0	dddd dddd dddd dddd dddd dddd dddd dddd	$\begin{gathered} 3232235781 \\ (0 \times C 0 A 80105) \end{gathered}$
0x8CA8	NET_CFG_VID_SOURCE_IP_1	dddd dddd dddd dddd dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0x8CAC	NET_CFG_VID_SOURCE_IP_2	dddd dddd dddd dddd dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0x8CB0	NET_CFG_VID_SOURCE_IP_3	dddd dddd dddd dddd dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0x8CB4	NET_CFG_VID_DESTINATION_IP_0	dddd dddd dddd dddd dddd dddd dddd dddd	$\begin{gathered} 4294967295 \\ (0 x F F F F F F F F) \end{gathered}$
0x8CB8	NET_CFG_VID_DESTINATION_IP_1	dddd dddd dddd dddd dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0x8CBC	NET_CFG_VID_DESTINATION_IP_2	dddd dddd dddd dddd dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0x8CC0	NET_CFG_VID_DESTINATION_IP_3	dddd dddd dddd dddd dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0x8CC4	NET_CFG_VID_SOURCE_PORT	dddd dddd dddd dddd	$\begin{gathered} 5004 \\ (0 \times 138 \mathrm{C}) \end{gathered}$
0x8CC6	NET_CFG_VID_DESTINATION_PORT	dddd dddd dddd dddd	$\begin{gathered} 5004 \\ (0 \times 138 \mathrm{C}) \end{gathered}$
0x8CC8	NET_CFG_VID_PAYLOAD_TYPE	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$

Table 13. 9: AE_RULE VARIABLES
1 = read-only, always 1; $0=$ read-only, always $0 ; d=$ programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
$0 \times A 404$	AE_RULE_ALGO	dddd dddd dddd dddd	3 $(0 x 0003)$
$0 \times A 408$	AE_RULE_AVG_LOG_Y_FROM_STATS	???? ???? ???? ????	0
$(0 x 0000)$			

Table 13. 9: AE_RULE VARIABLES
1 = read-only, always $1 ; 0$ = read-only, always 0; d = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xA40E	AE_RULE_AE_WEIGHT_TABLE_0_4	dddd dddd	$\begin{gathered} 25 \\ (0 \times 19) \end{gathered}$
0xA40F	AE_RULE_AE_WEIGHT_TABLE_1_0	dddd dddd	$\begin{gathered} 25 \\ (0 \times 19) \end{gathered}$
$0 \times A 410$	AE_RULE_AE_WEIGHT_TABLE_1_1	dddd dddd	$\begin{gathered} 75 \\ (0 \times 4 B) \end{gathered}$
0xA411	AE_RULE_AE_WEIGHT_TABLE_1_2	dddd dddd	$\begin{gathered} 75 \\ (0 \times 4 B) \end{gathered}$
$0 \times A 412$	AE_RULE_AE_WEIGHT_TABLE_1_3	dddd dddd	$\begin{gathered} 75 \\ (0 \times 4 B) \end{gathered}$
0xA413	AE_RULE_AE_WEIGHT_TABLE_1_4	dddd dddd	$\begin{gathered} 25 \\ (0 \times 19) \end{gathered}$
$0 \times A 414$	AE_RULE_AE_WEIGHT_TABLE_2_0	dddd dddd	$\begin{gathered} 25 \\ (0 \times 19) \end{gathered}$
0xA415	AE_RULE_AE_WEIGHT_TABLE_2_1	dddd dddd	$\begin{gathered} 75 \\ (0 \times 4 B) \end{gathered}$
0xA416	AE_RULE_AE_WEIGHT_TABLE_2_2	dddd dddd	$\begin{gathered} 100 \\ (0 \times 64) \end{gathered}$
0xA417	AE_RULE_AE_WEIGHT_TABLE_2_3	dddd dddd	$\begin{gathered} 75 \\ (0 \times 4 B) \end{gathered}$
0xA418	AE_RULE_AE_WEIGHT_TABLE_2_4	dddd dddd	$\begin{gathered} 25 \\ (0 \times 19) \end{gathered}$
0xA419	AE_RULE_AE_WEIGHT_TABLE_3_0	dddd dddd	$\begin{gathered} 25 \\ (0 \times 19) \end{gathered}$
0xA41A	AE_RULE_AE_WEIGHT_TABLE_3_1	dddd dddd	$\begin{gathered} 75 \\ (0 \times 4 B) \end{gathered}$
0xA41B	AE_RULE_AE_WEIGHT_TABLE_3_2	dddd dddd	$\begin{gathered} 75 \\ (0 \times 4 B) \end{gathered}$
0xA41C	AE_RULE_AE_WEIGHT_TABLE_3_3	dddd dddd	$\begin{gathered} 75 \\ (0 \times 4 B) \end{gathered}$
0xA41D	AE_RULE_AE_WEIGHT_TABLE_3_4	dddd dddd	$\begin{gathered} 25 \\ (0 \times 19) \end{gathered}$
0xA41E	AE_RULE_AE_WEIGHT_TABLE_4_0	dddd dddd	$\begin{gathered} 25 \\ (0 \times 19) \end{gathered}$
0xA41F	AE_RULE_AE_WEIGHT_TABLE_4_1	dddd dddd	$\begin{gathered} 25 \\ (0 \times 19) \end{gathered}$
0xA420	AE_RULE_AE_WEIGHT_TABLE_4_2	dddd dddd	$\begin{gathered} 25 \\ (0 \times 19) \end{gathered}$
0xA421	AE_RULE_AE_WEIGHT_TABLE_4_3	dddd dddd	$\begin{gathered} 25 \\ (0 \times 19) \end{gathered}$
0xA422	AE_RULE_AE_WEIGHT_TABLE_4_4	dddd dddd	$\begin{gathered} 25 \\ (0 \times 19) \end{gathered}$

Table 14. 10: AE_Track Variables
1 = read-only, always 1; $0=$ read-only, always $0 ; \mathrm{d}=$ programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xA800	AE_TRACK_STATUS	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xA802	AE_TRACK_MODE	dddd dddd dddd dddd	$\begin{gathered} 28 \\ (0 \times 001 \mathrm{C}) \end{gathered}$
0xA804	AE_TRACK_ALGO	dddd dddd dddd dddd	$\begin{gathered} 63 \\ (0 \times 003 F) \end{gathered}$
0xA806	AE_TRACK_AVG_LOG_Y_TARGET	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xA810	AE_TRACK_TRACK_EXP_SPEED	dddd dddd dddd dddd	$\begin{gathered} 128 \\ (0 \times 0080) \end{gathered}$
0×4812	AE_TRACK_ADAPT_THRESH	dddd dddd	$\begin{gathered} 4 \\ (0 \times 04) \end{gathered}$
0×4813	AE_TRACK_DAMP_MAX	dddd dddd	$\begin{gathered} 3 \\ (0 \times 03) \end{gathered}$
0xA814	AE_TRACK_DAMP_SLOPE	dddd dddd	$\begin{gathered} 3 \\ (0 \times 03) \end{gathered}$
0xA815	AE_TRACK_DAMP_MIN	dddd dddd	$\begin{gathered} 28 \\ (0 \times 1 C) \end{gathered}$
0xA81C	AE_TRACK_MIN_GAIN_GATE	dddd dddd	$\begin{gathered} 134 \\ (0 \times 86) \end{gathered}$
0xA81D	AE_TRACK_TRACK_MIN_GAIN_SPEED	dddd dddd	$\begin{gathered} 8 \\ (0 \times 08) \end{gathered}$
0xA826	AE_TRACK_HIST_VALLEY_COUNT	???? ???? ???? ????	$\begin{gathered} 10 \\ (0 \times 000 \mathrm{~A}) \end{gathered}$
0xA82C	AE_TRACK_LOG_Y_TARGET_0	dddd dddd dddd dddd	$\begin{gathered} 1984 \\ (0 \times 07 \mathrm{C} 0) \end{gathered}$
0xA82E	AE_TRACK_LOG_Y_TARGET_1	dddd dddd dddd dddd	$\begin{gathered} 2079 \\ (0 \times 081 \mathrm{~F}) \end{gathered}$
0xA830	AE_TRACK_LOG_Y_TARGET_2	dddd dddd dddd dddd	$\begin{gathered} 2176 \\ (0 \times 0880) \end{gathered}$
0xA832	AE_TRACK_LOG_Y_TARGET_3	dddd dddd dddd dddd	$\begin{gathered} 2257 \\ (0 \times 08 D 1) \end{gathered}$
0xA834	AE_TRACK_LOG_Y_TARGET_4	dddd dddd dddd dddd	$\begin{gathered} 2337 \\ (0 \times 0921) \end{gathered}$
0xA836	AE_TRACK_LOG_Y_TARGET_5	dddd dddd dddd dddd	$\begin{gathered} 2478 \\ (0 \times 09 \mathrm{AE}) \end{gathered}$
0xA838	AE_TRACK_LOG_Y_TARGET_6	dddd dddd dddd dddd	$\begin{gathered} 2478 \\ (0 \times 09 \mathrm{AE}) \end{gathered}$
0xA83A	AE_TRACK_LOG_Y_TARGET_7	dddd dddd dddd dddd	$\begin{gathered} 2478 \\ (0 \times 09 \mathrm{AE}) \end{gathered}$

TABLE 15. 11: AWB VARIABLES

1 = read-only, always $1 ; 0=$ read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
$0 \times A C 00$	AWB_STATUS	???? ????????? ????	(0×0000)
$0 \times A C 02$	AWB_MODE	dddd dddd dddd dddd	456 $(0 \times 01 C 8)$

TABLE 15. 11: AWB VARIABLES
1 = read-only, always $1 ; 0$ = read-only, always $0 ; \mathrm{d}=$ programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xAC06	AWB_R_RATIO_LOWER	dddd dddd	$\begin{gathered} 99 \\ (0 \times 63) \end{gathered}$
0xAC07	AWB_R_RATIO_UPPER	dddd dddd	$\begin{gathered} 101 \\ (0 \times 65) \end{gathered}$
0xAC08	AWB_B_RATIO_LOWER	dddd dddd	$\begin{gathered} 99 \\ (0 \times 63) \end{gathered}$
0xAC09	AWB_B_RATIO_UPPER	dddd dddd	$\begin{gathered} 101 \\ (0 \times 65) \end{gathered}$
0xACOA	AWB_R_SCENE_RATIO_LOWER	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xAC0B	AWB_R_SCENE_RATIO_UPPER	dddd dddd	$\begin{gathered} 255 \\ (0 x F F) \end{gathered}$
OxACOC	AWB_B_SCENE_RATIO_LOWER	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
OxACOD	AWB_B_SCENE_RATIO_UPPER	dddd dddd	$\begin{gathered} 255 \\ (0 x F F) \end{gathered}$
0xAC0E	AWB_R_RATIO_PRE_AWB	???? ????	$\begin{gathered} 100 \\ (0 \times 64) \end{gathered}$
0xAC0F	AWB_B_RATIO_PRE_AWB	???? ????	$\begin{gathered} 100 \\ (0 \times 64) \end{gathered}$
0xAC10	AWB_R_RATIO_POST_AWB	???? ????	$\begin{gathered} 100 \\ (0 \times 64) \end{gathered}$
0xAC11	AWB_B_RATIO_POST_AWB	???? ????	$\begin{gathered} 100 \\ (0 \times 64) \end{gathered}$
0xAC12	AWB_R_GAIN	???? ???? ???? ????	$\begin{gathered} 128 \\ (0 \times 0080) \end{gathered}$
0xAC14	AWB_B_GAIN	???? ???? ???? ????	$\begin{gathered} 128 \\ (0 \times 0080) \end{gathered}$
0xAC16	AWB_PRE_AWB_RATIOS_TRACKING_SPEED	dddd dddd	$\begin{gathered} 10 \\ (0 \times 0 \mathrm{~A}) \end{gathered}$
0xAC24	AWB_IR_CONTROL_BRIGHTNESS_TH	dddd dddd dddd dddd	$\begin{gathered} 2304 \\ (0 \times 0900) \end{gathered}$
0xAC28	AWB_IR_CONTROL_THRESHOLD_1	dddd dddd dddd dddd	$\begin{gathered} 205 \\ (0 \times 00 C D) \end{gathered}$
0xAC2A	AWB_IR_CONTROL_THRESHOLD_1_GATE	dddd dddd dddd dddd	$\begin{gathered} 4 \\ (0 \times 0004) \end{gathered}$
0xAC2C	AWB_IR_CONTROL_SLOPE_K1	dddd dddd dddd dddd	$\begin{gathered} 65344 \\ (0 x F F 40) \end{gathered}$
0xAC2E	AWB_IR_CONTROL_THRESHOLD_2	dddd dddd dddd dddd	$\begin{gathered} 13 \\ (0 x 000 \mathrm{D}) \end{gathered}$
0xAC30	AWB_IR_CONTROL_THRESHOLD_2_GATE	dddd dddd dddd dddd	$\begin{gathered} 4 \\ (0 \times 0004) \end{gathered}$
0xAC32	AWB_IR_CONTROL_SLOPE_K2	dddd dddd dddd dddd	$\begin{gathered} 164 \\ (0 \times 00 \mathrm{~A} 4) \end{gathered}$
0xAC3A	AWB_DGAIN_SENSOR_MIN	dddd dddd dddd dddd	$\begin{gathered} 128 \\ (0 \times 0080) \end{gathered}$

TABLE 16. 12: BLACKLEVEL VARIABLES
1 = read-only, always $1 ; 0$ = read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
$0 \times B 004$	BLACKLEVEL_ALGO	dddd dddd dddd dddd	4 $(0 x 0004)$
0xB00C	BLACKLEVEL_MAX_BLACK_LEVEL	dddd dddd	0 $(0 x 00)$
0xB00D	BLACKLEVEL_BLACK_LEVEL_DAMPING	dddd dddd	6 $(0 x 06)$

TABLE 17. 13: CCM VARIABLES
1 = read-only, always $1 ; 0=$ read-only, always $0 ; d=$ programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xB404	CCM_ALGO	dddd dddd dddd dddd	$\begin{gathered} 48 \\ (0 \times 0030) \end{gathered}$
0xB406	CCM_0	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB408	CCM_1	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB40A	CCM_2	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB40C	CCM_3	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB40E	CCM_4	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB410	CCM_5	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB412	CCM_6	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB414	CCM_7	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB416	CCM_8	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

TABLE 18. 14: STAT VARIABLES

1 = read-only, always $1 ; 0=$ read-only, always $0 ; d=$ programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xB804	STAT_AVERAGE_LUMA	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0xB808	STAT_LOG_AVERAGE_LUMA	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB80A	STAT_AVERAGE_LOGY	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB80C	STAT_ALTM_L_MIN	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0xB810	STAT_ALTM_L_MAX	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0xB814	STAT_AWB_PIXELS_IN_STAT	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$

TABLE 18. 14: STAT VARIABLES
1 = read-only, always $1 ; 0=$ read-only, always $0 ; d=$ programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xB818	STAT_AWB_NORM_SUM_WEIGHTED_RED	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB81A	STAT_AWB_NORM_SUM_WEIGHTED_GREEN	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$0 \times B 81 \mathrm{C}$	STAT_AWB_NORM_SUM_WEIGHTED_BLUE	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB820	STAT_CLIP_TOTAL_PIXELS_WIN	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0xB824	STAT_CLIP_NUM_LOWLIGHTS	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB858	STAT_AE_ZONE_SIZE_CELLS	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB85A	STAT_AE_HISTOGRAM_SIZE	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB85C	STAT_AE_ZONE_AVGLUMA_0_0	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0xB860	STAT_AE_ZONE_AVGLUMA_0_1	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0xB864	STAT_AE_ZONE_AVGLUMA_0_2	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0xB868	STAT_AE_ZONE_AVGLUMA_0_3	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0xB86C	STAT_AE_ZONE_AVGLUMA_0_4	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0xB870	STAT_AE_ZONE_AVGLUMA_1_0	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
$0 \times B 874$	STAT_AE_ZONE_AVGLUMA_1_1	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0xB878	STAT_AE_ZONE_AVGLUMA_1_2	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0xB87C	STAT_AE_ZONE_AVGLUMA_1_3	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0xB880	STAT_AE_ZONE_AVGLUMA_1_4	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0xB884	STAT_AE_ZONE_AVGLUMA_2_0	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0xB888	STAT_AE_ZONE_AVGLUMA_2_1	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
$0 x B 88 \mathrm{C}$	STAT_AE_ZONE_AVGLUMA_2_2	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0xB890	STAT_AE_ZONE_AVGLUMA_2_3	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 0000000) \end{gathered}$
0xB894	STAT_AE_ZONE_AVGLUMA_2_4	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0xB898	STAT_AE_ZONE_AVGLUMA_3_0	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0xB89C	STAT_AE_ZONE_AVGLUMA_3_1	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0xB8A0	STAT_AE_ZONE_AVGLUMA_3_2	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$

TABLE 18. 14: STAT VARIABLES
1 = read-only, always 1; $0=$ read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xB8A4	STAT_AE_ZONE_AVGLUMA_3_3	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ????? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0xB8A8	STAT_AE_ZONE_AVGLUMA_3_4	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0xB8AC	STAT_AE_ZONE_AVGLUMA_4_0	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ????? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0xB8B0	STAT_AE_ZONE_AVGLUMA_4_1	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0xB8B4	STAT_AE_ZONE_AVGLUMA_4_2	$\begin{aligned} & \text { ???? ???? ???? ???? ????? } \\ & \text { ???? ???? ????? } \end{aligned}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0xB8B8	STAT_AE_ZONE_AVGLUMA_4_3	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0xB8BC	STAT_AE_ZONE_AVGLUMA_4_4	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0xB8C0	STAT_AE_ZONE_AVGLOGY_0_0	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB8C2	STAT_AE_ZONE_AVGLOGY_0_1	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB8C4	STAT_AE_ZONE_AVGLOGY_0_2	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB8C6	STAT_AE_ZONE_AVGLOGY_0_3	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB8C8	STAT_AE_ZONE_AVGLOGY_0_4	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB8CA	STAT_AE_ZONE_AVGLOGY_1_0	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB8CC	STAT_AE_ZONE_AVGLOGY_1_1	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB8CE	STAT_AE_ZONE_AVGLOGY_1_2	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB8D0	STAT_AE_ZONE_AVGLOGY_1_3	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB8D2	STAT_AE_ZONE_AVGLOGY_1_4	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB8D4	STAT_AE_ZONE_AVGLOGY_2_0	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB8D6	STAT_AE_ZONE_AVGLOGY_2_1	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB8D8	STAT_AE_ZONE_AVGLOGY_2_2	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB8DA	STAT_AE_ZONE_AVGLOGY_2_3	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB8DC	STAT_AE_ZONE_AVGLOGY_2_4	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB8DE	STAT_AE_ZONE_AVGLOGY_3_0	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB8E0	STAT_AE_ZONE_AVGLOGY_3_1	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB8E2	STAT_AE_ZONE_AVGLOGY_3_2	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

TABLE 18. 14: STAT VARIABLES
1 = read-only, always 1; $0=$ read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xB8E4	STAT_AE_ZONE_AVGLOGY_3_3	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB8E6	STAT_AE_ZONE_AVGLOGY_3_4	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB8E8	STAT_AE_ZONE_AVGLOGY_4_0	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB8EA	STAT_AE_ZONE_AVGLOGY_4_1	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB8EC	STAT_AE_ZONE_AVGLOGY_4_2	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB8EE	STAT_AE_ZONE_AVGLOGY_4_3	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB8F0	STAT_AE_ZONE_AVGLOGY_4_4	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB8F2	STAT_AE_ZONE_WEIGHT_0_0	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB8F4	STAT_AE_ZONE_WEIGHT_0_1	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB8F6	STAT_AE_ZONE_WEIGHT_0_2	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB8F8	STAT_AE_ZONE_WEIGHT_0_3	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB8FA	STAT_AE_ZONE_WEIGHT_0_4	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB8FC	STAT_AE_ZONE_WEIGHT_1_0	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB8FE	STAT_AE_ZONE_WEIGHT_1_1	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB900	STAT_AE_ZONE_WEIGHT_1_2	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB902	STAT_AE_ZONE_WEIGHT_1_3	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB904	STAT_AE_ZONE_WEIGHT_1_4	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB906	STAT_AE_ZONE_WEIGHT_2_0	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB908	STAT_AE_ZONE_WEIGHT_2_1	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB90A	STAT_AE_ZONE_WEIGHT_2_2	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB90C	STAT_AE_ZONE_WEIGHT_2_3	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB90E	STAT_AE_ZONE_WEIGHT_2_4	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB910	STAT_AE_ZONE_WEIGHT_3_0	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$0 \times B 912$	STAT_AE_ZONE_WEIGHT_3_1	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB914	STAT_AE_ZONE_WEIGHT_3_2	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

AND9802/D

TABLE 18. 14: STAT VARIABLES
1 = read-only, always 1; $0=$ read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xB916	STAT_AE_ZONE_WEIGHT_3_3	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB918	STAT_AE_ZONE_WEIGHT_3_4	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB91A	STAT_AE_ZONE_WEIGHT_4_0	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB91C	STAT_AE_ZONE_WEIGHT_4_1	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB91E	STAT_AE_ZONE_WEIGHT_4_2	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB920	STAT_AE_ZONE_WEIGHT_4_3	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB922	STAT_AE_ZONE_WEIGHT_4_4	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB924	STAT_AE_HISTOGRAM_0	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB926	STAT_AE_HISTOGRAM_1	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB928	STAT_AE_HISTOGRAM_2	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB92A	STAT_AE_HISTOGRAM_3	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB92C	STAT_AE_HISTOGRAM_4	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB92E	STAT_AE_HISTOGRAM_5	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB930	STAT_AE_HISTOGRAM_6	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB932	STAT_AE_HISTOGRAM_7	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB934	STAT_AE_HISTOGRAM_8	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB936	STAT_AE_HISTOGRAM_9	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB938	STAT_AE_HISTOGRAM_10	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB93A	STAT_AE_HISTOGRAM_11	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB93C	STAT_AE_HISTOGRAM_12	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB93E	STAT_AE_HISTOGRAM_13	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB940	STAT_AE_HISTOGRAM_14	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB942	STAT_AE_HISTOGRAM_15	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB944	STAT_AE_HISTOGRAM_16	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB946	STAT_AE_HISTOGRAM_17	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

TABLE 18. 14: STAT VARIABLES
1 = read-only, always $1 ; 0=$ read-only, always $0 ; \mathrm{d}=$ programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xB948	STAT_AE_HISTOGRAM_18	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB94A	STAT_AE_HISTOGRAM_19	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB94C	STAT_AE_HISTOGRAM_20	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB94E	STAT_AE_HISTOGRAM_21	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB950	STAT_AE_HISTOGRAM_22	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB952	STAT_AE_HISTOGRAM_23	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB954	STAT_AE_HISTOGRAM_24	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB956	STAT_AE_HISTOGRAM_25	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB958	STAT_AE_HISTOGRAM_26	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB95A	STAT_AE_HISTOGRAM_27	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB95C	STAT_AE_HISTOGRAM_28	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB95E	STAT_AE_HISTOGRAM_29	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB960	STAT_AE_HISTOGRAM_30	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB962	STAT_AE_HISTOGRAM_31	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB964	STAT_AE_HISTOGRAM_32	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB966	STAT_AE_HISTOGRAM_33	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB968	STAT_AE_HISTOGRAM_34	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB96A	STAT_AE_HISTOGRAM_35	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB96C	STAT_AE_HISTOGRAM_36	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB96E	STAT_AE_HISTOGRAM_37	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB970	STAT_AE_HISTOGRAM_38	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB972	STAT_AE_HISTOGRAM_39	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB974	STAT_AE_HISTOGRAM_40	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB976	STAT_AE_HISTOGRAM_41	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB978	STAT_AE_HISTOGRAM_42	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

TABLE 18. 14: STAT VARIABLES
1 = read-only, always $1 ; 0=$ read-only, always $0 ; \mathrm{d}=$ programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xB97A	STAT_AE_HISTOGRAM_43	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB97C	STAT_AE_HISTOGRAM_44	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB97E	STAT_AE_HISTOGRAM_45	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB980	STAT_AE_HISTOGRAM_46	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB982	STAT_AE_HISTOGRAM_47	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB984	STAT_AE_HISTOGRAM_48	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB986	STAT_AE_HISTOGRAM_49	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB988	STAT_AE_HISTOGRAM_50	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB98A	STAT_AE_HISTOGRAM_51	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB98C	STAT_AE_HISTOGRAM_52	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB98E	STAT_AE_HISTOGRAM_53	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB990	STAT_AE_HISTOGRAM_54	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB992	STAT_AE_HISTOGRAM_55	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB994	STAT_AE_HISTOGRAM_56	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB996	STAT_AE_HISTOGRAM_57	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB998	STAT_AE_HISTOGRAM_58	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB99A	STAT_AE_HISTOGRAM_59	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB99C	STAT_AE_HISTOGRAM_60	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB99E	STAT_AE_HISTOGRAM_61	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9A0	STAT_AE_HISTOGRAM_62	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9A2	STAT_AE_HISTOGRAM_63	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9A4	STAT_AE_HISTOGRAM_64	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9A6	STAT_AE_HISTOGRAM_65	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9A8	STAT_AE_HISTOGRAM_66	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9AA	STAT_AE_HISTOGRAM_67	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

TABLE 18. 14: STAT VARIABLES
1 = read-only, always $1 ; 0=$ read-only, always $0 ; \mathrm{d}=$ programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xB9AC	STAT_AE_HISTOGRAM_68	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9AE	STAT_AE_HISTOGRAM_69	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9B0	STAT_AE_HISTOGRAM_70	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9B2	STAT_AE_HISTOGRAM_71	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9B4	STAT_AE_HISTOGRAM_72	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9B6	STAT_AE_HISTOGRAM_73	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9B8	STAT_AE_HISTOGRAM_74	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9BA	STAT_AE_HISTOGRAM_75	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9BC	STAT_AE_HISTOGRAM_76	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9BE	STAT_AE_HISTOGRAM_77	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9C0	STAT_AE_HISTOGRAM_78	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9C2	STAT_AE_HISTOGRAM_79	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9C4	STAT_AE_HISTOGRAM_80	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9C6	STAT_AE_HISTOGRAM_81	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9C8	STAT_AE_HISTOGRAM_82	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9CA	STAT_AE_HISTOGRAM_83	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9CC	STAT_AE_HISTOGRAM_84	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9CE	STAT_AE_HISTOGRAM_85	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9D0	STAT_AE_HISTOGRAM_86	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9D2	STAT_AE_HISTOGRAM_87	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9D4	STAT_AE_HISTOGRAM_88	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9D6	STAT_AE_HISTOGRAM_89	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9D8	STAT_AE_HISTOGRAM_90	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9DA	STAT_AE_HISTOGRAM_91	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9DC	STAT_AE_HISTOGRAM_92	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

TABLE 18. 14: STAT VARIABLES
1 = read-only, always $1 ; 0=$ read-only, always $0 ; d=$ programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xB9DE	STAT_AE_HISTOGRAM_93	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9E0	STAT_AE_HISTOGRAM_94	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9E2	STAT_AE_HISTOGRAM_95	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9E4	STAT_AE_HISTOGRAM_96	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9E6	STAT_AE_HISTOGRAM_97	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9E8	STAT_AE_HISTOGRAM_98	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9EA	STAT_AE_HISTOGRAM_99	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9EC	STAT_AE_HISTOGRAM_100	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9EE	STAT_AE_HISTOGRAM_101	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9F0	STAT_AE_HISTOGRAM_102	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9F2	STAT_AE_HISTOGRAM_103	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9F4	STAT_AE_HISTOGRAM_104	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9F6	STAT_AE_HISTOGRAM_105	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9F8	STAT_AE_HISTOGRAM_106	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9FA	STAT_AE_HISTOGRAM_107	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9FC	STAT_AE_HISTOGRAM_108	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xB9FE	STAT_AE_HISTOGRAM_109	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA00	STAT_AE_HISTOGRAM_110	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA02	STAT_AE_HISTOGRAM_111	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA04	STAT_AE_HISTOGRAM_112	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA06	STAT_AE_HISTOGRAM_113	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA08	STAT_AE_HISTOGRAM_114	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBAOA	STAT_AE_HISTOGRAM_115	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBAOC	STAT_AE_HISTOGRAM_116	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBAOE	STAT_AE_HISTOGRAM_117	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

TABLE 18. 14: STAT VARIABLES
1 = read-only, always $1 ; 0=$ read-only, always $0 ; d=$ programmable; ? = read-only, dynamic

Variable (Hex)		Data Format (Binary)	Default Value Dec (Hex)
0xBA10	STAT_AE_HISTOGRAM_118	???? ???? ???? ????	0 (0×0000)
0xBA12	STAT_AE_HISTOGRAM_119	???? ???? ???? ????	0 (0×0000)
0xBA14	STAT_AE_HISTOGRAM_120	???? ???? ???? ????	0 (0×0000)
0xBA16	STAT_AE_HISTOGRAM_121	?	STAT_AE_HISTOGRAM_122

TABLE 18. 14: STAT VARIABLES
1 = read-only, always $1 ; 0=$ read-only, always $0 ; \mathrm{d}=$ programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xBA42	STAT_AE_HISTOGRAM_143	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA44	STAT_AE_HISTOGRAM_144	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA46	STAT_AE_HISTOGRAM_145	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA48	STAT_AE_HISTOGRAM_146	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA4A	STAT_AE_HISTOGRAM_147	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA4C	STAT_AE_HISTOGRAM_148	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA4E	STAT_AE_HISTOGRAM_149	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA50	STAT_AE_HISTOGRAM_150	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA52	STAT_AE_HISTOGRAM_151	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA54	STAT_AE_HISTOGRAM_152	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA56	STAT_AE_HISTOGRAM_153	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA58	STAT_AE_HISTOGRAM_154	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA5A	STAT_AE_HISTOGRAM_155	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA5C	STAT_AE_HISTOGRAM_156	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA5E	STAT_AE_HISTOGRAM_157	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA60	STAT_AE_HISTOGRAM_158	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA62	STAT_AE_HISTOGRAM_159	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA64	STAT_AE_HISTOGRAM_160	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA66	STAT_AE_HISTOGRAM_161	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA68	STAT_AE_HISTOGRAM_162	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA6A	STAT_AE_HISTOGRAM_163	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA6C	STAT_AE_HISTOGRAM_164	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA6E	STAT_AE_HISTOGRAM_165	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA70	STAT_AE_HISTOGRAM_166	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBA72	STAT_AE_HISTOGRAM_167	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

TABLE 18. 14: STAT VARIABLES
1 = read-only, always $1 ; 0=$ read-only, always $0 ; \mathrm{d}=$ programmable; ? = read-only, dynamic

Variable (Hex)		Data Format (Binary)	Default Value Dec (Hex)
0xBA74	STAT_AE_HISTOGRAM_168	???? ???? ???? ????	0 (0×0000)
0xBA76	STAT_AE_HISTOGRAM_169	???? ???? ???? ????	0 (0×0000)
0xBA78	STAT_AE_HISTOGRAM_170	???? ???? ???? ????	0 (0×0000)
0xBA7A	STAT_AE_HISTOGRAM_171	?	STAT_AE_HISTOGRAM_172

TABLE 18. 14: STAT VARIABLES
1 = read-only, always $1 ; 0=$ read-only, always $0 ; d=$ programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xBAA6	STAT_AE_HISTOGRAM_193	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBAA8	STAT_AE_HISTOGRAM_194	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBAAA	STAT_AE_HISTOGRAM_195	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBAAC	STAT_AE_HISTOGRAM_196	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBAAE	STAT_AE_HISTOGRAM_197	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBAB0	STAT_AE_HISTOGRAM_198	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBAB2	STAT_AE_HISTOGRAM_199	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBAB4	STAT_AE_HISTOGRAM_200	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBAB6	STAT_AE_HISTOGRAM_201	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBAB8	STAT_AE_HISTOGRAM_202	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBABA	STAT_AE_HISTOGRAM_203	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBABC	STAT_AE_HISTOGRAM_204	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBABE	STAT_AE_HISTOGRAM_205	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBAC0	STAT_AE_HISTOGRAM_206	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBAC2	STAT_AE_HISTOGRAM_207	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBAC4	STAT_AE_HISTOGRAM_208	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBAC6	STAT_AE_HISTOGRAM_209	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBAC8	STAT_AE_HISTOGRAM_210	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBACA	STAT_AE_HISTOGRAM_211	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBACC	STAT_AE_HISTOGRAM_212	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBACE	STAT_AE_HISTOGRAM_213	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBADO	STAT_AE_HISTOGRAM_214	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBAD2	STAT_AE_HISTOGRAM_215	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBAD4	STAT_AE_HISTOGRAM_216	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBAD6	STAT_AE_HISTOGRAM_217	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

TABLE 18. 14: STAT VARIABLES
1 = read-only, always $1 ; 0=$ read-only, always $0 ; d=$ programmable; ? = read-only, dynamic

Variable (Hex)		Data Format (Binary)	Default Value Dec (Hex)
0xBAD8	STAT_AE_HISTOGRAM_218	???? ???? ???? ????	0 (0×0000)
0xBADA	STAT_AE_HISTOGRAM_219	???? ???? ???? ????	0 (0×0000)
0xBADC	STAT_AE_HISTOGRAM_220	???? ???? ???? ????	0 (0×0000)
0xBADE	STAT_AE_HISTOGRAM_221	?	STAT_AE_HISTOGRAM_222

TABLE 18. 14: STAT VARIABLES
1 = read-only, always 1; $0=$ read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xBB0A	STAT_AE_HISTOGRAM_243	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBB0C	STAT_EXPOSURE_COARSE_INTEGRATION_TIME	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBB0E	STAT_EXPOSURE_FINE_INTEGRATION_TIME	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBB10	STAT_EXPOSURE_ANALOG_RED_GAIN	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBB12	STAT_EXPOSURE_ANALOG_GREEN1_GAIN	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBB14	STAT_EXPOSURE_ANALOG_GREEN2_GAIN	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBB16	STAT_EXPOSURE_ANALOG_BLUE_GAIN	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBB18	STAT_EXPOSURE_FRAME_LENGTH_LINES	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBB1A	STAT_EXPOSURE_LINE_LENGTH_PCK	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBB1C	STAT_EXPOSURE_COLUMN_GAIN	???? ????	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xBB1D	STAT_EXPOSURE_DCG_GAIN	???? ????	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xBB1E	STAT_EXPOSURE_DGAIN_RED	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBB20	STAT_EXPOSURE_DGAIN_GREEN1	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBB22	STAT_EXPOSURE_DGAIN_GREEN2	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBB24	STAT_EXPOSURE_DGAIN_BLUE	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBB26	STAT_EXPOSURE_CPIPE_DGAIN_RED	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBB28	STAT_EXPOSURE_CPIPE_DGAIN_GREEN1	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBB2A	STAT_EXPOSURE_CPIPE_DGAIN_GREEN2	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBB2C	STAT_EXPOSURE_CPIPE_DGAIN_BLUE	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBB2E	STAT_EXPOSURE_CPIPE_DGAIN_SECOND	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBB30	STAT_EXPOSURE_RATIO_T1_T2	???? ????	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xBB31	STAT_EXPOSURE_RATIO_T2_T3	???? ????	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xBB32	STAT_EXPOSURE_HDR_SDR_MODE	???? ????	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$

TABLE 19. 15: LOW LIGHT VARIABLES
1 = read-only, always $1 ; 0$ = read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xBC02	LL_MODE	dddd dddd dddd dddd	$\begin{gathered} 711 \\ (0 \times 02 \mathrm{C} 7) \end{gathered}$
0xBC07	LL_GAMMA_SELECT	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xBCOA	LL_GAMMA_CONTRAST_CURVE_0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC0C	LL_GAMMA_CONTRAST_CURVE_1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBCOE	LL_GAMMA_CONTRAST_CURVE_2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC10	LL_GAMMA_CONTRAST_CURVE_3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC12	LL_GAMMA_CONTRAST_CURVE_4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC14	LL_GAMMA_CONTRAST_CURVE_5	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC16	LL_GAMMA_CONTRAST_CURVE_6	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC18	LL_GAMMA_CONTRAST_CURVE_7	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
$0 \times B C 1 A$	LL_GAMMA_CONTRAST_CURVE_8	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC1C	LL_GAMMA_CONTRAST_CURVE_9	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC1E	LL_GAMMA_CONTRAST_CURVE_10	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC20	LL_GAMMA_CONTRAST_CURVE_11	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC22	LL_GAMMA_CONTRAST_CURVE_12	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC24	LL_GAMMA_CONTRAST_CURVE_13	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC26	LL_GAMMA_CONTRAST_CURVE_14	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC28	LL_GAMMA_CONTRAST_CURVE_15	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC2A	LL_GAMMA_CONTRAST_CURVE_16	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC2C	LL_GAMMA_CONTRAST_CURVE_17	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC2E	LL_GAMMA_CONTRAST_CURVE_18	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC30	LL_GAMMA_CONTRAST_CURVE_19	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC32	LL_GAMMA_CONTRAST_CURVE_20	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC34	LL_GAMMA_CONTRAST_CURVE_21	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC36	LL_GAMMA_CONTRAST_CURVE_22	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

TABLE 19. 15: LOW LIGHT VARIABLES
1 = read-only, always $1 ; 0=$ read-only, always $0 ; \mathrm{d}=$ programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xBC38	LL_GAMMA_CONTRAST_CURVE_23	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC3A	LL_GAMMA_CONTRAST_CURVE_24	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC3C	LL_GAMMA_CONTRAST_CURVE_25	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC3E	LL_GAMMA_CONTRAST_CURVE_26	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC40	LL_GAMMA_CONTRAST_CURVE_27	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC42	LL_GAMMA_CONTRAST_CURVE_28	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC44	LL_GAMMA_CONTRAST_CURVE_29	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC46	LL_GAMMA_CONTRAST_CURVE_30	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC48	LL_GAMMA_CONTRAST_CURVE_31	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC4A	LL_GAMMA_CONTRAST_CURVE_32	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC4C	LL_GAMMA_NRCURVE_0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC4E	LL_GAMMA_NRCURVE_1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC50	LL_GAMMA_NRCURVE_2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC52	LL_GAMMA_NRCURVE_3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC54	LL_GAMMA_NRCURVE_4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC56	LL_GAMMA_NRCURVE_5	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC58	LL_GAMMA_NRCURVE_6	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC5A	LL_GAMMA_NRCURVE_7	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC5C	LL_GAMMA_NRCURVE_8	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC5E	LL_GAMMA_NRCURVE_9	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC60	LL_GAMMA_NRCURVE_10	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC62	LL_GAMMA_NRCURVE_11	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC64	LL_GAMMA_NRCURVE_12	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC66	LL_GAMMA_NRCURVE_13	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC68	LL_GAMMA_NRCURVE_14	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

TABLE 19. 15: LOW LIGHT VARIABLES
1 = read-only, always $1 ; 0$ = read-only, always 0; d = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xBC6A	LL_GAMMA_NRCURVE_15	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC6C	LL_GAMMA_NRCURVE_16	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC6E	LL_GAMMA_NRCURVE_17	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC70	LL_GAMMA_NRCURVE_18	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC72	LL_GAMMA_NRCURVE_19	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC74	LL_GAMMA_NRCURVE_20	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC76	LL_GAMMA_NRCURVE_21	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC78	LL_GAMMA_NRCURVE_22	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC7A	LL_GAMMA_NRCURVE_23	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC7C	LL_GAMMA_NRCURVE_24	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC7E	LL_GAMMA_NRCURVE_25	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC80	LL_GAMMA_NRCURVE_26	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC82	LL_GAMMA_NRCURVE_27	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC84	LL_GAMMA_NRCURVE_28	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC86	LL_GAMMA_NRCURVE_29	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC88	LL_GAMMA_NRCURVE_30	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC8A	LL_GAMMA_NRCURVE_31	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC8C	LL_GAMMA_NRCURVE_32	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBC8E	LL_AVERAGE_LUMA_FADE_TO_BLACK	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBCB4	LL_ALTM_DAMPING_FAST	dddd dddd dddd dddd	$\begin{gathered} 63 \\ (0 \times 003 F) \end{gathered}$
0xBCB6	LL_ALTM_DAMPING_MED	dddd dddd dddd dddd	$\begin{gathered} \hline 15 \\ (0 \times 000 \mathrm{~F}) \end{gathered}$
0xBCB8	LL_ALTM_DAMPING_SLOW	dddd dddd dddd dddd	$\begin{gathered} \hline 7 \\ (0 \times 0007) \end{gathered}$
0xBCC2	LL_ALTM_LMIN_STATS_THRESHOLD	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xBCC4	LL_ALTM_LMAX_STATS_THRESHOLD	dddd dddd dddd dddd	$\begin{gathered} 59 \\ (0 \times 003 \mathrm{~B}) \end{gathered}$

TABLE 20. 16: FLICKER DETECT VARIABLES
1 = read-only, always $1 ; 0$ = read-only, always $0 ; d=$ programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
$0 \times C 000$	FLICKER_DETECT_STATUS	???? ????? ???? ????	0 $(0 x 0000)$${ }^{2}$

TABLE 21. 17: PATCH VARIABLES FOR GENERAL PATCHES
1 = read-only, always $1 ; 0$ = read-only, always $0 ; \mathrm{d}=$ programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xC400	EXT_SERIALIZER_TYPE	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xC401	EXT_DESERIALIZER_TYPE	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xC402	EXT_SERIALIZER_ADDR	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xC403	EXT_DESERIALIZER_ADDR	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xC404	EXT_HDR_MD_CTRL	dddd dddd dddd dddd	$\begin{gathered} 6324 \\ (0 \times 18 B 4) \end{gathered}$
0xC406	EXT_HDR_SF	dddd dddd dddd dddd	$\begin{gathered} 24832 \\ (0 \times 6100) \end{gathered}$
0xC408	EXT_LL_NR_LUT_0_SIGMA	dddd dddd dddd dddd	$\begin{gathered} 52 \\ (0 \times 0034) \end{gathered}$
0xC40A	EXT_LL_NR_LUT_0_K0	dddd dddd dddd dddd	$\begin{gathered} 147 \\ (0 \times 0093) \end{gathered}$
0xC40C	EXT_LL_NR_LUT_1_SIGMA	dddd dddd dddd dddd	$\begin{gathered} 55 \\ (0 \times 0037) \end{gathered}$
0xC40E	EXT_LL_NR_LUT_1_K0	dddd dddd dddd dddd	$\begin{gathered} 147 \\ (0 \times 0093) \end{gathered}$
0xC410	EXT_LL_NR_LUT_2_SIGMA	dddd dddd dddd dddd	$\begin{gathered} 263 \\ (0 \times 0107) \end{gathered}$
$0 \times \mathrm{C} 412$	EXT_LL_NR_LUT_2_K0	dddd dddd dddd dddd	$\begin{gathered} 147 \\ (0 \times 0093) \end{gathered}$
$0 \times \mathrm{C} 414$	EXT_LL_NR_LUT_3_SIGMA	dddd dddd dddd dddd	$\begin{gathered} 261 \\ (0 \times 0105) \end{gathered}$
$0 \times \mathrm{C} 416$	EXT_LL_NR_LUT_3_K0	dddd dddd dddd dddd	$\begin{gathered} 147 \\ (0 \times 0093) \end{gathered}$
$0 \times C 418$	EXT_LL_NOISE_PEDESTAL_TH_BM	dddd dddd dddd dddd	$\begin{gathered} 1000 \\ (0 \times 03 E 8) \end{gathered}$
$0 \times C 41 \mathrm{~A}$	EXT_LL_NR_LUT_TH_BM	dddd dddd dddd dddd	$\begin{gathered} 1000 \\ (0 \times 03 E 8) \end{gathered}$
0xC41C	EXT_LL_NR_LUT_TH_DR	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xC41D	EXT_LL_NOISE_PEDESTAL_GATE_BM	dddd dddd	$\begin{gathered} 50 \\ (0 \times 32) \end{gathered}$
$0 \times C 41 E$	EXT_LL_NR_LUT_GATE_BM	dddd dddd	$\begin{gathered} 50 \\ (0 \times 32) \end{gathered}$
0xC41F	EXT_LL_NR_LUT_GATE_DR	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$

TABLE 22. 18: CAMCONTROL VARIABLES
1 = read-only, always $1 ; 0$ = read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xC804	CAM_SENSOR_CFG_Y_ADDR_START	dddd dddd dddd dddd	$\begin{gathered} 8 \\ (0 \times 0008) \end{gathered}$
0xC806	CAM_SENSOR_CFG_X_ADDR_START	dddd dddd dddd dddd	$\begin{gathered} \stackrel{2}{(0 x 0002)} \end{gathered}$
0xC808	CAM_SENSOR_CFG_Y_ADDR_END	dddd dddd dddd dddd	$\begin{gathered} 967 \\ (0 \times 03 \mathrm{C} 7) \end{gathered}$
0xC80A	CAM_SENSOR_CFG_X_ADDR_END	dddd dddd dddd dddd	$\begin{gathered} 1281 \\ (0 \times 0501) \end{gathered}$
0xC80C	CAM_SENSOR_CFG_PIXCLK	dddd dddd dddd dddd dddd dddd dddd dddd	$\begin{gathered} 54000000 \\ (0 \times 0337 F 980) \end{gathered}$
0xC810	CAM_SENSOR_CFG_FINE_INTEG_TIME_MIN	dddd dddd dddd dddd	$\begin{gathered} 700 \\ (0 \times 02 \mathrm{BC}) \end{gathered}$
0xC812	CAM_SENSOR_CFG_FINE_INTEG_TIME_MAX	dddd dddd dddd dddd	$\begin{gathered} 1676 \\ (0 \times 068 \mathrm{C}) \end{gathered}$
0xC814	CAM_SENSOR_CFG_FRAME_LENGTH_LINES	dddd dddd dddd dddd	$\begin{gathered} 1074 \\ (0 \times 0432) \end{gathered}$
0xC816	CAM_SENSOR_CFG_LINE_LENGTH_PCK	dddd dddd dddd dddd	$\begin{gathered} 1676 \\ (0 \times 068 \mathrm{C}) \end{gathered}$
0xC818	CAM_SENSOR_CFG_EXTRA_DELAY	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xC834	CAM_SENSOR_CFG_CCI_BASE_ADDR_0	dddd dddd	$\begin{gathered} 32 \\ (0 \times 20) \end{gathered}$
0xC835	CAM_SENSOR_CFG_CCI_BASE_ADDR_1	dddd dddd	$\begin{gathered} 144 \\ (0 \times 90) \end{gathered}$
0xC836	CAM_SENSOR_CFG_DISCOVERY_TIME_M3_ROM_MS	dddd dddd	$\begin{gathered} 1 \\ (0 \times 01) \end{gathered}$
0xC837	CAM_SENSOR_CFG_DISCOVERY_TIME_OTPM_MS	dddd dddd	$\begin{gathered} 31 \\ (0 \times 1 \mathrm{~F}) \end{gathered}$
0xC838	CAM_SENSOR_CONTROL_EXTERNAL_PLL	dddd dddd dddd dddd dddd dddd dddd dddd	$\begin{gathered} \hline 67242049 \\ (0 \times 04020841) \end{gathered}$
0xC83C	CAM_SENSOR_CONTROL_BASE_ADDRESS	???? ????	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xC83D	CAM_SENSOR_CONTROL_REVISION_NUMBER	???? ????	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xC83E	CAM_SENSOR_CONTROL_MODEL_ID	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xC840	CAM_SENSOR_CONTROL_EXTERNAL_OUTPUT_CLK_DIV	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xC842	CAM_SENSOR_CONTROL_REQUEST	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xC843	CAM_SENSOR_CONTROL_INTERNAL_REQUEST	???? ????	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xC844	CAM_SENSOR_CONTROL_OPERATION_MODE	dddd dddd dddd dddd	$\begin{gathered} 2498 \\ (0 \times 09 \mathrm{C} 2) \end{gathered}$
0xC846	CAM_SENSOR_CONTROL_READ_MODE	dddd dd?? dd?? dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xC848	CAM_HDR_MC_CTRL_MODE	dddd dddd dddd dddd	$\begin{gathered} 11 \\ (0 \times 000 B) \end{gathered}$
0xC84A	CAM_HDR_MC_CTRL_S1_THRESHOLD	dddd dddd dddd dddd	$\begin{gathered} 2976 \\ (0 \times 0 B A O) \end{gathered}$

TABLE 22. 18: CAMCONTROL VARIABLES
1 = read-only, always $1 ; 0=$ read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xC84C	CAM_HDR_MC_CTRL_S2_THRESHOLD	dddd dddd dddd dddd	$\begin{gathered} 4000 \\ (0 \times 0 F A 0) \end{gathered}$
0xC84E	CAM_HDR_MC_CTRL_S12_RANGE	dddd dddd dddd dddd	$\begin{gathered} 2048 \\ (0 \times 0800) \end{gathered}$
0xC850	CAM_HDR_MC_CTRL_DIFF_THRESHOLD	dddd dddd dddd dddd	$\begin{gathered} 768 \\ (0 \times 0300) \end{gathered}$
0xC854	CAM_HDR_DLO_CTRL_MODE	dddd dddd dddd dddd	$\begin{gathered} 1 \\ (0 \times 0001) \end{gathered}$
0xC856	CAM_HDR_DLO_CTRL_T1_BARRIER	dddd dddd dddd dddd	$\begin{gathered} 3000 \\ (0 \times 0 B B 8) \end{gathered}$
0xC858	CAM_HDR_DLO_CTRL_T2_BARRIER	dddd dddd dddd dddd	$\begin{gathered} 3500 \\ \text { (0x0DAC) } \end{gathered}$
0xC85A	CAM_HDR_DLO_CTRL_T3_BARRIER	dddd dddd dddd dddd	$\begin{gathered} 4000 \\ \text { (0xOFAO) } \end{gathered}$
0xC85C	CAM_HDR_DLO_CTRL_NOISE_DISABLE_THRESHOLD	dddd dddd dddd dddd	$\begin{gathered} 256 \\ (0 \times 0100) \end{gathered}$
0xC85E	CAM_HDR_DLO_CTRL_NOISE_S2_THRESHOLD	dddd dddd dddd dddd	$\begin{gathered} 64 \\ (0 \times 0040) \end{gathered}$
0xC860	CAM_HDR_DLO_CTRL_NOISE_S12_RANGE	dddd dddd dddd dddd	$\begin{gathered} 5 \\ (0 \times 0005) \end{gathered}$
0xC862	CAM_HDR_DLO_CTRL_T4_BARRIER	dddd dddd dddd dddd	$\begin{gathered} 4000 \\ (0 \times 0 F A 0) \end{gathered}$
0xC864	CAM_EXP_CTRL_COARSE_INTEGRATION_TIME	dddd dddd dddd dddd	$\begin{gathered} 1 \\ (0 \times 0001) \end{gathered}$
0xC866	CAM_EXP_CTRL_FINE_INTEGRATION_TIME	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xC868	CAM_EXP_CTRL_ANALOG_RED_GAIN	dddd dddd dddd dddd	$\begin{gathered} 32 \\ (0 \times 0020) \end{gathered}$
0xC86A	CAM_EXP_CTRL_ANALOG_GREEN1_GAIN	dddd dddd dddd dddd	$\begin{gathered} 32 \\ (0 \times 0020) \end{gathered}$
0xC86C	CAM_EXP_CTRL_ANALOG_GREEN2_GAIN	dddd dddd dddd dddd	$\begin{gathered} 32 \\ (0 \times 0020) \end{gathered}$
0xC86E	CAM_EXP_CTRL_ANALOG_BLUE_GAIN	dddd dddd dddd dddd	$\begin{gathered} 32 \\ (0 \times 0020) \end{gathered}$
0xC870	CAM_EXP_CTRL_FRAME_LENGTH_LINES	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xC872	CAM_EXP_CTRL_LINE_LENGTH_PCK	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xC874	CAM_EXP_CTRL_COLUMN_GAIN	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xC875	CAM_EXP_CTRL_DCG_GAIN	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xC876	CAM_EXP_CTRL_DGAIN_RED	dddd dddd dddd dddd	$\begin{gathered} 128 \\ (0 \times 0080) \end{gathered}$
0xC878	CAM_EXP_CTRL_DGAIN_GREEN1	dddd dddd dddd dddd	$\begin{gathered} 128 \\ (0 \times 0080) \end{gathered}$
0xC87A	CAM_EXP_CTRL_DGAIN_GREEN2	dddd dddd dddd dddd	$\begin{gathered} 128 \\ (0 \times 0080) \end{gathered}$
0xC87C	CAM_EXP_CTRL_DGAIN_BLUE	dddd dddd dddd dddd	$\begin{gathered} 128 \\ (0 \times 0080) \end{gathered}$

TABLE 22. 18: CAMCONTROL VARIABLES
1 = read-only, always $1 ; 0=$ read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xC87E	CAM_EXP_CTRL_CPIPE_DGAIN_RED	dddd dddd dddd dddd	$\begin{gathered} 128 \\ (0 \times 0080) \end{gathered}$
0xC880	CAM_EXP_CTRL_CPIPE_DGAIN_GREEN1	dddd dddd dddd dddd	$\begin{gathered} 128 \\ (0 \times 0080) \end{gathered}$
0xC882	CAM_EXP_CTRL_CPIPE_DGAIN_GREEN2	dddd dddd dddd dddd	$\begin{gathered} 128 \\ (0 \times 0080) \end{gathered}$
0xC884	CAM_EXP_CTRL_CPIPE_DGAIN_BLUE	dddd dddd dddd dddd	$\begin{gathered} 128 \\ (0 \times 0080) \end{gathered}$
0xC886	CAM_EXP_CTRL_CPIPE_DGAIN_SECOND	dddd dddd dddd dddd	$\begin{gathered} 128 \\ (0 \times 0080) \end{gathered}$
0xC888	CAM_EXP_CTRL_RATIO_T1_T2	dddd dddd	$\begin{gathered} 2 \\ (0 \times 02) \end{gathered}$
0xC889	CAM_EXP_CTRL_RATIO_T2_T3	dddd dddd	$\begin{gathered} 2 \\ (0 \times 02) \end{gathered}$
0xC88A	CAM_EXP_CTRL_HDR_SDR_MODE	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xC88C	CAM_CPIPE_CONTROL_FIRST_BLACK_LEVEL	dddd dddd dddd dddd	$\begin{gathered} 200 \\ (0 \times 00 \mathrm{C} 8) \end{gathered}$
0xC88E	CAM_CPIPE_CONTROL_SECOND_BLACK_LEVEL	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xC890	CAM_MODE_SELECT	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xC891	CAM_MODE_SYNC_TYPE	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xC892	CAM_MODE_SYNC_TRIGGER_MODE	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xC893	CAM_MODE_TEST_PATTERN_SELECT	dddd dddd	$\begin{gathered} 2 \\ (0 \times 02) \end{gathered}$
0xC894	CAM_MODE_TEST_PATTERN_RED	dddd dddd dddd dddd dddd dddd dddd dddd	$\begin{gathered} 1048575 \\ (0 \times 000 F F F F F) \end{gathered}$
0xC898	CAM_MODE_TEST_PATTERN_GREEN	dddd dddd dddd dddd dddd dddd dddd dddd	$\begin{gathered} 1048575 \\ \text { (0x000FFFFF) } \end{gathered}$
0xC89C	CAM_MODE_TEST_PATTERN_BLUE	dddd dddd dddd dddd dddd dddd dddd dddd	$\begin{gathered} 1048575 \\ \text { (0x000FFFFF) } \end{gathered}$
0xC8A0	CAM_CROP_WINDOW_XOFFSET	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xC8A2	CAM_CROP_WINDOW_YOFFSET	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xC8A4	CAM_CROP_WINDOW_WIDTH	dddd dddd dddd dddd	$\begin{gathered} 1280 \\ (0 \times 0500) \end{gathered}$
0xC8A6	CAM_CROP_WINDOW_HEIGHT	dddd dddd dddd dddd	$\begin{gathered} 960 \\ (0 \times 03 \mathrm{C}) \end{gathered}$
0xC8A8	CAM_FOV_CALIB_X_OFFSET	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xC8A9	CAM_FOV_CALIB_Y_OFFSET	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xC8BC	CAM_AET_AEMODE	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xC8BE	CAM_AET_BLACK_CLIPPING_TARGET	dddd dddd dddd dddd	$\begin{gathered} 30 \\ (0 \times 001 \mathrm{E}) \end{gathered}$

TABLE 22. 18: CAMCONTROL VARIABLES
1 = read-only, always $1 ; 0=$ read-only, always $0 ; d=$ programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xC8C0	CAM_AET_EXPOSURE_TIME_MS	dddd dddd dddd dddd	$\begin{gathered} 1280 \\ (0 \times 0500) \end{gathered}$
0xC8C2	CAM_AET_EXPOSURE_GAIN	dddd dddd dddd dddd	$\begin{gathered} 128 \\ (0 \times 0080) \end{gathered}$
0xC8C6	CAM_AET_AE_MIN_VIRT_DGAIN	dddd dddd dddd dddd	$\begin{gathered} 128 \\ (0 \times 0080) \end{gathered}$
0xC8C8	CAM_AET_AE_MAX_VIRT_DGAIN	dddd dddd dddd dddd	$\begin{gathered} 640 \\ (0 \times 0280) \end{gathered}$
0xC8CA	CAM_AET_AE_MIN_VIRT_AGAIN	dddd dddd dddd dddd	$\begin{gathered} 32 \\ (0 \times 0020) \end{gathered}$
0xC8CC	CAM_AET_AE_MAX_VIRT_AGAIN	dddd dddd dddd dddd	$\begin{gathered} 32 \\ (0 \times 0020) \end{gathered}$
0xC8D1	CAM_AET_FLICKER_FREQ_HZ	dddd dddd	$\begin{gathered} 60 \\ (0 \times 3 C) \end{gathered}$
0xC8D2	CAM_AET_MAX_FRAME_RATE	???? ???? ???? ????	$\begin{gathered} 7680 \\ \text { (0x1E00) } \end{gathered}$
0xC8D4	CAM_AET_FRAME_RATE_0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xC8D6	CAM_AET_FRAME_RATE_1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xC8D8	CAM_AET_FRAME_RATE_2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xC8DA	CAM_AET_TARGET_GAIN	dddd dddd dddd dddd	$\begin{gathered} 256 \\ (0 \times 0100) \end{gathered}$
0xC8DC	CAM_AWB_CCM_L_0	dddd dddd dddd dddd	$\begin{gathered} 156 \\ (0 \times 009 \mathrm{C}) \end{gathered}$
0xC8DE	CAM_AWB_CCM_L_1	dddd dddd dddd dddd	$\begin{gathered} 46 \\ (0 \times 002 \mathrm{E}) \end{gathered}$
0xC8E0	CAM_AWB_CCM_L_2	dddd dddd dddd dddd	$\begin{gathered} 53 \\ (0 \times 0035) \end{gathered}$
0xC8E2	CAM_AWB_CCM_L_3	dddd dddd dddd dddd	$\begin{gathered} 65448 \\ \text { (0xFFA8) } \end{gathered}$
0xC8E4	CAM_AWB_CCM_L_4	dddd dddd dddd dddd	$\begin{gathered} 279 \\ (0 \times 0117) \end{gathered}$
0xC8E6	CAM_AWB_CCM_L_5	dddd dddd dddd dddd	$\begin{gathered} 65 \\ (0 \times 0041) \end{gathered}$
0xC8E8	CAM_AWB_CCM_L_6	dddd dddd dddd dddd	$\begin{gathered} 65442 \\ (0 x F F A 2) \end{gathered}$
0xC8EA	CAM_AWB_CCM_L_7	dddd dddd dddd dddd	$\begin{gathered} \hline 4 \\ (0 \times 0004) \end{gathered}$
0xC8EC	CAM_AWB_CCM_L_8	dddd dddd dddd dddd	$\begin{gathered} 346 \\ (0 \times 015 A) \end{gathered}$
0xC8EE	CAM_AWB_CCM_M_0	dddd dddd dddd dddd	$\begin{gathered} 197 \\ (0 \times 00 \mathrm{C} 5) \end{gathered}$
0xC8F0	CAM_AWB_CCM_M_1	dddd dddd dddd dddd	$\begin{gathered} \hline 1 \\ (0 \times 0001) \end{gathered}$
0xC8F2	CAM_AWB_CCM_M_2	dddd dddd dddd dddd	$\begin{gathered} 58 \\ (0 \times 003 A) \end{gathered}$
0xC8F4	CAM_AWB_CCM_M_3	dddd dddd dddd dddd	$\begin{gathered} 65514 \\ (0 x F F E A) \end{gathered}$

TABLE 22. 18: CAMCONTROL VARIABLES
1 = read-only, always $1 ; 0$ = read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xC8F6	CAM_AWB_CCM_M_4	dddd dddd dddd dddd	$\begin{gathered} 231 \\ (0 \times 00 \mathrm{E} 7) \end{gathered}$
0xC8F8	CAM_AWB_CCM_M_5	dddd dddd dddd dddd	$\begin{gathered} 47 \\ (0 \times 002 F) \end{gathered}$
0xC8FA	CAM_AWB_CCM_M_6	dddd dddd dddd dddd	$\begin{gathered} 9 \\ (0 \times 0009) \end{gathered}$
0xC8FC	CAM_AWB_CCM_M_7	dddd dddd dddd dddd	$\begin{gathered} 65527 \\ (0 x F F F 7) \end{gathered}$
0xC8FE	CAM_AWB_CCM_M_8	dddd dddd dddd dddd	$\begin{gathered} 256 \\ (0 \times 0100) \end{gathered}$
0xC900	CAM_AWB_CCM_R_0	dddd dddd dddd dddd	$\begin{gathered} 164 \\ (0 \times 00 \mathrm{~A} 4) \end{gathered}$
0xC902	CAM_AWB_CCM_R_1	dddd dddd dddd dddd	$\begin{gathered} 75 \\ (0 \times 004 \mathrm{~B}) \end{gathered}$
0xC904	CAM_AWB_CCM_R_2	dddd dddd dddd dddd	$\begin{gathered} 17 \\ (0 \times 0011) \end{gathered}$
0xC906	CAM_AWB_CCM_R_3	dddd dddd dddd dddd	$\begin{gathered} 65512 \\ (0 x F F E 8) \end{gathered}$
0xC908	CAM_AWB_CCM_R_4	dddd dddd dddd dddd	$\begin{gathered} 228 \\ (0 \times 00 E 4) \end{gathered}$
0xC90A	CAM_AWB_CCM_R_5	dddd dddd dddd dddd	$\begin{gathered} 52 \\ (0 \times 0034) \end{gathered}$
0xC90C	CAM_AWB_CCM_R_6	dddd dddd dddd dddd	$\begin{gathered} 10 \\ (0 \times 000 \mathrm{~A}) \end{gathered}$
0xC90E	CAM_AWB_CCM_R_7	dddd dddd dddd dddd	$\begin{gathered} 31 \\ (0 \times 001 F) \end{gathered}$
0xC910	CAM_AWB_CCM_R_8	dddd dddd dddd dddd	$\begin{gathered} 216 \\ (0 x 00 D 8) \end{gathered}$
0xC912	CAM_AWB_CCM_L_RG_GAIN	dddd dddd dddd dddd	$\begin{gathered} 90 \\ (0 \times 005 \mathrm{~A}) \end{gathered}$
0xC914	CAM_AWB_CCM_L_BG_GAIN	dddd dddd dddd dddd	$\begin{gathered} 290 \\ (0 \times 0122) \end{gathered}$
0xC916	CAM_AWB_CCM_M_RG_GAIN	dddd dddd dddd dddd	$\begin{gathered} 156 \\ (0 \times 009 \mathrm{C}) \end{gathered}$
0xC918	CAM_AWB_CCM_M_BG_GAIN	dddd dddd dddd dddd	$\begin{gathered} 261 \\ (0 \times 0105) \end{gathered}$
0xC91A	CAM_AWB_CCM_R_RG_GAIN	dddd dddd dddd dddd	$\begin{gathered} 139 \\ (0 \times 008 \mathrm{~B}) \end{gathered}$
0xC91C	CAM_AWB_CCM_R_BG_GAIN	dddd dddd dddd dddd	$\begin{gathered} 172 \\ (0 \times 00 \mathrm{AC}) \end{gathered}$
0xC91E	CAM_AWB_CCM_L_CTEMP	dddd dddd dddd dddd	$\begin{gathered} 2500 \\ (0 \times 09 \mathrm{C} 4) \end{gathered}$
0xC920	CAM_AWB_CCM_M_CTEMP	dddd dddd dddd dddd	$\begin{gathered} 3431 \\ (0 \times 0 D 67) \end{gathered}$
0xC922	CAM_AWB_CCM_R_CTEMP	dddd dddd dddd dddd	$\begin{gathered} 6500 \\ (0 \times 1964) \end{gathered}$
0xC924	CAM_AWB_COLOR_TEMPERATURE_MIN	dddd dddd dddd dddd	$\begin{gathered} 2500 \\ (0 \times 09 \mathrm{C}) \end{gathered}$
0xC926	CAM_AWB_COLOR_TEMPERATURE_MAX	dddd dddd dddd dddd	$\begin{gathered} 6500 \\ (0 \times 1964) \end{gathered}$

TABLE 22. 18: CAMCONTROL VARIABLES
1 = read-only, always $1 ; 0$ = read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xC928	CAM_AWB_COLOR_TEMPERATURE	dddd dddd dddd dddd	$\begin{gathered} 6500 \\ (0 \times 1964) \end{gathered}$
0xC92A	CAM_AWB_X_SHIFT	dddd dddd dddd dddd	$\begin{gathered} 30 \\ (0 \times 001 \mathrm{E}) \end{gathered}$
0xC92C	CAM_AWB_Y_SHIFT	dddd dddd dddd dddd	$\begin{gathered} 32 \\ (0 \times 0020) \end{gathered}$
0xC92E	CAM_AWB_RECIP_X_SCALE	dddd dddd dddd dddd	$\begin{gathered} 156 \\ (0 \times 009 C) \end{gathered}$
0xC930	CAM_AWB_RECIP_Y_SCALE	dddd dddd dddd dddd	$\begin{gathered} 68 \\ (0 \times 0044) \end{gathered}$
0xC932	CAM_AWB_ROT_CENTER_X	dddd dddd dddd dddd	$\begin{gathered} 7 \\ (0 \times 0007) \end{gathered}$
0xC934	CAM_AWB_ROT_CENTER_Y	dddd dddd dddd dddd	$\begin{gathered} 65503 \\ \text { (0xFFDF) } \end{gathered}$
0xC936	CAM_AWB_ROT_SIN	dddd dddd	$\begin{gathered} 63 \\ (0 \times 3 F) \end{gathered}$
0xC937	CAM_AWB_ROT_COS	dddd dddd	$\begin{gathered} 10 \\ (0 \times 0 \mathrm{~A}) \end{gathered}$
0xC938	CAM_AWB_WEIGHT_TABLE_0	dddd dddd dddd dddd	$\begin{gathered} 4369 \\ (0 \times 1111) \end{gathered}$
0xC93A	CAM_AWB_WEIGHT_TABLE_1	dddd dddd dddd dddd	$\begin{gathered} 4369 \\ (0 \times 1111) \end{gathered}$
0xC93C	CAM_AWB_WEIGHT_TABLE_2	dddd dddd dddd dddd	$\begin{gathered} 8738 \\ (0 \times 2222) \end{gathered}$
0xC93E	CAM_AWB_WEIGHT_TABLE_3	dddd dddd dddd dddd	$\begin{gathered} 4369 \\ (0 \times 1111) \end{gathered}$
0xC940	CAM_AWB_WEIGHT_TABLE_4	dddd dddd dddd dddd	$\begin{gathered} 4642 \\ (0 \times 1222) \end{gathered}$
0xC942	CAM_AWB_WEIGHT_TABLE_5	dddd dddd dddd dddd	$\begin{gathered} 8739 \\ (0 \times 2223) \end{gathered}$
0xC944	CAM_AWB_WEIGHT_TABLE_6	dddd dddd dddd dddd	$\begin{gathered} 17749 \\ (0 \times 4555) \end{gathered}$
0xC946	CAM_AWB_WEIGHT_TABLE_7	dddd dddd dddd dddd	$\begin{gathered} 8737 \\ (0 \times 2221) \end{gathered}$
0xC948	CAM_AWB_WEIGHT_TABLE_8	dddd dddd dddd dddd	$\begin{gathered} 9318 \\ (0 \times 2466) \end{gathered}$
0xC94A	CAM_AWB_WEIGHT_TABLE_9	dddd dddd dddd dddd	$\begin{gathered} 26196 \\ (0 \times 6654) \end{gathered}$
0xC94C	CAM_AWB_WEIGHT_TABLE_10	dddd dddd dddd dddd	$\begin{gathered} 12852 \\ (0 \times 3234) \end{gathered}$
0xC94E	CAM_AWB_WEIGHT_TABLE_11	dddd dddd dddd dddd	$\begin{gathered} 13394 \\ (0 \times 3452) \end{gathered}$
0xC950	CAM_AWB_WEIGHT_TABLE_12	dddd dddd dddd dddd	$\begin{gathered} 9591 \\ (0 \times 2577) \end{gathered}$
0xC952	CAM_AWB_WEIGHT_TABLE_13	dddd dddd dddd dddd	$\begin{gathered} 26468 \\ (0 \times 6764) \end{gathered}$
0xC954	CAM_AWB_WEIGHT_TABLE_14	dddd dddd dddd dddd	$\begin{gathered} 8722 \\ (0 \times 2212) \end{gathered}$
0xC956	CAM_AWB_WEIGHT_TABLE_15	dddd dddd dddd dddd	$\begin{gathered} 9554 \\ (0 \times 2552) \end{gathered}$

TABLE 22. 18: CAMCONTROL VARIABLES
1 = read-only, always $1 ; 0$ = read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xC958	CAM_AWB_WEIGHT_TABLE_16	dddd dddd dddd dddd	$\begin{gathered} 4948 \\ (0 \times 1354) \end{gathered}$
0xC95A	CAM_AWB_WEIGHT_TABLE_17	dddd dddd dddd dddd	$\begin{gathered} 17765 \\ (0 \times 4565) \end{gathered}$
0xC95C	CAM_AWB_WEIGHT_TABLE_18	dddd dddd dddd dddd	$\begin{gathered} 17442 \\ (0 \times 4422) \end{gathered}$
0xC95E	CAM_AWB_WEIGHT_TABLE_19	dddd dddd dddd dddd	$\begin{gathered} 9009 \\ (0 \times 2331) \end{gathered}$
0xC960	CAM_AWB_WEIGHT_TABLE_20	dddd dddd dddd dddd	$\begin{gathered} \hline 4386 \\ (0 \times 1122) \end{gathered}$
0xC962	CAM_AWB_WEIGHT_TABLE_21	dddd dddd dddd dddd	$\begin{gathered} 4660 \\ (0 \times 1234) \end{gathered}$
0xC964	CAM_AWB_WEIGHT_TABLE_22	dddd dddd dddd dddd	$\begin{gathered} 13109 \\ (0 \times 3335) \end{gathered}$
0xC966	CAM_AWB_WEIGHT_TABLE_23	dddd dddd dddd dddd	$\begin{gathered} 26194 \\ (0 \times 6652) \end{gathered}$
0xC968	CAM_AWB_WEIGHT_TABLE_24	dddd dddd dddd dddd	$\begin{gathered} 4369 \\ (0 \times 1111) \end{gathered}$
0xC96A	CAM_AWB_WEIGHT_TABLE_25	dddd dddd dddd dddd	$\begin{gathered} 4370 \\ (0 \times 1112) \end{gathered}$
0xC96C	CAM_AWB_WEIGHT_TABLE_26	dddd dddd dddd dddd	$\begin{gathered} 4644 \\ (0 \times 1224) \end{gathered}$
0xC96E	CAM_AWB_WEIGHT_TABLE_27	dddd dddd dddd dddd	$\begin{gathered} 22098 \\ (0 \times 5652) \end{gathered}$
0xC970	CAM_AWB_WEIGHT_TABLE_28	dddd dddd dddd dddd	$\begin{gathered} 4369 \\ (0 \times 1111) \end{gathered}$
0xC972	CAM_AWB_WEIGHT_TABLE_29	dddd dddd dddd dddd	$\begin{gathered} 4369 \\ (0 \times 1111) \end{gathered}$
0xC974	CAM_AWB_WEIGHT_TABLE_30	dddd dddd dddd dddd	$\begin{gathered} \hline 4370 \\ (0 \times 1112) \end{gathered}$
0xC976	CAM_AWB_WEIGHT_TABLE_31	dddd dddd dddd dddd	$\begin{gathered} 9010 \\ (0 \times 2332) \end{gathered}$
0xC979	CAM_AWB_LUMA_THRESH_LOW	dddd dddd	$\begin{gathered} 16 \\ (0 \times 10) \end{gathered}$
0xC97A	CAM_AWB_LUMA_THRESH_HIGH	dddd dddd	$\begin{gathered} 240 \\ \text { (0xF0) } \end{gathered}$
0xC97B	CAM_AWB_WEIGHT_THRESH_LOW	dddd dddd	$\begin{gathered} 1 \\ (0 \times 01) \end{gathered}$
0xC97D	CAM_AWB_MODE	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xC97E	CAM_AWB_LIGHT_REGION	???? ???? ???? ????	$\begin{gathered} \stackrel{2}{(0 \times 0002)} \end{gathered}$
0xC980	CAM_AWB_TINTS_CTEMP_THRESHOLD	dddd dddd dddd dddd	$\begin{gathered} 3500 \\ \text { (0x0DAC) } \end{gathered}$
0xC982	CAM_AWB_K_R_L	dddd dddd	$\begin{gathered} 128 \\ (0 \times 80) \end{gathered}$
0xC983	CAM_AWB_K_G_L	dddd dddd	$\begin{gathered} 128 \\ (0 \times 80) \end{gathered}$
0xC984	CAM_AWB_K_B_L	dddd dddd	$\begin{gathered} \hline 128 \\ (0 \times 80) \end{gathered}$

TABLE 22. 18: CAMCONTROL VARIABLES
1 = read-only, always $1 ; 0=$ read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xC985	CAM_AWB_K_R_R	dddd dddd	$\begin{gathered} 128 \\ (0 \times 80) \end{gathered}$
0xC986	CAM_AWB_K_G_R	dddd dddd	$\begin{gathered} 128 \\ (0 \times 80) \end{gathered}$
0xC987	CAM_AWB_K_B_R	dddd dddd	$\begin{gathered} 128 \\ (0 \times 80) \end{gathered}$
0xC988	CAM_ALTM_MODE	dddd dddd dddd dddd	$\begin{gathered} 23 \\ (0 \times 0017) \end{gathered}$
0xC98A	CAM_ALTM_KEY_K0	dddd dddd dddd dddd	$\begin{gathered} 128 \\ (0 \times 0080) \end{gathered}$
0xC98C	CAM_ALTM_KEY_K1	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0xC990	CAM_ALTM_LO_GAMMA	dddd dddd dddd dddd	$\begin{gathered} 18 \\ (0 \times 0012) \end{gathered}$
0xC992	CAM_ALTM_HI_GAMMA	dddd dddd dddd dddd	$\begin{gathered} 32 \\ (0 \times 0020) \end{gathered}$
0xC994	CAM_ALTM_K1_SLOPE	dddd dddd dddd dddd	$\begin{gathered} 175 \\ (0 \times 00 \mathrm{AF}) \end{gathered}$
0xC996	CAM_ALTM_K1_MIN	dddd dddd dddd dddd	$\begin{gathered} 256 \\ (0 \times 0100) \end{gathered}$
0xC998	CAM_ALTM_K1_MAX	dddd dddd dddd dddd	$\begin{gathered} 65535 \\ (0 \times F F F F) \end{gathered}$
0xC99A	CAM_ALTM_DARK_BM	dddd dddd dddd dddd	$\begin{gathered} 1536 \\ (0 \times 0600) \end{gathered}$
0xC99C	CAM_ALTM_BRIGHT_BM	dddd dddd dddd dddd	$\begin{gathered} 2048 \\ (0 \times 0800) \end{gathered}$
0xC99E	CAM_ALTM_K1_DAMPING_SPEED	dddd dddd dddd dddd	$\begin{gathered} \stackrel{2}{(0 x 0002)} \end{gathered}$
0xC9A0	CAM_ALTM_SHARPNESS_DARK_BM	dddd dddd dddd dddd	$\begin{gathered} 200 \\ (0 \times 00 \mathrm{C} 8) \end{gathered}$
0xC9A2	CAM_ALTM_SHARPNESS_BRIGHT_BM	dddd dddd dddd dddd	$\begin{gathered} 2900 \\ \text { (0x0B54) } \end{gathered}$
0xC9A4	CAM_ALTM_SHARPNESS_STRENGTH_DARK	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xC9A6	CAM_ALTM_SHARPNESS_STRENGTH_BRIGHT	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xC9A8	CAM_ALTM_MIN_IMAGE_DYNAMIC_RANGE	dddd dddd dddd dddd dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0xC9B4	CAM_ALTM_LOG_CONTROL_LA	$\begin{gathered} \text { ???? ???? ???? ???? ???? } \\ \text { ???? ???? ???? } \end{gathered}$	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0xC9BC	CAM_ALTM_DARK_LO_GAMMA	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xC9BE	CAM_ALTM_BRIGHT_LO_GAMMA	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xC9C0	CAM_ALTM_DARK_LO_GAMMA_BM	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xC9C2	CAM_ALTM_BRIGHT_LO_GAMMA_BM	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xC9C4	CAM_ALTM_DARK_HI_GAMMA	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

TABLE 22. 18: CAMCONTROL VARIABLES
1 = read-only, always $1 ; 0$ = read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xC9C6	CAM_ALTM_BRIGHT_HI_GAMMA	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xC9C8	CAM_ALTM_DARK_HI_GAMMA_BM	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xC9CA	CAM_ALTM_BRIGHT_HI_GAMMA_BM	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xC9CC	CAM_ALTM_LOWLIGHT_DARK_BM	dddd dddd dddd dddd	$\begin{gathered} 64768 \\ \text { (0xFD00) } \end{gathered}$
0xC9CE	CAM_ALTM_LOWLIGHT_BRIGHT_BM	dddd dddd dddd dddd	$\begin{gathered} 1280 \\ (0 \times 0500) \end{gathered}$
0xC9E6	CAM_ALTM_LA_MIN	dddd dddd dddd dddd	$\begin{gathered} 4 \\ (0 \times 0004) \end{gathered}$
0xC9E8	CAM_STAT_MODE	dddd dddd dddd dddd	$\begin{gathered} 30 \\ (0 \times 001 \mathrm{E}) \end{gathered}$
0xC9EA	CAM_STAT_CONTROL	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xC9EC	CAM_STAT_EXCLUDE_CONTROL	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xC9F0	CAM_STAT_EXCLUDE_WINDOW_X_OFFSET	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xC9F2	CAM_STAT_EXCLUDE_WINDOW_Y_OFFSET	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xC9F4	CAM_STAT_EXCLUDE_WINDOW_WIDTH	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xC9F6	CAM_STAT_EXCLUDE_WINDOW_HEIGHT	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xC9F8	CAM_STAT_AE_ALTM_FD_WINDOW_X_OFFSET	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xC9FA	CAM_STAT_AE_ALTM_FD_WINDOW_Y_OFFSET	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xC9FC	CAM_STAT_AE_ALTM_FD_WINDOW_WIDTH	dddd dddd dddd dddd	$\begin{gathered} 1280 \\ (0 \times 0500) \end{gathered}$
0xC9FE	CAM_STAT_AE_ALTM_FD_WINDOW_HEIGHT	dddd dddd dddd dddd	$\begin{gathered} 960 \\ (0 \times 03 \mathrm{CO}) \end{gathered}$
0xCA00	CAM_STAT_AWB_CLIP_WINDOW_X_OFFSET	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xCA02	CAM_STAT_AWB_CLIP_WINDOW_Y_OFFSET	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xCA04	CAM_STAT_AWB_CLIP_WINDOW_WIDTH	dddd dddd dddd dddd	$\begin{gathered} 1280 \\ (0 \times 0500) \end{gathered}$
0xCA06	CAM_STAT_AWB_CLIP_WINDOW_HEIGHT	dddd dddd dddd dddd	$\begin{gathered} 960 \\ (0 \times 03 \mathrm{CO}) \end{gathered}$
0xCA08	CAM_LL_MODE	dddd dddd dddd dddd	$\begin{gathered} 3 \\ (0 \times 0003) \end{gathered}$
0xCAOA	CAM_LL_BRIGHTNESS_METRIC	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xCAOC	CAM_LL_BM_OFFSET	dddd dddd dddd dddd	$\begin{gathered} 63744 \\ \text { (0xF900) } \end{gathered}$
0xCAOE	CAM_LL_AUTO_SDR_TH_BM	dddd dddd dddd dddd	$\begin{gathered} 1000 \\ (0 \times 03 E 8) \end{gathered}$

TABLE 22. 18: CAMCONTROL VARIABLES
1 = read-only, always $1 ; 0=$ read-only, always $0 ; d=$ programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xCA10	CAM_LL_AUTO_SDR_GATE_BM	dddd dddd dddd ddd	50 (0×0032)
0xCA12	CAM_LL_SENSOR_RED_GAIN_METRIC	???? ???? ???? ????	0 (0×0000)
0xCA14	CAM_LL_SENSOR_GREEN_GAIN_METRIC	???? ???? ???? ????	0 (0×0000)
0xCA16	CAM_LL_SENSOR_BLUE_GAIN_METRIC	???? ???? ???? ????	0 (0×0000)
0xCA18	CAM_LL_RED_GAIN_METRIC	?	CAM_LL_GREEN_GAIN_METRIC

TABLE 22. 18: CAMCONTROL VARIABLES
1 = read-only, always $1 ; 0=$ read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xCA38	CAM_LL_CONTRAST_INTERCEPT_POINT_BRIGHT	dddd dddd	$\begin{gathered} 255 \\ (0 x F F) \end{gathered}$
0xCA39	CAM_LL_CONTRAST_INTERCEPT_POINT_DARK	dddd dddd	$\begin{gathered} 40 \\ (0 \times 28) \end{gathered}$
0xCA3A	CAM_LL_BRIGHT_FADE_TO_BLACK_LUMA	dddd dddd dddd dddd	$\begin{gathered} 800 \\ (0 \times 0320) \end{gathered}$
0xCA3C	CAM_LL_DARK_FADE_TO_BLACK_LUMA	dddd dddd dddd dddd	$\begin{gathered} 90 \\ (0 \times 005 \mathrm{~A}) \end{gathered}$
0xCA3E	CAM_LL_SDC_DP_DARK_BM	dddd dddd dddd dddd	$\begin{gathered} 200 \\ (0 \times 00 \mathrm{C} 8) \end{gathered}$
0xCA40	CAM_LL_SDC_DP_BRIGHT_BM	dddd dddd dddd dddd	$\begin{gathered} 2900 \\ \text { (0x0B54) } \end{gathered}$
0xCA42	CAM_LL_SDC_DP_STRENGTH_DARK	dddd dddd	$\begin{gathered} 8 \\ (0 \times 08) \end{gathered}$
0xCA43	CAM_LL_SDC_DP_STRENGTH_BRIGHT	dddd dddd	$\begin{gathered} 15 \\ (0 \times 0 F) \end{gathered}$
0xCA44	CAM_LL_SDC_HP_DARK_BM	dddd dddd dddd dddd	$\begin{gathered} 200 \\ (0 \times 00 \mathrm{C} 8) \end{gathered}$
0xCA46	CAM_LL_SDC_HP_BRIGHT_BM	dddd dddd dddd dddd	$\begin{gathered} 2900 \\ \text { (0x0B54) } \end{gathered}$
0xCA48	CAM_LL_SDC_HP_STRENGTH_DARK	dddd dddd	$\begin{gathered} 8 \\ (0 \times 08) \end{gathered}$
0xCA49	CAM_LL_SDC_HP_STRENGTH_BRIGHT	dddd dddd	$\begin{gathered} 15 \\ (0 \times 0 \mathrm{~F}) \end{gathered}$
0xCA4A	CAM_LL_SDC_CROSSFACTOR_DARK_BM	dddd dddd dddd dddd	$\begin{gathered} 200 \\ (0 \times 00 \mathrm{C} 8) \end{gathered}$
0xCA4C	CAM_LL_SDC_CROSSFACTOR_BRIGHT_BM	dddd dddd dddd dddd	$\begin{gathered} 2900 \\ \text { (0x0B54) } \end{gathered}$
0xCA4E	CAM_LL_SDC_CROSSFACTOR_STRENGTH_DARK	dddd dddd	$\begin{gathered} 12 \\ (0 \times 0 \mathrm{C}) \end{gathered}$
0xCA4F	CAM_LL_SDC_CROSSFACTOR_STRENGTH_BRIGHT	dddd dddd	$\begin{gathered} 4 \\ (0 \times 04) \end{gathered}$
0xCA50	CAM_LL_SDC_MAXFACTOR_DARK_BM	dddd dddd dddd dddd	$\begin{gathered} 200 \\ (0 \times 00 \mathrm{C} 8) \end{gathered}$
0xCA52	CAM_LL_SDC_MAXFACTOR_BRIGHT_BM	dddd dddd dddd dddd	$\begin{gathered} 2900 \\ \text { (0x0B54) } \end{gathered}$
0xCA54	CAM_LL_SDC_MAXFACTOR_STRENGTH_DARK	dddd dddd	$\begin{gathered} 1 \\ (0 \times 01) \end{gathered}$
0xCA55	CAM_LL_SDC_MAXFACTOR_STRENGTH_BRIGHT	dddd dddd	$\begin{gathered} 1 \\ (0 \times 01) \end{gathered}$
0xCA56	CAM_LL_SDC_TH_BM	dddd dddd dddd dddd	$\begin{gathered} 4096 \\ (0 \times 1000) \end{gathered}$
0xCA5A	CAM_LL_CDC_DP_DARK_BM	dddd dddd dddd dddd	$\begin{gathered} 200 \\ (0 \times 00 \mathrm{C} 8) \end{gathered}$
0xCA5C	CAM_LL_CDC_DP_BRIGHT_BM	dddd dddd dddd dddd	$\begin{gathered} 2900 \\ \text { (0x0B54) } \end{gathered}$
0xCA5E	CAM_LL_CDC_DP_STRENGTH_DARK	dddd dddd	$\begin{gathered} 8 \\ (0 \times 08) \end{gathered}$
0xCA5F	CAM_LL_CDC_DP_STRENGTH_BRIGHT	dddd dddd	$\begin{gathered} 15 \\ (0 \times 0 \mathrm{~F}) \end{gathered}$

TABLE 22. 18: CAMCONTROL VARIABLES
1 = read-only, always $1 ; 0=$ read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xCA60	CAM_LL_CDC_HP_DARK_BM	dddd dddd dddd dddd	$\begin{gathered} 200 \\ (0 \times 00 \mathrm{C} 8) \end{gathered}$
0xCA62	CAM_LL_CDC_HP_BRIGHT_BM	dddd dddd dddd dddd	$\begin{gathered} 2900 \\ \text { (0x0B54) } \end{gathered}$
0xCA64	CAM_LL_CDC_HP_STRENGTH_DARK	dddd dddd	$\begin{gathered} 8 \\ (0 \times 08) \end{gathered}$
0xCA65	CAM_LL_CDC_HP_STRENGTH_BRIGHT	dddd dddd	$\begin{gathered} 15 \\ (0 \times 0 \mathrm{~F}) \end{gathered}$
0xCA66	CAM_LL_CDC_CROSSFACTOR_DARK_BM	dddd dddd dddd dddd	$\begin{gathered} 200 \\ (0 \times 00 \mathrm{C} 8) \end{gathered}$
0xCA68	CAM_LL_CDC_CROSSFACTOR_BRIGHT_BM	dddd dddd dddd dddd	$\begin{gathered} 2900 \\ \text { (0x0B54) } \end{gathered}$
0xCA6A	CAM_LL_CDC_CROSSFACTOR_STRENGTH_DARK	dddd dddd	$\begin{gathered} 12 \\ (0 \times 0 \mathrm{C}) \end{gathered}$
0xCA6B	CAM_LL_CDC_CROSSFACTOR_STRENGTH_BRIGHT	dddd dddd	$\begin{gathered} 4 \\ (0 \times 04) \end{gathered}$
0xCA6C	CAM_LL_CDC_TH_BM	dddd dddd dddd dddd	$\begin{gathered} 4096 \\ (0 \times 1000) \end{gathered}$
0xCA70	CAM_LL_ADACD_GR_WEIGHTS_STRENGTH_LOW	dddd dddd dddd dddd	$\begin{gathered} 6 \\ (0 \times 0006) \end{gathered}$
0xCA72	CAM_LL_ADACD_GR_WEIGHTS_STRENGTH_HIGH	dddd dddd dddd dddd	$\begin{gathered} 3 \\ (0 \times 0003) \end{gathered}$
0xCA74	CAM_LL_ADACD_GR_WEIGHTS_LOW_SNR	dddd dddd dddd dddd	$\begin{gathered} 1000 \\ (0 \times 03 E 8) \end{gathered}$
0xCA76	CAM_LL_ADACD_GR_WEIGHTS_HIGH_SNR	dddd dddd dddd dddd	$\begin{gathered} 3328 \\ (0 \times 0 D 00) \end{gathered}$
0xCA78	CAM_LL_NR_LUT_0_GAIN	dddd dddd dddd dddd	$\begin{gathered} 32 \\ (0 \times 0020) \end{gathered}$
0xCA7A	CAM_LL_NR_LUT_0_SIGMA	dddd dddd dddd dddd	$\begin{gathered} 52 \\ (0 \times 0034) \end{gathered}$
0xCA7C	CAM_LL_NR_LUT_0_K0	dddd dddd dddd dddd	$\begin{gathered} 147 \\ (0 \times 0093) \end{gathered}$
0xCA80	CAM_LL_NR_LUT_1_GAIN	dddd dddd dddd dddd	$\begin{gathered} 88 \\ (0 \times 0058) \end{gathered}$
0xCA82	CAM_LL_NR_LUT_1_SIGMA	dddd dddd dddd dddd	$\begin{gathered} 55 \\ (0 \times 0037) \end{gathered}$
0xCA84	CAM_LL_NR_LUT_1_K0	dddd dddd dddd dddd	$\begin{gathered} 147 \\ (0 \times 0093) \end{gathered}$
0xCA88	CAM_LL_NR_LUT_2_GAIN	dddd dddd dddd dddd	$\begin{gathered} 352 \\ (0 \times 0160) \end{gathered}$
0xCA8A	CAM_LL_NR_LUT_2_SIGMA	dddd dddd dddd dddd	$\begin{gathered} 263 \\ (0 \times 0107) \end{gathered}$
0xCA8C	CAM_LL_NR_LUT_2_K0	dddd dddd dddd dddd	$\begin{gathered} 147 \\ (0 \times 0093) \end{gathered}$
0xCA90	CAM_LL_NR_LUT_3_GAIN	dddd dddd dddd dddd	$\begin{gathered} 704 \\ (0 \times 02 \mathrm{CO}) \end{gathered}$
0xCA92	CAM_LL_NR_LUT_3_SIGMA	dddd dddd dddd dddd	$\begin{gathered} 261 \\ (0 \times 0105) \end{gathered}$
0xCA94	CAM_LL_NR_LUT_3_K0	dddd dddd dddd dddd	$\begin{gathered} 147 \\ (0 \times 0093) \end{gathered}$

TABLE 22. 18: CAMCONTROL VARIABLES
1 = read-only, always $1 ; 0=$ read-only, always $0 ; d=$ programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xCA9C	CAM_LL_CK_0_SNR	dddd dddd dddd dddd	$\begin{gathered} 2304 \\ (0 \times 0900) \end{gathered}$
0xCAA4	CAM_LL_CK_O_CHROMA_GAIN_HIGH	dddd dddd dddd dddd	$\begin{gathered} 448 \\ (0 \times 01 \mathrm{Co}) \end{gathered}$
0xCAA8	CAM_LL_CK_1_SNR	dddd dddd dddd dddd	$\begin{gathered} 1997 \\ (0 \times 07 C D) \end{gathered}$
0xCAB0	CAM_LL_CK_1_CHROMA_GAIN_HIGH	dddd dddd dddd dddd	$\begin{gathered} 358 \\ (0 \times 0166) \end{gathered}$
0xCAB4	CAM_LL_CK_2_SNR	dddd dddd dddd dddd	$\begin{gathered} 102 \\ (0 \times 0066) \end{gathered}$
0xCABC	CAM_LL_CK_2_CHROMA_GAIN_HIGH	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xCAC4	CAM_PGA_PGA_CONTROL	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xCAC8	CAM_SYSCTL_PLL_CONTROL	dddd dddd	$\begin{gathered} 77 \\ (0 \times 4 \mathrm{D}) \end{gathered}$
0xCAC9	CAM_SYSCTL_CLOCK_CONTROL	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xCACA	CAM_SYSCTL_PLL_DIVIDER_M_N_1_CLK	dddd dddd dddd dddd	$\begin{gathered} 272 \\ (0 \times 0110) \end{gathered}$
0xCACE	CAM_SYSCTL_PLL_DIVIDER_M_N_NET	dddd dddd dddd dddd	$\begin{gathered} 270 \\ (0 \times 010 \mathrm{E}) \end{gathered}$
0xCAD0	CAM_SYSCTL_PLL_DIVIDER_P_1_CLK	dddd dddd dddd dddd	$\begin{gathered} 51 \\ (0 \times 0033) \end{gathered}$
0xCAD4	CAM_SYSCTL_PLL_DIVIDER_P_NET	dddd dddd dddd dddd	$\begin{gathered} 31 \\ (0 \times 001 F) \end{gathered}$
0xCAD8	CAM_SYSCTL_PLL_FRACTION_1_CLK	dddd dddd dddd dddd dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0xCAE0	CAM_SYSCTL_PLL_FRACTION_NET	dddd dddd dddd dddd dddd dddd dddd dddd	$\begin{gathered} \hline 3499602944 \\ \text { (0xD097B400) } \end{gathered}$
0xCAE4	CAM_OUTPUT_WIDTH	dddd dddd dddd dddd	$\begin{gathered} 1280 \\ (0 \times 0500) \end{gathered}$
0xCAE6	CAM_OUTPUT_HEIGHT	dddd dddd dddd dddd	$\begin{gathered} 960 \\ (0 \times 03 \mathrm{CO}) \end{gathered}$
0xCAE8	CAM_OUTPUT_FORMAT_YUV	dddd dddd dddd dddd	$\begin{gathered} 16 \\ (0 \times 0010) \end{gathered}$
0xCAEA	CAM_OUTPUT_FORMAT	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xCAEB	CAM_OUTPUT_FORMAT_BAYER_PATH	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xCAEC	CAM_OUTPUT_FORMAT_BAYER_WIDTH	???? ????	$\begin{gathered} 12 \\ (0 \times 0 \mathrm{C}) \end{gathered}$
0xCAED	CAM_OUTPUT_FORMAT_JPEG	dddd dddd	$\begin{gathered} 22 \\ (0 \times 16) \end{gathered}$
OxCAEE	CAM_OUTPUT_JPEG_RESTART_MCU	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xCAF0	CAM_OUTPUT_JPEG_Q	dddd dddd	$\begin{gathered} 50 \\ (0 \times 32) \end{gathered}$
0xCAF1	CAM_OUTPUT_JPEG_AUTO_Q_MAX	dddd dddd	$\begin{gathered} 64 \\ (0 \times 40) \end{gathered}$

TABLE 22. 18: CAMCONTROL VARIABLES
1 = read-only, always $1 ; 0=$ read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xCAF2	CAM_OUTPUT_JPEG_MAX_BYTES_ADJUST	dddd dddd	$\begin{gathered} 24 \\ (0 \times 18) \end{gathered}$
0xCAF4	CAM_OUTPUT_COMPRESSED_BIT_RATE_8K	dddd dddd dddd dddd	$\begin{gathered} 9375 \\ (0 \times 249 F) \end{gathered}$
0xCAF6	CAM_OUTPUT_H264_SLICE_MBROWS	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xCAF8	CAM_OUTPUT_H264_CONTROL	dddd dddd	$\begin{gathered} 14 \\ (0 \times 0 \mathrm{E}) \end{gathered}$
0xCAF9	CAM_OUTPUT_H264_QP_LUMA	dddd dddd	$\begin{gathered} 44 \\ (0 \times 2 C) \end{gathered}$
0xCAFA	CAM_OUTPUT_Y_OFFSET	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xCAFC	CAM_PORT_PARALLEL_CONTROL	dddd dddd dddd dddd	$\begin{gathered} 16897 \\ (0 \times 4201) \end{gathered}$
0xCAFE	CAM_PORT_CONST_LINE_LENGTH	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xCB00	CAM_PORT_MAX_PACKET_PAYLOAD	dddd dddd dddd dddd	$\begin{gathered} 664 \\ (0 \times 0298) \end{gathered}$
0xCB02	CAM_PORT_KEEPSYNC_CONTROL	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xCB03	CAM_PORT_KEEPSYNC_MIN_BLACK_FRAMES	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xCB04	CAM_TEMPMON_TCONTROL	dddd dddd dddd dddd	$\begin{gathered} 113 \\ (0 \times 0071) \end{gathered}$
0xCB06	CAM_TEMPMON_TSTATUS	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xCB08	CAM_TEMPMON_DAMPING_FACTOR	dddd dddd	$\begin{gathered} 16 \\ (0 \times 10) \end{gathered}$
0xCB09	CAM_TEMPMON_HIGH_THRESHOLD	dddd dddd	$\begin{gathered} 70 \\ (0 \times 46) \end{gathered}$
0xCBOA	CAM_TEMPMON_LOW_THRESHOLD	dddd dddd	$\begin{gathered} 10 \\ (0 \times 0 \mathrm{~A}) \end{gathered}$
0xCB0B	CAM_TEMPMON_TEMPERATURE	???? ????	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xCB0C	CAM_TEMPMON_TEMPERATURE_MIN	???? ????	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xCBOD	CAM_TEMPMON_TEMPERATURE_MAX	???? ????	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xCB10	CAM_FLICKER_DETECT_FD_MODE	dddd dddd dddd dddd	$\begin{gathered} 1 \\ (0 \times 0001) \end{gathered}$
0xCB14	CAM_ADAPTATION_TA_MODE	dddd dddd dddd dddd	$\begin{gathered} 1 \\ (0 \times 0001) \end{gathered}$
0xCB18	CAM_SENSOR_CONTROL2_HISPI	dddd dddd dddd dddd	$\stackrel{2}{(0 \times 0002)}$
0xCB20	CAM_LL2_NR_LUT_T2_0_SIGMA	dddd dddd dddd dddd	$\begin{gathered} 52 \\ (0 \times 0034) \end{gathered}$
0xCB22	CAM_LL2_NR_LUT_T2_0_K0	dddd dddd dddd dddd	$\begin{gathered} 147 \\ (0 \times 0093) \end{gathered}$
0xCB24	CAM_LL2_NR_LUT_T2_1_SIGMA	dddd dddd dddd dddd	$\begin{gathered} 55 \\ (0 \times 0037) \end{gathered}$

TABLE 22. 18: CAMCONTROL VARIABLES
1 = read-only, always $1 ; 0=$ read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xCB26	CAM_LL2_NR_LUT_T2_1_K0	dddd dddd dddd dddd	$\begin{gathered} 147 \\ (0 \times 0093) \end{gathered}$
0xCB28	CAM_LL2_NR_LUT_T2_2_SIGMA	dddd dddd dddd dddd	$\begin{gathered} 263 \\ (0 \times 0107) \end{gathered}$
0xCB2A	CAM_LL2_NR_LUT_T2_2_K0	dddd dddd dddd dddd	$\begin{gathered} 147 \\ (0 \times 0093) \end{gathered}$
0xCB2C	CAM_LL2_NR_LUT_T2_3_SIGMA	dddd dddd dddd dddd	$\begin{gathered} 261 \\ (0 \times 0105) \end{gathered}$
0xCB2E	CAM_LL2_NR_LUT_T2_3_K0	dddd dddd dddd dddd	$\begin{gathered} 147 \\ (0 \times 0093) \end{gathered}$
0xCB30	CAM_LL2_NR_LUT_T3_0_SIGMA	dddd dddd dddd dddd	$\begin{gathered} 52 \\ (0 \times 0034) \end{gathered}$
0xCB32	CAM_LL2_NR_LUT_T3_0_K0	dddd dddd dddd dddd	$\begin{gathered} 147 \\ (0 \times 0093) \end{gathered}$
0xCB34	CAM_LL2_NR_LUT_T3_1_SIGMA	dddd dddd dddd dddd	$\begin{gathered} 55 \\ (0 \times 0037) \end{gathered}$
0xCB36	CAM_LL2_NR_LUT_T3_1_K0	dddd dddd dddd dddd	$\begin{gathered} 147 \\ (0 \times 0093) \end{gathered}$
0xCB38	CAM_LL2_NR_LUT_T3_2_SIGMA	dddd dddd dddd dddd	$\begin{gathered} 263 \\ (0 \times 0107) \end{gathered}$
0xCB3A	CAM_LL2_NR_LUT_T3_2_K0	dddd dddd dddd dddd	$\begin{gathered} 147 \\ (0 \times 0093) \end{gathered}$
0xCB3C	CAM_LL2_NR_LUT_T3_3_SIGMA	dddd dddd dddd dddd	$\begin{gathered} 261 \\ (0 \times 0105) \end{gathered}$
0xCB3E	CAM_LL2_NR_LUT_T3_3_K0	dddd dddd dddd dddd	$\begin{gathered} 147 \\ (0 \times 0093) \end{gathered}$
0xCB40	CAM_LL2_NR_TRANS_PT_S1	dddd dddd dddd dddd dddd dddd dddd dddd	$\begin{gathered} 3000 \\ (0 \times 00000 \mathrm{BB} 8) \end{gathered}$
0xCB44	CAM_LL2_NR_TRANS_PT_S2	dddd dddd dddd dddd dddd dddd dddd dddd	$\begin{gathered} 3500 \\ (0 \times 00000 \mathrm{DAC}) \end{gathered}$
0xCB48	CAM_LL2_NR_TRANS_PT_S3	dddd dddd dddd dddd dddd dddd dddd dddd	$\begin{gathered} 50000 \\ (0 \times 0000 \mathrm{C} 350) \end{gathered}$
0xCB4C	CAM_LL2_NR_TRANS_PT_S4	dddd dddd dddd dddd dddd dddd dddd dddd	$\begin{gathered} 63000 \\ (0 \times 0000 \mathrm{~F} 618) \end{gathered}$
0xCB50	CAM_STE_ROTATE_OPTICAL_CENTER_X	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xCB52	CAM_STE_ROTATE_OPTICAL_CENTER_Y	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xCB54	CAM_STE_ROTATE_ANGLE	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xCB56	CAM_STE_ROTATE_ANGLE_MAX	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xCB58	CAM_CURRENT_CONTEXT	???? ????	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xCB59	CAM_MODE_SYNC_SOURCE	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xCB5A	CAM_MODE_SYNC_N_PULSES	dddd dddd	$\begin{gathered} 10 \\ (0 \times 0 \mathrm{~A}) \end{gathered}$
0xCB5B	CAM_FORCED_OUTPUT_ENABLE	dddd dddd	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$

TABLE 22. 18: CAMCONTROL VARIABLES
1 = read-only, always $1 ; 0=$ read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xCB5C	CAM_FORCED_OUTPUT_WIDTH	dddd dddd dddd dddd	0 (0×0000)
0xCB5E	CAM_FORCED_OUTPUT_HEIGHT	dddd dddd dddd dddd	0 (0×0000)
$0 \times C B 60$	CAM_LL3_ADACD_WB_BRIGHT_BM	dddd dddd dddd dddd	65024 $(0 \times F E 00)$
$0 \times C B 62$	CAM_LL3_ADACD_WB_DARK_BM	dddd dddd dddd dddd	64640 $(0 \times F C 80)$
0xCB64	CAM_LL3_ADACD_WB_BRIGHT	dddd dddd	0 (0×00)
$0 x C B 65$	CAM_LL3_ADACD_WB_DARK	dddd dddd	0 (0×00)

TABLE 23. 19: SENSOR MANAGER
1 = read-only, always 1; 0 = read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
$0 \times C C 02$	SENSOR_MGR_MODE	dddd dddd dddd dddd	131 (0×0083)
$0 \times C C B A$	SENSOR_MGR_MIN_MANUAL_GAIN	???? ???? ???? ????	0 (0×0000)
$0 \times C C B C$	SENSOR_MGR_MAX_MANUAL_GAIN	???? ???? ???? ????	0 (0×0000)
0xCCBE	SENSOR_MGR_MIN_MANUAL_IT_MS	???? ???? ???? ????	0 (0×0000)
0xCCCO	SENSOR_MGR_MAX_MANUAL_IT_MS	???? ???? ???? ????	0 (0×0000)

TABLE 24. 23: SYSTEM MGR VARIABLES
1 = read-only, always $1 ; 0=$ read-only, always $0 ; d=$ programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
$0 \times D C 00$	SYSMGR_STATUS	???? ???? ???? ????	0 (0×0000)
$0 \times D C 02$	SYSMGR_MODE	dddd dddd	0 (0×00)
$0 \times D C 07$	SYSMGR_CONFIG_MODE	dddd dddd	1 (0×01)
$0 \times D C 0 A$	SYSMGR_CMD_STATUS	???? ????	0 (0×00)
0xDC0B	SYSMGR_CMD_COMP_ID	???? ????	0 (0×00)
0xDC0C	SYSMGR_CMD_COMP_FAILURE_ID	???? ???? ???? ????	0 (0×0000)
0xDC1C	SYSMGR_CONFIG_OTPM_STATUS_TABLE_ID	???? ????	0 (0×00)
0xDC1D	SYSMGR_CONFIG_OTPM_STATUS_RES	???? ????	0 (0×00)

TABLE 24. 23: SYSTEM MGR VARIABLES
1 = read-only, always $1 ; 0$ = read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xDC1E	SYSMGR_CONFIG_FLASH_STATUS_TABLE_ID	???? ????	0 (0×00)
0xDC1F	SYSMGR_CONFIG_FLASH_STATUS_RES	???? ????	0 (0×00)

TABLE 25. 24: PATCH LOADER VARIABLES
1 = read-only, always 1; 0 = read-only, always 0; d = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xE000	PATCHLDR_LOAD_ADDRESS	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xE002	PATCHLDR_SIZE_BYTES	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xE004	PATCHLDR_LOADER_ADDRESS	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xE006	PATCHLDR_PATCH_ID	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xE008	PATCHLDR_FIRMWARE_ID	dddd dddd dddd dddd dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 00000000) \end{gathered}$
0xE00C	PATCHLDR_LAST_RES	???? ????	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xE00D	PATCHLDR_NUM_PATCHES	???? ????	$\begin{gathered} 0 \\ (0 \times 00) \end{gathered}$
0xE00E	PATCHLDR_PATCH_ID_0	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xE010	PATCHLDR_PATCH_ID_1	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xE012	PATCHLDR_PATCH_ID_2	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xE014	PATCHLDR_PATCH_ID_3	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xE016	PATCHLDR_PATCH_ID_4	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xE018	PATCHLDR_PATCH_ID_5	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xE01A	PATCHLDR_PATCH_ID_6	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xE01C	PATCHLDR_PATCH_ID_7	???? ???? ???? ????	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

TABLE 26. 28: CAMERA ADAPTATION VARIABLES
1 = read-only, always $1 ; 0=$ read-only, always $0 ; d=$ programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
$0 \times F 005$	CAM_ADAPT_GPR_0_GPR_CONTROL	dddd dddd	0 $(0 x 00)$
$0 \times F 006$	CAM_ADAPT_GPR_0_ADDRESS	dddd dddd dddd dddd	0 $(0 x 0000)$

TABLE 26. 28: CAMERA ADAPTATION VARIABLES
1 = read-only, always $1 ; 0$ = read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xF008	CAM_ADAPT_GPR_0_VALUE_ABOVE_TH	dddd dddd dddd dddd	0 (0×0000)
0xF00D	CAM_ADAPT_GPR_1_GPR_CONTROL	dddd dddd	0 (0×00)
0xF00E	CAM_ADAPT_GPR_1_ADDRESS	dddd dddd dddd dddd	0 (0×0000)
0xF010	CAM_ADAPT_GPR_1_VALUE_ABOVE_TH	dddd dddd dddd dddd	0 (0×0000)
0xF015	CAM_ADAPT_GPR_2_GPR_CONTROL	dddd dddd	0 (0×00)
0xF016	CAM_ADAPT_GPR_2_ADDRESS	dddd dddd dddd dddd	0 (0×0000)
0xF018	CAM_ADAPT_GPR_2_VALUE_ABOVE_TH	dddd dddd dddd dddd	0 (0×0000)
0xF048	CAM_ADAPT_DELTA_DK_TARGET	dddd dddd dddd dddd	512 (0×0200)

TABLE 27. 31: COMMAND HANDLER
1 = read-only, always $1 ; 0$ = read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xFC00	CMD_HANDLER_PARAMS_POOL_0	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC02	CMD_HANDLER_PARAMS_POOL_1	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC04	CMD_HANDLER_PARAMS_POOL_2	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC06	CMD_HANDLER_PARAMS_POOL_3	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC08	CMD_HANDLER_PARAMS_POOL_4	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCOA	CMD_HANDLER_PARAMS_POOL_5	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC0C	CMD_HANDLER_PARAMS_POOL_6	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCOE	CMD_HANDLER_PARAMS_POOL_7	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC10	CMD_HANDLER_PARAMS_POOL_8	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC12	CMD_HANDLER_PARAMS_POOL_9	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC14	CMD_HANDLER_PARAMS_POOL_10	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC16	CMD_HANDLER_PARAMS_POOL_11	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC18	CMD_HANDLER_PARAMS_POOL_12	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC1A	CMD_HANDLER_PARAMS_POOL_13	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

TABLE 27. 31: COMMAND HANDLER
1 = read-only, always $1 ; 0$ = read-only, always 0; d = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xFC1C	CMD_HANDLER_PARAMS_POOL_14	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC1E	CMD_HANDLER_PARAMS_POOL_15	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC20	CMD_HANDLER_PARAMS_POOL_16	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC22	CMD_HANDLER_PARAMS_POOL_17	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC24	CMD_HANDLER_PARAMS_POOL_18	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC26	CMD_HANDLER_PARAMS_POOL_19	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC28	CMD_HANDLER_PARAMS_POOL_20	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC2A	CMD_HANDLER_PARAMS_POOL_21	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC2C	CMD_HANDLER_PARAMS_POOL_22	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC2E	CMD_HANDLER_PARAMS_POOL_23	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC30	CMD_HANDLER_PARAMS_POOL_24	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC32	CMD_HANDLER_PARAMS_POOL_25	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC34	CMD_HANDLER_PARAMS_POOL_26	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC36	CMD_HANDLER_PARAMS_POOL_27	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC38	CMD_HANDLER_PARAMS_POOL_28	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC3A	CMD_HANDLER_PARAMS_POOL_29	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC3C	CMD_HANDLER_PARAMS_POOL_30	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC3E	CMD_HANDLER_PARAMS_POOL_31	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC40	CMD_HANDLER_PARAMS_POOL_32	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC42	CMD_HANDLER_PARAMS_POOL_33	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC44	CMD_HANDLER_PARAMS_POOL_34	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC46	CMD_HANDLER_PARAMS_POOL_35	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC48	CMD_HANDLER_PARAMS_POOL_36	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC4A	CMD_HANDLER_PARAMS_POOL_37	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC4C	CMD_HANDLER_PARAMS_POOL_38	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

TABLE 27. 31: COMMAND HANDLER
1 = read-only, always $1 ; 0$ = read-only, always 0; d = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xFC4E	CMD_HANDLER_PARAMS_POOL_39	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC50	CMD_HANDLER_PARAMS_POOL_40	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC52	CMD_HANDLER_PARAMS_POOL_41	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC54	CMD_HANDLER_PARAMS_POOL_42	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC56	CMD_HANDLER_PARAMS_POOL_43	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC58	CMD_HANDLER_PARAMS_POOL_44	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC5A	CMD_HANDLER_PARAMS_POOL_45	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC5C	CMD_HANDLER_PARAMS_POOL_46	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC5E	CMD_HANDLER_PARAMS_POOL_47	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC60	CMD_HANDLER_PARAMS_POOL_48	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC62	CMD_HANDLER_PARAMS_POOL_49	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC64	CMD_HANDLER_PARAMS_POOL_50	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC66	CMD_HANDLER_PARAMS_POOL_51	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC68	CMD_HANDLER_PARAMS_POOL_52	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC6A	CMD_HANDLER_PARAMS_POOL_53	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC6C	CMD_HANDLER_PARAMS_POOL_54	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC6E	CMD_HANDLER_PARAMS_POOL_55	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC70	CMD_HANDLER_PARAMS_POOL_56	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC72	CMD_HANDLER_PARAMS_POOL_57	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC74	CMD_HANDLER_PARAMS_POOL_58	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC76	CMD_HANDLER_PARAMS_POOL_59	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC78	CMD_HANDLER_PARAMS_POOL_60	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC7A	CMD_HANDLER_PARAMS_POOL_61	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC7C	CMD_HANDLER_PARAMS_POOL_62	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC7E	CMD_HANDLER_PARAMS_POOL_63	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

TABLE 27. 31: COMMAND HANDLER
1 = read-only, always 1; 0 = read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xFC80	CMD_HANDLER_PARAMS_POOL_64	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC82	CMD_HANDLER_PARAMS_POOL_65	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC84	CMD_HANDLER_PARAMS_POOL_66	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC86	CMD_HANDLER_PARAMS_POOL_67	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC88	CMD_HANDLER_PARAMS_POOL_68	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC8A	CMD_HANDLER_PARAMS_POOL_69	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC8C	CMD_HANDLER_PARAMS_POOL_70	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC8E	CMD_HANDLER_PARAMS_POOL_71	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC90	CMD_HANDLER_PARAMS_POOL_72	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC92	CMD_HANDLER_PARAMS_POOL_73	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC94	CMD_HANDLER_PARAMS_POOL_74	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC96	CMD_HANDLER_PARAMS_POOL_75	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC98	CMD_HANDLER_PARAMS_POOL_76	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC9A	CMD_HANDLER_PARAMS_POOL_77	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC9C	CMD_HANDLER_PARAMS_POOL_78	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFC9E	CMD_HANDLER_PARAMS_POOL_79	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCA0	CMD_HANDLER_PARAMS_POOL_80	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCA2	CMD_HANDLER_PARAMS_POOL_81	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCA4	CMD_HANDLER_PARAMS_POOL_82	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCA6	CMD_HANDLER_PARAMS_POOL_83	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCA8	CMD_HANDLER_PARAMS_POOL_84	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCAA	CMD_HANDLER_PARAMS_POOL_85	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCAC	CMD_HANDLER_PARAMS_POOL_86	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCAE	CMD_HANDLER_PARAMS_POOL_87	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCB0	CMD_HANDLER_PARAMS_POOL_88	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

TABLE 27. 31: COMMAND HANDLER
1 = read-only, always 1; 0 = read-only, always $0 ; d$ = programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xFCB2	CMD_HANDLER_PARAMS_POOL_89	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCB4	CMD_HANDLER_PARAMS_POOL_90	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCB6	CMD_HANDLER_PARAMS_POOL_91	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCB8	CMD_HANDLER_PARAMS_POOL_92	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCBA	CMD_HANDLER_PARAMS_POOL_93	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCBC	CMD_HANDLER_PARAMS_POOL_94	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCBE	CMD_HANDLER_PARAMS_POOL_95	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCC0	CMD_HANDLER_PARAMS_POOL_96	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCC2	CMD_HANDLER_PARAMS_POOL_97	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCC4	CMD_HANDLER_PARAMS_POOL_98	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCC6	CMD_HANDLER_PARAMS_POOL_99	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCC8	CMD_HANDLER_PARAMS_POOL_100	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCCA	CMD_HANDLER_PARAMS_POOL_101	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCCC	CMD_HANDLER_PARAMS_POOL_102	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCCE	CMD_HANDLER_PARAMS_POOL_103	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCD0	CMD_HANDLER_PARAMS_POOL_104	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCD2	CMD_HANDLER_PARAMS_POOL_105	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCD4	CMD_HANDLER_PARAMS_POOL_106	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCD6	CMD_HANDLER_PARAMS_POOL_107	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCD8	CMD_HANDLER_PARAMS_POOL_108	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCDA	CMD_HANDLER_PARAMS_POOL_109	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCDC	CMD_HANDLER_PARAMS_POOL_110	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCDE	CMD_HANDLER_PARAMS_POOL_111	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCE0	CMD_HANDLER_PARAMS_POOL_112	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCE2	CMD_HANDLER_PARAMS_POOL_113	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

TABLE 27. 31: COMMAND HANDLER
1 = read-only, always $1 ; 0$ = read-only, always $0 ; \mathrm{d}=$ programmable; ? = read-only, dynamic

Variable (Hex)	Name	Data Format (Binary)	Default Value Dec(Hex)
0xFCE4	CMD_HANDLER_PARAMS_POOL_114	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCE6	CMD_HANDLER_PARAMS_POOL_115	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCE8	CMD_HANDLER_PARAMS_POOL_116	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCEA	CMD_HANDLER_PARAMS_POOL_117	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCEC	CMD_HANDLER_PARAMS_POOL_118	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCEE	CMD_HANDLER_PARAMS_POOL_119	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCF0	CMD_HANDLER_PARAMS_POOL_120	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCF2	CMD_HANDLER_PARAMS_POOL_121	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCF4	CMD_HANDLER_PARAMS_POOL_122	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCF6	CMD_HANDLER_PARAMS_POOL_123	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCF8	CMD_HANDLER_PARAMS_POOL_124	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCFA	CMD_HANDLER_PARAMS_POOL_125	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCFC	CMD_HANDLER_PARAMS_POOL_126	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$
0xFCFE	CMD_HANDLER_PARAMS_POOL_127	dddd dddd dddd dddd	$\begin{gathered} 0 \\ (0 \times 0000) \end{gathered}$

TABLE 28. CPIPE RGB PIPE REGISTERS
R/W (Read or Write) bit; RO (Read Only) bit.

Register (Hex)	Bits	Default	Name
R0x3332	15:0	0x0002	HILIGHT_COLOR (R/W)
	15:4	X	Reserved
	3	0x0000	HILIGHT_COLOR_AWB_EN Highlight color enable AWB. If set, each pixel that Auto-White-Balance used for AWB will be Highlighted. The highlight color is chosen by hilight_color_red, hilight_color_green and/or hilight_color_blue. At least one of these three colors must be set for the highlighting to work.
	2	0x0000	HILIGHT_COLOR_RED Highlight color red. If hilight_color_awb_en and pixel was used for AWB and hilight_color_red $=1$, Red component of pixel is set to maximum value. Otherwise Red component is unchanged.
	1	0x0001	HILIGHT_COLOR_GREEN Highlight color green. If hilight_color_awb_en and pixel was used for AWB and hilight_color_green $=1$, Green component of pixel is set to maximum value. Otherwise Green component is unchanged.
	0	0x0000	HILIGHT_COLOR_BLUE Highlight color blue. If hilight_color_awb_en and pixel was used for AWB and hilight_color_blue = 1 , Blue component of pixel is set to maximum value. Otherwise Blue component is unchanged.
	Highlight_color		

TABLE 29. CPIPE YUV PIPE REGISTERS
R/W (Read or Write) bit; RO (Read Only) bit.

Register (Hex)	Bits	Default	Name
R0x3400	15:0	0x0000	HUE1_Q1Q2 (R/W)
	15:14	X	Reserved
	13:8	0x0000	HUE_ROTATION_10 Hue Rotation angle for $\mathrm{Q} 2, \mathrm{CR} / \mathrm{CB}=0.02$ Two\' s complement Signed Value Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	HUE_ROTATION_1 Hue Rotation angle for $\mathrm{Q} 1, \mathrm{CR} / \mathrm{CB}=0.02$ Two\'s complement Signed Value Legal values: [-22,22].
R0x3402	15:0	0x0000	HUE2_Q1Q2 (R/W)
	15:14	X	Reserved
	13:8	0x0000	HUE_ROTATION_11 Hue Rotation angle for Q2,CR/CB=0.3 Two\'s complement Signed Value Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	HUE_ROTATION_2 Hue Rotation angle for Q1,CR/CB=0.3 Two\'s complement Signed Value Legal values: [-22,22].

TABLE 29. CPIPE YUV PIPE REGISTERS
R/W (Read or Write) bit; RO (Read Only) bit.

Register (Hex)	Bits	Default	Name
R0x3404	15:0	0x0000	HUE3_Q1Q2 (R/W)
	15:14	X	Reserved
	13:8	0x0000	HUE_ROTATION_12 Hue Rotation angle for $\mathrm{Q} 2, \mathrm{CR} / \mathrm{CB}=0.6$ Two\'s complement Signed Value Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	HUE_ROTATION_3 Hue Rotation angle for Q1,CR/CB=0.6 Two\'s complement Signed Value Legal values: [-22,22].
R0x3406	15:0	0x0000	HUE4_Q1Q2 (R/W)
	15:14	X	Reserved
	13:8	0x0000	HUE_ROTATION_13 Hue Rotation angle for $\mathrm{Q} 2, \mathrm{CR} / \mathrm{CB}=0.84$ Two\'s complement Signed Value Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	HUE_ROTATION_4 Hue Rotation angle for $\mathrm{Q} 1, \mathrm{CR} / \mathrm{CB}=0.84$ Two\'s complement Signed Value Legal values: [-22,22].
R0x3408	15:0	0x0000	HUE5_Q1Q2 (R/W)
	15:14	X	Reserved
	13:8	0x0000	HUE_ROTATION_14 Hue Rotation angle for Q2,CR/CB=1.0 Two\'s complement Signed Value Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	HUE_ROTATION_5 Hue Rotation angle for Q1,CR/CB=1.0 Two\'s complement Signed Value Legal values: [-22,22].
R0x340A	15:0	0x0000	HUE6_Q1Q2 (R/W)
	15:14	X	Reserved
	13:8	0x0000	HUE_ROTATION_15 Hue Rotation angle for Q2,CB/CR=0.84 Two\'s complement Signed Value Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	HUE_ROTATION_6 Hue Rotation angle for $\mathrm{Q} 1, \mathrm{CB} / \mathrm{CR}=0.84$ Two\'s complement Signed Value Legal values: [-22,22].

TABLE 29. CPIPE YUV PIPE REGISTERS
R/W (Read or Write) bit; RO (Read Only) bit.

Register (Hex)	Bits	Default	Name
R0x340C	15:0	0x0000	HUE7_Q1Q2 (R/W)
	15:14	X	Reserved
	13:8	0x0000	HUE_ROTATION_16 Hue Rotation angle for Q2,CB/CR=0.6 Two\'s complement Signed Value Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	HUE_ROTATION_7 Hue Rotation angle for $\mathrm{Q} 1, \mathrm{CB} / \mathrm{CR}=0.6$ Two\' s complement Signed Value Legal values: [-22,22].
R0x340E	15:0	0x0000	HUE8_Q1Q2 (R/W)
	15:14	X	Reserved
	13:8	0x0000	HUE_ROTATION_17 Hue Rotation angle for $\mathrm{Q} 2, \mathrm{CB} / \mathrm{CR}=0.3$ Two\'s complement Signed Value Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	HUE_ROTATION_8 Hue Rotation angle for Q1,CB/CR=0.3 Two\'s complement Signed Value Legal values: [-22,22].
R0x3410	15:0	0x0000	HUE9_Q1Q2 (R/W)
	15:14	X	Reserved
	13:8	0x0000	HUE_ROTATION_18 Hue Rotation angle for Q2,CB/CR=0.02 Two\'s complement Signed Value Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	HUE_ROTATION_9 Hue Rotation angle for Q1,CB/CR=0.02 Two\'s complement Signed Value Legal values: [-22,22].
R0x3412	15:0	0x0000	HUE10_Q3Q4 (R/W)
	15:14	X	Reserved
	13:8	0x0000	HUE_ROTATION_28 Hue Rotation angle for Q4 CR/CB=0.02 Two\'s complement Signed Value Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	HUE_ROTATION_19 Hue Rotation angle for Q3 CR/CB=0.02 Two\'s complement Signed Value Legal values: [-22,22].

TABLE 29. CPIPE YUV PIPE REGISTERS
R/W (Read or Write) bit; RO (Read Only) bit.

Register (Hex)	Bits	Default	Name
R0x3414	15:0	0x0000	HUE11_Q3Q4 (R/W)
	15:14	X	Reserved
	13:8	0x0000	HUE_ROTATION_29 Hue Rotation angle for Q4 CR/CB=0.3 Two\'s complement Signed Value Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	HUE_ROTATION_20 Hue Rotation angle for Q3 CR/CB=0.3 Two\'s complement Signed Value Legal values: [-22,22].
R0x3416	15:0	0x0000	HUE12_Q3Q4 (R/W)
	15:14	X	Reserved
	13:8	0x0000	HUE_ROTATION_30 Hue Rotation angle for Q4 CR/CB=0.6 Two\'s complement Signed Value Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	HUE_ROTATION_21 Hue Rotation angle for Q3 CR/CB=0.6 Two\'s complement Signed Value Legal values: [-22,22].
R0x3418	15:0	0x0000	HUE13_Q3Q4 (R/W)
	15:14	X	Reserved
	13:8	0x0000	HUE_ROTATION_31 Hue Rotation angle for Q4 CR/CB=0.84 Two\'s complement Signed Value Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	HUE_ROTATION_22 Hue Rotation angle for Q3 CR/CB=0.84 Two\'s complement Signed Value Legal values: [-22,22].
R0x341A	15:0	0x0000	HUE14_Q3Q4 (R/W)
	15:14	X	Reserved
	13:8	0x0000	HUE_ROTATION_32 Hue Rotation angle for Q4 CR/CB=1.0 Two\' s complement Signed Value Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	HUE_ROTATION_23 Hue Rotation angle for Q3 CR/CB=1.0 Two\' s complement Signed Value Legal values: [-22,22].

TABLE 29. CPIPE YUV PIPE REGISTERS
R/W (Read or Write) bit; RO (Read Only) bit.

$\begin{aligned} & \text { Register } \\ & \text { (Hex) } \end{aligned}$	Bits	Default	Name
R0x341C	15:0	0x0000	HUE15_Q3Q4 (R/W)
	15:14	X	Reserved
	13:8	0x0000	HUE_ROTATION_33 Hue Rotation angle for $\mathrm{Q} 4 \mathrm{CB} / \mathrm{CR}=0.84$ Two\'s complement Signed Value Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	HUE_ROTATION_24 Hue Rotation angle for Q3 CB/CR=0.84 Two\'s complement Signed Value Legal values: [-22,22].
R0x341E	15:0	0x0000	HUE16_Q3Q4 (R/W)
	15:14	X	Reserved
	13:8	0x0000	HUE_ROTATION_34 Hue Rotation angle for $\mathrm{Q} 4 \mathrm{CB} / \mathrm{CR}=0.6$ Two\'s complement Signed Value Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	HUE_ROTATION_25 Hue Rotation angle for Q3 CB/CR=0.6 Two\'s complement Signed Value Legal values: [-22,22].
R0x3420	15:0	0x0000	HUE17_Q3Q4 (R/W)
	15:14	X	Reserved
	13:8	0x0000	HUE_ROTATION_35 Hue Rotation angle for Q4 CB/CR=0.3 Two\'s complement Signed Value Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	HUE_ROTATION_26 Hue Rotation angle for Q3 CB/CR=0.3 Two\'s complement Signed Value Legal values: [-22,22].
R0x3422	15:0	0x0000	HUE18_Q3Q4 (R/W)
	15:14	X	Reserved
	13:8	0x0000	HUE_ROTATION_36 Hue Rotation angle for Q4 CB/CR=0.02 Two\'s complement Signed Value Legal values: [-22,22].
	7:6	X	Reserved
	5:0	0x0000	HUE_ROTATION_27 Hue Rotation angle for Q3 CB/CR=0.02 Two\'s complement Signed Value Legal values: [-22,22].
R0x3424	15:0	0x0000	PCR_COLOR_GAIN1_REGION_1 (R/W)
	PCR saturation gain1, region 1 Legal values: [0,15].		
R0x3426	15:0	0x0000	PCR_COLOR_GAIN1_REGION_10 (R/W)
	PCR saturation gain1, region 10 Legal values: [0,15].		

TABLE 29. CPIPE YUV PIPE REGISTERS
R/W (Read or Write) bit; RO (Read Only) bit.

Register (Hex)	Bits	Default	Name
R0x3428	15:0	0x0000	PCR_COLOR_GAIN1_REGION_19 (R/W)
	PCR saturation gain1, region 19 Legal values: [0,15].		
R0x342A	15:0	0x0000	PCR_COLOR_GAIN1_REGION_28 (R/W)
	PCR saturation gain1, region 28 Legal values: [0,15].		
R0x342C	15:0	0x0000	PCR_COLOR_GAIN2_REGION_2 (R/W)
	PCR saturation gain2, region 2 Legal values: [0,15].		
R0x342E	15:0	0x0000	PCR_COLOR_GAIN2_REGION_11 (R/W)
	PCR saturation gain2, region 11 Legal values: [0,15].		
R0x3430	15:0	0x0000	PCR_COLOR_GAIN2_REGION_20 (R/W)
	PCR saturation gain2, region 20 Legal values: [0,15].		
R0x3432	15:0	0x0000	PCR_COLOR_GAIN2_REGION_29 (R/W)
	PCR saturation gain2, region 29 Legal values: $[0,15]$.		
R0x3434	15:0	0x0000	PCR_COLOR_GAIN3_REGION_3 (R/W)
	PCR saturation gain3, region 3 Legal values: [0,15].		
R0x3436	15:0	0x0000	PCR_COLOR_GAIN3_REGION_12 (R/W)
	PCR saturation gain3, region 12 Legal values: [0,15].		
R0x3438	15:0	0x0000	PCR_COLOR_GAIN3_REGION_21 (R/W)
	PCR saturation gain3, region 21 Legal values: [0,15].		
R0x343A	15:0	0x0000	PCR_COLOR_GAIN3_REGION_30 (R/W)
	PCR saturation gain3, region 30 Legal values: [0,15].		
R0x343C	15:0	0x0000	PCR_COLOR_GAIN4_REGION_4 (R/W)
	PCR saturation gain4, region 4 Legal values: [0,15].		
R0x343E	15:0	0x0000	PCR_COLOR_GAIN4_REGION_13 (R/W)
	PCR saturation gain4 region 13 Legal values: [0,15].		
R0x3440	15:0	0x0000	PCR_COLOR_GAIN4_REGION_22 (R/W)
	PCR saturation gain4, region 22 Legal values: $[0,15]$.		
R0x3442	15:0	0x0000	PCR_COLOR_GAIN4_REGION_31 (R/W)
	PCR saturation gain4, region 31 Legal values: [0,15].		
R0x3444	15:0	0x0000	PCR_COLOR_GAIN5_REGION_5 (R/W)
	PCR saturation gain5, region 5 Legal values: [0,15].		
R0x3446	15:0	0x0000	PCR_COLOR_GAIN5_REGION_14 (R/W)
	PCR saturation gain5 region 14 Legal values: [0,15].		
R0x3448	15:0	0x0000	PCR_COLOR_GAIN5_REGION_23 (R/W)
	PCR saturation gain5, region 23 Legal values: [0,15].		
R0x344A	15:0	0x0000	PCR_COLOR_GAIN5_REGION_32 (R/W)
	PCR saturation gain5, region 32 Legal values: [0,15].		

TABLE 29. CPIPE YUV PIPE REGISTERS
R/W (Read or Write) bit; RO (Read Only) bit.

Register (Hex)	Bits	Default	Name
R0x344C	15:0	0x0000	PCR_COLOR_GAIN6_REGION_6 (R/W)
	PCR saturation gain6, region 6 Legal values: [0,15].		
R0x344E	15:0	0x0000	PCR_COLOR_GAIN6_REGION_15 (R/W)
	PCR saturation gain6 region 15 Legal values: [0,15].		
R0x3450	15:0	0x0000	PCR_COLOR_GAIN6_REGION_24 (R/W)
	PCR saturation gain6, region 24 Legal values: [0,15].		
R0x3452	15:0	0x0000	PCR_COLOR_GAIN6_REGION_33 (R/W)
	PCR saturation gain6, region 33 Legal values: [0,15].		
R0x3454	15:0	0x0000	PCR_COLOR_GAIN7_REGION_7 (R/W)
	PCR saturation gain7, region 7 Legal values: [0,15].		
R0x3456	15:0	0x0000	PCR_COLOR_GAIN7_REGION_16 (R/W)
	PCR saturation gain7 region 16 Legal values: [0,15].		
R0x3458	15:0	0x0000	PCR_COLOR_GAIN7_REGION_25 (R/W)
	PCR saturation gain7, region 25 Legal values: [0,15].		
R0x345A	15:0	0x0000	PCR_COLOR_GAIN7_REGION_34 (R/W)
	PCR saturation gain7, region 34 Legal values: [0,15$]$.		
R0x345C	15:0	0x0000	PCR_COLOR_GAIN8_REGION_8 (R/W)
	PCR saturation gain8, region 8 Legal values: [0,15].		
R0x345E	15:0	0x0000	PCR_COLOR_GAIN8_REGION_17 (R/W)
	PCR saturation gain8 region 17 Legal values: [0,15].		
R0x3460	15:0	0x0000	PCR_COLOR_GAIN8_REGION_26 (R/W)
	PCR saturation gain8, region 26 Legal values: [0,15].		
R0x3462	15:0	0x0000	PCR_COLOR_GAIN8_REGION_35 (R/W)
	PCR saturation gain8, region 35 Legal values: [0,15].		
R0x3464	15:0	0x0000	PCR_COLOR_GAIN9_REGION_9 (R/W)
	PCR saturation gain9, region 9 Legal values: [0,15].		
R0x3466	15:0	0x0000	PCR_COLOR_GAIN9_REGION_18 (R/W)
	PCR saturation gain9 region 18 Legal values: [0,15].		
R0x3468	15:0	0x0000	PCR_COLOR_GAIN9_REGION_27 (R/W)
	PCR saturation gain9, region 27 Legal values: [0,15].		
R0x346A	15:0	0x0000	PCR_COLOR_GAIN9_REGION_36 (R/W)
	PCR saturation gain9, region 36 Legal values: [0,15].		

AND9802/D

TABLE 30. CPIPE RECONSTRUCT REGISTERS
R/W (Read or Write) bit; RO (Read Only) bit.

$\begin{aligned} & \text { Register } \\ & \text { (Hex) } \end{aligned}$	Bits	Default		Name
R0x3600	15:0	0x0010	P_G1_P0Q0 (R/W)	
	P0 coefficients for Green1. Legal values: [0, 65535].			
R0x3602	15:0	0x0000	P_G1_P0Q1 (R/W)	
	P0 coefficients for Green1. Legal values: [0, 65535].			
R0x3604	15:0	0x0000	P_G1_P0Q2 (R/W)	
	P0 coefficients for Green1. Legal values: [0, 65535].			
R0x3606	15:0	0x0000	P_G1_P0Q3 (R/W)	
	P0 coefficients for Green1. Legal values: [0, 65535].			
R0x3608	15:0	0x0000	P_G1_P0Q4 (R/W)	
	P0 coefficients for Green1. Legal values: [0, 65535].			
R0x360A	15:0	0x0010	P_R_P0Q0 (R/W)	
	P0 coefficients for Red. Legal values: [0, 65535].			
R0x360C	15:0	0x0000	P_R_P0Q1 (R/W)	
	P0 coefficients for Red. Legal values: [0, 65535].			
R0x360E	15:0	0x0000	P_R_P0Q2 (R/W)	
	P0 coefficients for Red. Legal values: [0, 65535].			
R0x3610	15:0	0x0000	P_R_P0Q3 (R/W)	
	P0 coefficients for Red. Legal values: [0, 65535].			
R0x3612	15:0	0x0000	P_R_P0Q4 (R/W)	
	P0 coefficients for Red. Legal values: [0, 65535].			
R0x3614	15:0	0x0010	P_B_P0Q0 (R/W)	
	P0 coefficients for Blue. Legal values: [0, 65535].			
R0x3616	15:0	0x0000	P_B_P0Q1 (R/W)	
	P0 coefficients for Blue. Legal values: [0, 65535].			
R0x3618	15:0	0x0000	P_B_P0Q2 (R/W)	
	P0 coefficients for Blue. Legal values: [0, 65535].			
R0x361A	15:0	0x0000	P_B_P0Q3 (R/W)	
	P0 coefficients for Blue. Legal values: [0, 65535].			
R0x361C	15:0	0x0000	P_B_P0Q4 (R/W)	
	P0 coefficients for Blue. Legal values: [0, 65535].			
R0x361E	15:0	0x0010	P_G2_P0Q0 (R/W)	
	P0 coefficients for Green2. Legal values: [0, 65535].			
R0x3620	15:0	0x0000	P_G2_P0Q1 (R/W)	
	P0 coefficients for Green2. Legal values: [0, 65535].			
R0x3622	15:0	0x0000	P_G2_P0Q2 (R/W)	
	P0 coefficients for Green2. Legal values: [0, 65535].			

AND9802/D

TABLE 30. CPIPE RECONSTRUCT REGISTERS
R/W (Read or Write) bit; RO (Read Only) bit.

$\begin{aligned} & \text { Register } \\ & \text { (Hex) } \end{aligned}$	Bits	Default		Name
R0x3624	15:0	0x0000	P_G2_P0Q3 (R/W)	
	P0 coefficients for Green2. Legal values: [0, 65535].			
R0x3626	15:0	0x0000	P_G2_P0Q4 (R/W)	
	P0 coefficients for Green2. Legal values: [0, 65535].			
R0x3628	15:0	0x0000	P_G1_P1Q0 (R/W)	
	P1 coefficients for Green1. Legal values: [0, 65535].			
R0x362A	15:0	0x0000	P_G1_P1Q1 (R/W)	
	P1 coefficients for Green1. Legal values: [0, 65535].			
R0x362C	15:0	0x0000	P_G1_P1Q2 (R/W)	
	P1 coefficients for Green1. Legal values: [0, 65535].			
R0x362E	15:0	0x0000	P_G1_P1Q3 (R/W)	
	P1 coefficients for Green1. Legal values: [0, 65535].			
R0x3630	15:0	0x0000	P_G1_P1Q4 (R/W)	
	P1 coefficients for Green1. Legal values: [0, 65535].			
R0x3632	15:0	0x0000	P_R_P1Q0 (R/W)	
	P1 coefficients for Red. Legal values: [0, 65535].			
R0x3634	15:0	0x0000	P_R_P1Q1 (R/W)	
	P1 coefficients for Red. Legal values: [0, 65535].			
R0x3636	15:0	0x0000	P_R_P1Q2 (R/W)	
	P1 coefficients for Red. Legal values: [0, 65535].			
R0x3638	15:0	0x0000	P_R_P1Q3 (R/W)	
	P1 coefficients for Red. Legal values: [0, 65535].			
R0x363A	15:0	0x0000	P_R_P1Q4 (R/W)	
	P1 coefficients for Red. Legal values: [0, 65535].			
R0x363C	15:0	0x0000	P_B_P1Q0 (R/W)	
	P1 coefficients for Blue. Legal values: [0, 65535].			
R0x363E	15:0	0x0000	P_B_P1Q1 (R/W)	
	P1 coefficients for Blue. Legal values: [0, 65535].			
R0x3640	15:0	0x0000	P_B_P1Q2 (R/W)	
	P1 coefficients for Blue. Legal values: [0, 65535].			
R0x3642	15:0	0x0000	P_B_P1Q3 (R/W)	
	P1 coefficients for Blue. Legal values: [0, 65535].			
R0x3644	15:0	0x0000	P_B_P1Q4 (R/W)	
	P1 coefficients for Blue. Legal values: [0, 65535].			
R0x3646	15:0	0x0000	P_G2_P1Q0 (R/W)	
	P1 coefficients for Green2. Legal values: [0, 65535].			

AND9802/D

TABLE 30. CPIPE RECONSTRUCT REGISTERS
R/W (Read or Write) bit; RO (Read Only) bit.

$\begin{aligned} & \text { Register } \\ & \text { (Hex) } \end{aligned}$	Bits	Default		Name
R0x3648	15:0	0x0000	P_G2_P1Q1 (R/W)	
	P1 coefficients for Green2. Legal values: [0, 65535].			
R0x364A	15:0	0x0000	P_G2_P1Q2 (R/W)	
	P1 coefficients for Green2. Legal values: [0, 65535].			
R0x364C	15:0	0x0000	P_G2_P1Q3 (R/W)	
	P1 coefficients for Green2. Legal values: [0, 65535].			
R0x364E	15:0	0x0000	P_G2_P1Q4 (R/W)	
	P1 coefficients for Green2. Legal values: [0, 65535].			
R0x3650	15:0	0x0000	P_G1_P2Q0 (R/W)	
	P2 coefficients for Green1. Legal values: [0, 65535].			
R0x3652	15:0	0x0000	P_G1_P2Q1 (R/W)	
	P2 coefficients for Green1. Legal values: [0, 65535].			
R0x3654	15:0	0x0000	P_G1_P2Q2 (R/W)	
	P2 coefficients for Green1. Legal values: [0, 65535].			
R0x3656	15:0	0x0000	P_G1_P2Q3 (R/W)	
	P2 coefficients for Green1. Legal values: [0, 65535].			
R0x3658	15:0	0x0000	P_G1_P2Q4 (R/W)	
	P2 coefficients for Green1. Legal values: [0, 65535].			
R0x365A	15:0	0x0000	P_R_P2Q0 (R/W)	
	P2 coefficients for Red. Legal values: [0, 65535].			
R0x365C	15:0	0x0000	P_R_P2Q1 (R/W)	
	P2 coefficients for Red. Legal values: [0, 65535].			
R0x365E	15:0	0x0000	P_R_P2Q2 (R/W)	
	P2 coefficients for Red. Legal values: [0, 65535].			
R0x3660	15:0	0x0000	P_R_P2Q3 (R/W)	
	P2 coefficients for Red. Legal values: [0, 65535].			
R0x3662	15:0	0x0000	P_R_P2Q4 (R/W)	
	P2 coefficients for Red. Legal values: [0, 65535].			
R0x3664	15:0	0x0000	P_B_P2Q0 (R/W)	
	P2 coefficients for Blue. Legal values: [0, 65535].			
R0x3666	15:0	0x0000	P_B_P2Q1 (R/W)	
	P2 coefficients for Blue. Legal values: [0, 65535].			
R0x3668	15:0	0x0000	P_B_P2Q2 (R/W)	
	P2 coefficients for Blue. Legal values: [0, 65535].			
R0x366A	15:0	0x0000	P_B_P2Q3 (R/W)	
	P2 coefficients for Blue. Legal values: [0, 65535].			

AND9802/D

TABLE 30. CPIPE RECONSTRUCT REGISTERS
R/W (Read or Write) bit; RO (Read Only) bit.

AND9802/D

TABLE 30. CPIPE RECONSTRUCT REGISTERS
R/W (Read or Write) bit; RO (Read Only) bit.

Register (Hex)	Bits	Default	Name	
R0x3690	15:0	0x0000	P_B_P3Q2 (R/W)	
	P3 coefficients for Blue. Legal values: [0, 65535].			
R0x3692	15:0	0x0000	P_B_P3Q3 (R/W)	
	P3 coefficients for Blue. Legal values: [0, 65535].			
R0x3694	15:0	0x0000	P_B_P3Q4 (R/W)	
	P3 coefficients for Blue. Legal values: [0, 65535].			
R0x3696	15:0	0x0000	P_G2_P3Q0 (R/W)	
	P3 coefficients for Green2. Legal values: [0, 65535].			
R0x3698	15:0	0x0000	P_G2_P3Q1 (R/W)	
	P3 coefficients for Green2. Legal values: [0, 65535].			
R0x369A	15:0	0x0000	P_G2_P3Q2 (R/W)	
	P3 coefficients for Green2. Legal values: [0, 65535].			
R0x369C	15:0	0x0000	P_G2_P3Q3 (R/W)	
	P3 coefficients for Green2. Legal values: [0, 65535].			
R0x369E	15:0	0x0000	P_G2_P3Q4 (R/W)	
	P3 coefficients for Green2. Legal values: [0, 65535].			
R0x36A0	15:0	0x0000	P_G1_P4Q0 (R/W)	
	P4 coefficients for Green1. Legal values: [0, 65535].			
R0x36A2	15:0	0x0000	P_G1_P4Q1 (R/W)	
	P4 coefficients for Green1. Legal values: [0, 65535].			
R0x36A4	15:0	0x0000	P_G1_P4Q2 (R/W)	
	P4 coefficients for Green1. Legal values: [0, 65535].			
R0x36A6	15:0	0x0000	P_G1_P4Q3 (R/W)	
	P4 coefficients for Green1. Legal values: [0, 65535].			
R0x36A8	15:0	0x0000	P_G1_P4Q4 (R/W)	
	P4 coefficients for Green1. Legal values: [0, 65535].			
R0x36AA	15:0	0x0000	P_R_P4Q0 (R/W)	
	P4 coefficients for Red. Legal values: [0, 65535].			
R0x36AC	15:0	0x0000	P_R_P4Q1 (R/W)	
	P4 coefficients for Red. Legal values: [0, 65535].			
R0x36AE	15:0	0x0000	P_R_P4Q2 (R/W)	
	P4 coefficients for Red. Legal values: [0, 65535].			
R0x36B0	15:0	0x0000	P_R_P4Q3 (R/W)	
	P4 coefficients for Red. Legal values: [0, 65535].			
R0x36B2	15:0	0x0000	P_R_P4Q4 (R/W)	
	P4 coefficients for Red. Legal values: [0, 65535].			

AND9802/D

TABLE 30. CPIPE RECONSTRUCT REGISTERS
R/W (Read or Write) bit; RO (Read Only) bit.

Register (Hex)	Bits	Default		Name
R0x36B4	15:0	0x0000	P_B_P4Q0 (R/W)	
	P4 coefficients for Blue. Legal values: [0, 65535].			
R0x36B6	15:0	0x0000	P_B_P4Q1 (R/W)	
	P4 coefficients for Blue. Legal values: [0, 65535].			
R0x36B8	15:0	0x0000	P_B_P4Q2 (R/W)	
	P4 coefficients for Blue. Legal values: [0, 65535].			
R0x36BA	15:0	0x0000	P_B_P4Q3 (R/W)	
	P4 coefficients for Blue. Legal values: [0, 65535].			
R0x36BC	15:0	0x0000	P_B_P4Q4 (R/W)	
	P4 coefficients for Blue. Legal values: [0, 65535].			
R0x36BE	15:0	0x0000	P_G2_P4Q0 (R/W)	
	P4 coefficients for Green2. Legal values: [0, 65535].			
R0x36C0	15:0	0x0000	P_G2_P4Q1 (R/W)	
	P4 coefficients for Green2. Legal values: [0, 65535].			
R0x36C2	15:0	0x0000	P_G2_P4Q2 (R/W)	
	P4 coefficients for Green2. Legal values: [0, 65535].			
R0x36C4	15:0	0x0000	P_G2_P4Q3 (R/W)	
	P4 coefficients for Green2. Legal values: [0, 65535].			
R0x36C6	15:0	0x0000	P_G2_P4Q4 (R/W)	
	P4 coefficients for Green2. Legal values: [0, 65535].			
R0x36C8	15:0	0x01E4	CENTER_ROW (R/W)	
	Center Row Legal values: [0, 2047].			
R0x36CA	15:0	0x0284	CENTER_COLUMN (R/W)	
	Center Column Legal values: [0, 4095].			

TABLE 31. CPIPE CONTROL REGISTERS
R/W (Read or Write) bit; RO (Read Only) bit.

Register (Hex)	Bits	Default	Name
R0x3210	15:0	0x08B0	COLOR_PIPELINE_CONTROL (R/W)
	15:13	X	Reserved
	12	0x0000	DEMOSAIC_BYPASS Bypass Demosaic Module When set, the kernel output will be the Bayer input for all three color channels.
	11	0x0001	GRB_ENABLE Enable Green Channel Rebalance (GRB).
	10	0x0000	HUE_ENABLE Enable hue adjustment.
	9	0x0000	PCR_ENABLE Enable preferred color reproduction (PCR).
	8	0x0000	Reserved
	7	0x0001	GAMMA_EN Enable gamma correction. See gamma_curve_knee_0_1 for interpolation point information.
	6	X	Reserved
	5	0x0001	EN_CCM Enable color correction. A color correction matrix (CCM) is applied to the RGB data. The equations are: Rout $=\mathrm{CCM}_{-} \mathrm{CC} 1 * \operatorname{Rin}+\mathrm{CCM}_{-} \mathrm{CC} 2 * \operatorname{Gin}+\mathrm{CCM} _\mathrm{CC} 3 *$ Bin Gout $=\mathrm{CCM}$ _CC4 * Rin $+\mathrm{CCM}_{-} \mathrm{CC} 5$ * Gin $+\mathrm{CCM}_{-} \mathrm{CC} 6 * \operatorname{Bin}$ Bout $=\mathrm{CCM}_{-} \mathrm{CC} 7$ * Rin +CCM _CC8 * Gin + CCM_CC9 * Bin
	4	0x0001	Reserved
	3	0x0000	Reserved
	2:0	X	Reserved

TABLE 32. SYSCTL REGISTERS
R/W (Read or Write) bit; RO (Read Only) bit.

Register (Hex)	Bits	Default	Name
R0x0000	15:0	0x0064	CHIP_VERSION_REG (RO)
	Chip Identification. Read-only.		
R0x0006	15:0	0xBA90	USER_DEFINED_DEVICE_ADDRESS_ID (R/W)
	15:9	0x005D	USER_DEFINED_DEVICE_ADDRESS_ID1 Device used on the two-wire serial interface (CCI) when SADDR $=1$.
	8	X	Reserved
	7:1	0x0048	USER_DEFINED_DEVICE_ADDRESS_ID0 Device used on the two-wire serial interface (CCI) when $\operatorname{SADDR}=0$.
	0	X	Reserved

TABLE 32. SYSCTL REGISTERS
R/W (Read or Write) bit; RO (Read Only) bit.

Register (Hex)	Bits	Default	Name
R0x001A	15:0	0x3E04	RESET_AND_MISC_CONTROL (R/W)
	15:14	X	Reserved
	13	0x0001	Reserved
	12	0x0001	Reserved
	11	0x0001	Reserved
	10	0x0001	Reserved
	9	0x0001	Reserved
	8:7	X	Reserved
	6:4	RO	Reserved
	3	X	Reserved
	2	0x0001	Reserved
	1	0x0000	Reserved
	0	0x0000	RESET_SOFT Soft system reset. 0: Normal operation. 1: Reset.
	Miscellaneous Control bits		
R0x0020	15:0	0x0000	MCU_BOOT_OPTIONS (R/W)
	15:6	0x0000	Reserved
	5	0x0000	SPI_CONFIG_DISABLE Disable firmware loading any configuration data from an SPI device. 0: Normal operation with SPI configuration enabled. 1: Disable configuration from SPI device.
	4	0x0000	MCU_BOOT_PLL_BYPASS Enable PLL to be bypassed and unconfigured on boot-up. 0: Normal PLL operation when using a 27MHz clock. Firmware will configure the PLL for external 27 MHz clock input, enable it and wait for lock. 1: PLL bypass operation. Firmware will not configure or enable the PLL, the PLL is bypassed and the system will run from the pin clock.
	3	0x0000	Reserved
	2	0x0000	Reserved
	1	0x0000	Reserved
	0	0x0000	Reserved
	MCU Boot Control		
R0x0040	15:0	0x8000	COMMAND_REGISTER (R/W)
	15	0x0001	DOORBELL Doorbell bit. Set to 1 by the host to indicate that host_command holds a valid command. Set to 0 by firmware to indicate that host_command holds a valid response for the host. Write of 0 by the host is ignored; the host can only set this bit to 1 .
	14:0	0x0000	HOST_COMMAND Host command.
	Host Command Register		

TABLE 32. SYSCTL REGISTERS
R/W (Read or Write) bit; RO (Read Only) bit.

Register (Hex)	Bits	Default	
R0x0058	$15: 0$	0x0000	CUSTOMER_REV (R/W)
	Silicon Revision.		

TABLE 33. CPIPE KERNEL REGISTERS
R/W (Read or Write) bit; RO (Read Only) bit.

Register (Hex)	Bits	Default	Name
R0x3220	15:0	0x000C	DM_EDGE_TH (R/W)
	Demosaic Edge Threshold. This is the value used in demosaic to determine if the current pixel is on an edge. Legal values: [0, 255].		
R0x3222	15:0	0x1008	GRB_POS_THRESHOLDS (R/W)
	15:8	0x0010	GRB_APOS GRB - maximum positive delta_g slope. This is the slope of the line denoting the maximum positive delta_g. This number is multiplied by the median green. In position dependent mode, this is a0pos. Legal values: [0, 255].
	7:0	0x0008	GRB_BPOS GRB - maximum positive delta_g offset. This is the offset of the line denoting the maximum positive delta_g. This number is added to the scaled center green pixel. In position dependent mode, this is b0pos. Legal values: [0, 255].
R0x3224	15:0	0x1008	GRB_NEG_THRESHOLDS (R/W)
	15:8	0x0010	GRB_ANEG GRB - maximum negative delta_g slope. This is the slope of the line denoting the maximum negative delta_g. This number is multiplied by the median green. In position dependent mode, this is a0neg. Legal values: [0, 255].
	7:0	0x0008	GRB_BNEG GRB - maximum negative delta g g offset. This is the offset of the line denoting the maximum negative delta_g. This number is added to the scaled center green pixel. In position dependent mode, this is b0neg. Legal values: [0, 255].

TABLE 34. XDMA REGISTERS
R/W (Read or Write) bit; RO (Read Only) bit.

Register (Hex)	Bits	Default	Name
R0x0982	15:0	0x0000	ACCESS_CTL_STAT (R/W)
	15:11	X	Reserved
	10:9	0x0000	PHYSICAL_UPPER_ADDRESS This becomes bits [17:16] of the physical address. Currently only useful for overlay access.
	8:6	0x0000	PHY_REGION 00: Physical access to Patch RAM 01: UNDEFINED 10: Physical access to SFR address space 11: Physical access to Overlay RAM When physical_access_state $=11$, this field determines which memory region will be accessed. When physical_access_state $=10$, the Patch RAM is implicitly selected.
	5	X	Reserved
	4	RO	BYTE_ACCESS_STATE Read-only copy of logical_byte_access (in Logical Access state) or physical_byte_access (in Physical Access state) 1: Byte Access state 0: Word Access state (2 bytes) The value of this field is UNDEFINED after reset. Read-only.
	3:2	RO	PHYSICAL_ACCESS_STATE 11: Physical Access state 10: Logical Access state 0x: Indeterminate (DMA address is invalid). The DMA address is invalid if Logical Access state is established but the tabptr SFR has not been initialized. Read-only.
	1	RO	UPPER_32K_ACCESS_STATE Physical address[15] for current access. In Logical Access state (physical_access_state=10), this bit provides debug information: after at least one data access has been performed, this bit represents the physical address[15] of the variables base for the current driver number. In Physical Access state (physical_access_state=11), this bit is a read-only copy of en_upper_32k_phy_access. The value of this field is UNDEFINED after reset. Read-only.
	0	0x0000	EN_UPPER_32K_PHY_ACCESS This bit provides physical address[15] for physical address accesses. physical address[14:0] are provided by R0x098A
	Controls the access and conveys access status		
R0x098A	15:0	0x0000	PHYSICAL_ADDRESS_ACCESS (R/W)
	15	0x0000	PHYSICAL_BYTE_ACCESS Select byte access for indirect data accesses in Physical Access state. In Physical Access state this bit affects the behavior of Indirect data accesses (reads and writes to the mcu_variable_dataN registers). This bit has no effect on the behavior of Direct data accesses (reads and writes by the host to addresses above 0x7FFF). 1: Byte Access 0: Word Access (2 bytes) The value of this field is UNDEFINED after reset.
	14:0	0x0000	PHYSICAL_ADDRESS physical_address[14:0] for current access. physical_address[15] is set by R0x0982[0]. The programmed 16-bit address specifies an offset from the start of the region specified by phy_region (R0x0982[7:6]). The value of this field is UNDEFINED after reset. Legal values: [0, 32767].
	Address of physical access; Used for Patch RAM uploads. A write to this address establishes the Physical Access state (See R0x0982[2]). When the Logical Access state is established, a read from this register and from R0x0982[1] provides debug information: after at least one data access has been performed, this bit represents the physical address of the variables base for the current driver number.		

TABLE 34. XDMA REGISTERS
R/W (Read or Write) bit; RO (Read Only) bit.

Register (Hex)	Bits	Default	Name
R0x098E	15:0	0x0000	LOGICAL_ADDRESS_ACCESS (R/W)
	15	0x0000	LOGICAL_BYTE_ACCESS Select byte access for indirect data accesses in Logical Access state. In Logical Access state this bit affects the behavior of Indirect data accesses (reads and writes to the mcu_variable_dataN registers). This bit has no effect on the behavior of Direct data accesses (reads and writes by the host to addresses above 0x7FFF). 1: Byte Access 0: Word Access (2 bytes) The value of this field is UNDEFINED after reset.
	14:10	0x0000	LOGICAL_ACCESS_DRV_NUM Address of logical access driver number - logical_address[14:10]. Base address of this driver\'s variables can be obtained by adding 2*logical_access_drv_num to the value of the tabptr SFR. Physical address of re-directed location can be obtained by adding this offset to the SFR 0x50 return value. The value of this field is UNDEFINED after reset. Legal values: [0, 31].
	9:0	0x0000	LOGICAL_ACCESS_OFFSET Address of logical access offset - logical_address[9:0]. Physical address can be obtained by adding this offset to the base address of the selected driver\'s variables (the driver is selected by logical_access_drv_num). The value of this field is UNDEFINED after reset. Legal values: [0, 1023].
	Address of logical access; Used for camera control (i.e. register/variable updates) by user. A write to this address establishes the Logical Access state (See R0x0982[2]).		
R0x0990	15:0	0x0000	MCU_VARIABLE_DATA0 (R/W)
	DMA word 0 (Indirect data access) Legal values: [0, 65535].		
R0x0992	15:0	0x0000	MCU_VARIABLE_DATA1 (R/W)
	DMA word 1 (Indirect data access) Legal values: [0, 65535].		
R0x0994	15:0	0x0000	MCU_VARIABLE_DATA2 (R/W)
	DMA word 2 (Indirect data access) Legal values: [0, 65535].		
R0x0996	15:0	0x0000	MCU_VARIABLE_DATA3 (R/W)
	DMA word 3 (Indirect data access) Legal values: [0, 65535].		
R0x0998	15:0	0x0000	MCU_VARIABLE_DATA4 (R/W)
	DMA word 4 (Indirect data access) Legal values: [0, 65535].		
R0x099A	15:0	0x0000	MCU_VARIABLE_DATA5 (R/W)
	DMA word 5 (Indirect data access) Legal values: [0, 65535].		
R0x099C	15:0	0x0000	MCU_VARIABLE_DATA6 (R/W)
	DMA word 6 (Indirect data access) Legal values: [0, 65535].		
R0x099E	15:0	0x0000	MCU_VARIABLE_DATA7 (R/W)
	DMA word 7 (Indirect data access) Legal values: [0, 65535].		

TABLE 35. TX_SS
R/W (Read or Write) bit; RO (Read Only) bit.

Register (Hex)	Bits	Default	Name
R0x3C02	15:0	0x0000	TX_CRC_CONTROL (R/W)
	15:2	X	Reserved
	1	0x0000	TX_CRC_SINGLE_FRAME CRC capture and hold enable. 0: CRC will be determined for each frame. 1: CRC will be determined for next frame and held until this bit is cleared.
	0	0x0000	TX_CRC_SRC_SEL Select input source for cre. 0: CRC data prior to xbar. 1: CRC data at output of xbar.
R0x3C04	15:0	0x0000	TX_BLACK_CODE_MSW (R/W)
	Upper 8-bits of 24-bit value for Black. For RGB ouput this will be the red value of black. Set to 0x0 for black output. For YCbCr output, this is the upper 8 bits of the $10-\mathrm{bit} \mathrm{Cb} / \mathrm{Cr}$ value for black. Set to 0 x 80 for black output. Black is sent when sync is lost. Legal values: [0, 255].		
R0x3C06	15:0	0x0000	TX_BLACK_CODE_LSW (R/W)
	Lower 16-bits of 24 -bit Black value. For RGB this will be the green value at $15: 8$ and the blue value at 7:0 of black. Set to $0 x 0000$ for black output For YCbCr output, 15:14 are the two LSBs of $\mathrm{Cb} / \mathrm{Cr}$ and 13:4 are the 10 bits of Y . Set to 0 x 0000 for black output. For Bayer, black value is left justified in 24 bit field Legal values: [0, 65535].		
R0x3C0C	15:0	0x0000	TX_KS_LINE_LENGTH_PCK (R/W)
	Number of pixclks per line period on parallel output bus. This register together with tx_ks_frame_length_lines define the timing window for each output frame. The number of pixclks per frame period is tx_ks_frame_length_lines * tx_ks_line_length_pck. Within the timing window, columns are numbered 0 through tx_ks_line_length_pck - 1 . Legal values: [0,65520].		
R0x3C0E	15:0	0x0000	TX_KS_FRAME_LENGTH_LINES (R/W)
	Number of line periods per frame period on parallel output bus. Within the timing window, rows are numbered 0 through tx_ks_frame_length_lines -1 . Legal values: [0,65520].		
R0x3C10	15:0	0x0000	TX_KS_LINE_VALID_START_ROW (R/W)
	Row number in timing window in which line_valid will become active and the first line of image data will be output. Row 0 is the first row in the timing window. Line_valid will be active once per line from tx_ks_line_valid_start_row to (tx_ks_line_valid_stop_row - 1), inclusive. The two registers, tx_ks_line_valid_start_row and tx_ks_line_valid_start_col, are used to control when the image data is output within the timing window. If the actual image data is larger than the window defined by the tx_ks_line_valid_* registers, the extra pixels will be truncated. If the actual image is smaller, black pixels will be used to pad the image. Line_valid can also be used for data_enable. The minimum value is 4 . When using hsync/vsync, this value is typically programmed to vsync pulse width + vsync back porch. Legal values: [4,65520].		
R0x3C12	15:0	0x0000	TX_KS_LINE_VALID_START_COL (R/W)
	Column number in timing window in which line_valid will become active and the first pixel of each line of image data will be output. Column 0 is the first column in the timing window. On each line of the timing window between tx_ks_line_valid_start_row and (tx_ks_line_valid_stop_row - 1), inclusive, line_valid will be active from tx_ks_line_valid_start_col to (tx_ks_line_valid_stop_col - 1), inclusive. When using Hsync/Vsync, this is typically programmed to Hsync pulse width + Hsync back porch. Legal values: [0,65520].		
R0x3C14	15:0	0x0000	TX_KS_LINE_VALID_STOP_ROW (R/W)
	Row number in timing window in which line_valid will become inactive. When usingn hsync/vsync, this value is typically programmed to vsync pulse width + vsync back porch + image height. Legal values: [0,65520].		
R0x3C16	15:0	0x0000	TX_KS_LINE_VALID_STOP_COL (R/W)
	Column number In timing window in which line_valid will become inactive. When using hsync/vsync, this value is typically programmed to hsync pulse width + hsync back porch + active line time. To stop just after the last column of the timing window, set this register equal to tx_ks_line_length_pck. Legal values: [0,65520].		

TABLE 35. TX_SS
R/W (Read or Write) bit; RO (Read Only) bit.

Register (Hex)	Bits	Default	Name
R0x3C18	15:0	0x0000	TX_KS_FRAME_VALID_START_ROW (R/W)
	Row number in timing window in which frame_valid will become active. Row 0 is the first row in the timing window. Frame_valid will be active only once per frame. The first clock of active frame valid will be on row tx_ks_frame_valid_start_row, column tx_ks_frame_valid_start_col. The last clock of active frame valid will be on row tx_ks_frame_valid_last_row, column (tx_ks_frame_valid_stop_col - 1). Legal values: [0,65520].		
R0x3C1A	15:0	0x0000	X_KS_FRAME_VALID_START_COL (R/V
	Column number in timing window in which frame_valid will become active. Column 0 is the first column in the timing window. Legal values: [0,65520].		
R0x3C1C	15:0	0x0000	TX_KS_FRAME_VALID_LAST_ROW (R/W)
	Row number in timing window in which frame_valid will become inactive. Legal values: [0,65520].		
R0x3C1E	15:0	0x0000	TX_KS_FRAME_VALID_STOP_COL (R/W)
	Column number in timing window in which frame_valid will become inactive. To stop just after the last column of the timing window, set this register equal to tx_ks_line_length_pck. Legal values: [0,65520].		
	15:0	0x0000	TX_KS_DATA_ENABLE_START_ROW (R/W)
R0x3C20	Row number in timing window in which data_enable will become active. Row 0 is the first row in the timing window. Data_enable will be active once per line from tx_ks_data_enable_start_row to (tx_ks_data_enable_stop_row - 1), inclusive. If bt656 output is enabled with keepsync, this sets the boundary between inactive lines and active lines and is typically set to the same value as tx_ks_line_valid_start_row. If bt656 codes are enabled, the minimum value is 1 . Legal values: [0,65520].		
	15:0	0x0000	TX_KS_DATA_ENABLE_START_COL (R/W)
R0x3C22	Column number in timing window in which data_enable will become active. Column 0 is the first column of the timing window. On each line of the timing window between tx_ks_data_enable_start_row and (tx_ks_data_enable_stop_row - 1), inclusive, data_enable will be active from tx_ks_data_enable_start_col to (tx_ks_data_enable_stop_col - 1), inclusive. If bt656 output is enabled with keepsync, this sets the column of the timing window in which the BT656 SAV code will start being output. It is typically set to (tx_ks_line_valid_start_col - 2*(1+tx_2cyc_pix)) Legal values: [0,65520].		
R0x3C24	15:0	0x0000	TX_KS_DATA_ENABLE_STOP_ROW (R/W)
	Row number in timing window in which data_enable will become inactive. If bt656 output is enabled with keepsync, this sets the boundary between active and inactive lines and is typically set to the same value as tx_ks_line_valid_stop_row. Legal values: [0,65520].		
R0x3C26	15:0	0x0000	TX_KS_DATA_ENABLE_STOP_COL (R/W)
	Column number in timing window in which data_enable will become inactive. To stop just after the last column of the timing window, program to tx_ks_line_length_pck. If bt656 output is enabled with keepsync, this sets the column of the timing window in which the BT656 EAV code will be complete. It is typically set to (tx_ks_line_valid_stop_col + 2* $(1+$ tx_2cyc_pix)). Legal values: [0,65520].		
R0x3C28	15:0	0x0000	TX_KS_HSYNC_START_ROW (R/W)
	Row number in timing window in which Hsync will become active. Row 0 is the first row in the timing window. This register is typically programmed to 0 . Hsync will be active once per line from hsync_start_row to (hsync_stop_row - 1), inclusive. Legal values: [0,65520].		
R0x3C2A	15:0	0x0000	TX_KS_HSYNC_START_COL (R/W)
	Column number in timing window in which Hsync will become active. Column 0 is the first column of the timing window. This is typically programmed to 0 . On each line of the timing window between tx_ks_hsync_start_row and (tx_ks_hsync_stop_row 1), inclusive, hsync will be active from tx_ks_hsync_start_col to (tx_ks_hsync_stop_col - 1), inclusive. Legal values: [0,65520].		

TABLE 35. TX_SS
R/W (Read or Write) bit; RO (Read Only) bit.

Register (Hex)	Bits	Default	Name
R0x3C2C	15:0	0x0000	TX_KS_HSYNC_STOP_ROW (R/W)
	Row number in timing window in which Hsync will become inactive. This is typically programed to the same value as tx_ks_frame_length_lines. Legal values: [0,65520].		
R0x3C2E	15:0	0x0000	TX_KS_HSYNC_STOP_COL (R/W)
	Column number In timing window in which Hsync will become inactive. This is typically programmed Hsync pulse width in pixclks. To stop just after the last column of the timing window, program to tx_ks_line_length_pck. Legal values: [0,65520].		
	15:0	0x0000	TX_KS_VSYNC_START_ROW (R/W)
R0x3C30	Row number in timing window in which Vsync will become active. Row 0 is the first row of the timing window. This is typically programmed to 0 . Vsync will be active only once per frame. The first clock of active vsync will be on row tx_ks_vsync_start_row, column tx_ks_vsync_start_col. The last clock of active vsync will be on row tx_ks_vsync_last_row, column (tx_ks_vsync_stop_col - 1). Legal values: [0,65520].		
R0x3C32	15:0	0x0000	TX_KS_VSYNC_START_COL (R/W)
	Column number in timing window in which Vsync will become active. Column 0 is the first column of the timing window. This is typically programmed to 0 . Legal values: [0,65520].		
R0x3C34	15:0	0x0000	TX_KS_VSYNC_LAST_ROW (R/W)
	Row number in timing window in which Vsync will become inactive. This is typically programed to Vsync pulse width in line times. Legal values: [0,65520].		
R0x3C36	15:0	0x0000	TX_KS_VSYNC_STOP_COL (R/W)
	Column number in timing window in which Vsync will become inactive. This is typically programmed to 0 . To stop just after the last column of the timing window, set this register equal to tx_ks_line_length_pck. Legal values: [0,65520].		
R0x3C84	15:0	0x0606	TX_FRONTPORCH_BACKPORCH (R/W)
	15:8	0x0006	TX_BACK_PORCH Back porch of frame valid. For Rev $2+$, this field is inactive if keepsync is enabled. Legal values: [1, 255].
	7:0	0x0006	TX_FRONT_PORCH Front porch of frame valid. For Rev 2+, this field is inactive if keepsync is enabled. Legal values: [1, 255].
R0x3C98	15:0	0x0000	TX_FRAME_COUNT_OFFSET_LO (R/W)
	Lower 16 bits of value to add into tx_frame_count. The actual frame counter resets to 0 at every reset or power down of the A3 power domain. The value of this register is added to the actual frame counter to produce tx_frame_count. Legal values: [0, 65535].		
R0x3C9A	15:0	0x0000	TX_FRAME_COUNT_OFFSET_HI (R/W)
	Upper 16 bits of value to add to tx_frame_count. Legal values: [0, 65535].		
R0x3C9C	15:0	0x0000	TX_FRAME_COUNT_LO (RO)
	Lower 16 bits of frame count. This counter increments with each frame output on the parallel bus. This value is used for the metadata_id. The value of tx_frame_count_offset will be added to the actual frame count (which is set to 0 on every reset of the A3 power domain) to produce tx_frame_count. Counter wraps around at 32-bit boundary. Read-only. Legal values: [0, 65535].		
R0x3C9E	15:0	0x0000	TX_FRAME_COUNT_HI (RO)
	Upper 16 bits of frame count. Counter wraps around at 32-bit boundary. Read-only. Legal values: [0, 65535].		

TABLE 35. TX_SS
R/W (Read or Write) bit; RO (Read Only) bit.

Register (Hex)	Bits	Default	Name
R0x3CA0	15:0	0x0000	TX_LINE_COUNT (RO)
	Current line number. For Rev 2+ with keepsync enabled, this is the current line number of the timing window. Otherwise, this is the current image line that is being output. Read-only. Legal values: [0, 4095].		
R0x3CA2	15:0	0x0002	TX_BT656_CONTROL (R/W)
	15:4	X	Reserved
	3	0x0000	Reserved
	2	0x0000	Reserved
	1	0x0001	TX_BT656_FV_LV_EN Enable output of FV/LV in BT656 mode. 0: FV/LV outputs are 0 in BT656 mode 1: FV/LV outputs are enabled in BT656 mode For Rev 2+, this field is inactive if keepsync is enabled. Legal values: [0,1].
	0	0x0000	TX_BT656_EN Enable BT656 code insertion. 0: Disable BT656 mode 1: Enable BT656 mode in YCbCr10, YCbCr8 \& rgb565 Legal values: [0,1].
R0x3CB2	15:0	0x0000	TX_XBAR_POS_00 (R/W)
	15:13	X	Reserved
	12:8	0x0000	TX_XBAR_POS_00_ODD Ouput crossbar switch control for DOUT0 odd cycles. Used on odd cycles in tx_2cyc_pix modes. Unused in clock per pixel mode. Legal values: [0,31].
	7:5	X	Reserved
	4:0	0x0000	TX_XBAR_POS_00_EVEN Ouput crossbar switch control for DOUT0 even cycles. Used on even cycles in tx_2cyc_pix modes or on all cycles in clock per pixel mode. In two clock per pixel mode, the first clock of each pixel\' slock pair is the even clock, the second clock is the odd clock. The following table is the same for all tx_xbar_pos_* registers/fields. Programmed value : Selected signal N : Xbar_data_in[N] for $\mathrm{N}=0-2324$: Xbar_line_valid_in 25 : Xbar_frame_valid_in 26 : Xbar_meta_line_valid_in 27 : Xbar_vsync_in 28 : Xbar_hsync_in 29 : Xbar_data_enable_in 30 : 031 : 1 Note that in two cycle per pixel mode, an Odd_nEven signal can be generated on a ouput pin by programming that pin\'s tx_xbar_pos_XX_even to 30 and tx_xbar_pos_XX_odd to 31. Legal values: $[0,31]$.
R0x3CB4	15:0	0×0101	TX_XBAR_POS_01 (R/W)
	15:13	X	Reserved
	12:8	0x0001	TX_XBAR_POS_01_ODD Ouput crossbar switch control for DOUT1 odd cycles. Legal values: [0,31].
	7:5	X	Reserved
	4:0	0x0001	TX_XBAR_POS_01_EVEN Ouput crossbar switch control for DOUT1 even cycles. Legal values: [0,31].

TABLE 35. TX_SS
R/W (Read or Write) bit; RO (Read Only) bit.

Register (Hex)	Bits	Default	Name
	15:0	0x0202	TX_XBAR_POS_02 (R/W)
	15:13	X	Reserved
R0x3CB6	12:8	0x0002	TX_XBAR_POS_02_ODD Ouput crossbar switch control for DOUT2 odd cycles. Legal values: [0,31].
	7:5	X	Reserved
	4:0	0x0002	TX_XBAR_POS_02_EVEN Ouput crossbar switch control for DOUT2 even cycles. Legal values: [0,31].
	15:0	0x0303	TX_XBAR_POS_03 (R/W)
	15:13	X	Reserved
R0x3CB8	12:8	0x0003	TX_XBAR_POS_03_ODD Ouput crossbar switch control for DOUT3 odd cycles. Legal values: [0,31].
	7:5	X	Reserved
	4:0	0x0003	TX_XBAR_POS_03_EVEN Ouput crossbar switch control for DOUT3 even cycles. Legal values: [0,31].
	15:0	0x0404	TX_XBAR_POS_04 (R/W)
	15:13	X	Reserved
R0x3CBA	12:8	0x0004	TX_XBAR_POS_04_ODD Ouput crossbar switch control for DOUT4 odd cycles. Legal values: [0,31].
	7:5	X	Reserved
	4:0	0x0004	TX_XBAR_POS_04_EVEN Ouput crossbar switch control for DOUT4 even cycles. Legal values: [0,31].
	15:0	0x0505	TX_XBAR_POS_05 (R/W)
	15:13	X	Reserved
R0x3CBC	12:8	0x0005	$\begin{aligned} & \text { TX_XBAR_POS_05_ODD } \\ & \text { Ouput crossbar switch control for DOUT5 odd cycles. Legal values: [0,31]. } \end{aligned}$
	7:5	X	Reserved
	4:0	0x0005	$\begin{aligned} & \text { TX_XBAR_POS_05_EVEN } \\ & \text { Ouput crossbar switch control for DOUT5 even cycles. Legal values: }[0,31] \text {. } \end{aligned}$
R0x3CBE	15:0	0x0606	TX_XBAR_POS_06 (R/W)
	15:13	X	Reserved
	12:8	0x0006	TX_XBAR_POS_06_ODD Ouput crossbar switch control for DOUT6 odd cycles. Legal values: [0,31].
	7:5	X	Reserved
	4:0	0x0006	TX_XBAR_POS_06_EVEN Ouput crossbar switch control for DOUT6 even cycles. Legal values: [0,31].

TABLE 35. TX_SS
R/W (Read or Write) bit; RO (Read Only) bit.

Register (Hex)	Bits	Default	Name
	15:0	0x0707	TX_XBAR_POS_07 (R/W)
	15:13	X	Reserved
R0x3CC0	12:8	0x0007	\|TX_XBAR_POS_07_ODD Ouput crossbar switch control for DOUT7 odd cycles. Legal values: [0,31].
	7:5	X	Reserved
	4:0	0x0007	TX_XBAR_POS_07_EVEN Ouput crossbar switch control for DOUT7 even cycles. Legal values: [0,31].
	15:0	0×0808	TX_XBAR_POS_08 (R/W)
	15:13	X	Reserved
R0x3CC2	12:8	0x0008	TX_XBAR_POS_08_ODD Ouput crossbar switch control for DOUT8 odd cycles. Legal values: [0,31].
	7:5	X	Reserved
	4:0	0x0008	TX_XBAR_POS_08_EVEN Ouput crossbar switch control for DOUT8 even cycles. Legal values: [0,31].
	15:0	0×0909	TX_XBAR_POS_09 (R/W)
	15:13	X	Reserved
R0x3CC4	12:8	0x0009	TX_XBAR_POS_09_ODD Ouput crossbar switch control for DOUT9 odd cycles. Legal values: [0,31].
	7:5	X	Reserved
	4:0	0x0009	TX_XBAR_POS_09_EVEN Ouput crossbar switch control for DOUT9 even cycles. Legal values: [0,31].
	15:0	0x0A0A	TX_XBAR_POS_10 (R/W)
	15:13	X	Reserved
R0x3CC6	12:8	0x000A	TX_XBAR_POS_10_ODD Ouput crossbar switch control for DOUT10 odd cycles. Legal values: [0,31].
	7:5	X	Reserved
	4:0	0x000A	TX_XBAR_POS_10_EVEN Ouput crossbar switch control for DOUT10 even cycles. Legal values: [0,31].
R0x3CC8	15:0	0x0B0B	TX_XBAR_POS_11 (R/W)
	15:13	X	Reserved
	12:8	0x000B	TX_XBAR_POS_11_ODD Ouput crossbar switch control for DOUT11 odd cycles. Legal values: [0,31].
	7:5	X	Reserved
	4:0	0x000B	TX_XBAR_POS_11_EVEN Ouput crossbar switch control for DOUT11 even cycles. Legal values: [0,31].

TABLE 35. TX_SS
R/W (Read or Write) bit; RO (Read Only) bit.

Register (Hex)	Bits	Default	Name
	15:0	0x0C0C	TX_XBAR_POS_12 (R/W)
	15:13	X	Reserved
R0x3CCA	12:8	0x000C	TX_XBAR_POS_12_ODD Ouput crossbar switch control for DOUT12 odd cycles. Legal values: [0,31].
	7:5	X	Reserved
	4:0	0x000C	TX_XBAR_POS_12_EVEN Ouput crossbar switch control for DOUT12 even cycles. Legal values: [0,31].
	15:0	0x0D0D	TX_XBAR_POS_13 (R/W)
	15:13	X	Reserved
R0x3CCC	12:8	0x000D	TX_XBAR_POS_13_ODD Ouput crossbar switch control for DOUT13 odd cycles. Legal values: [0,31].
	7:5	X	Reserved
	4:0	0x000D	TX_XBAR_POS_13_EVEN Ouput crossbar switch control for DOUT13 even cycles. Legal values: [0,31].
	15:0	0x0E0E	TX_XBAR_POS_14 (R/W)
	15:13	X	Reserved
R0x3CCE	12:8	0x000E	TX_XBAR_POS_14_ODD Ouput crossbar switch control for DOUT14 odd cycles. Legal values: [0,31].
	7:5	X	Reserved
	4:0	0x000E	TX_XBAR_POS_14_EVEN Ouput crossbar switch control for DOUT14 even cycles. Legal values: [0,31].
	15:0	0x0F0F	TX_XBAR_POS_15 (R/W)
	15:13	X	Reserved
R0x3CD0	12:8	0x000F	TX_XBAR_POS_15_ODD Ouput crossbar switch control for DOUT15 odd cycles. Legal values: [0,31].
	7:5	X	Reserved
	4:0	0x000F	$\begin{aligned} & \text { TX_XBAR_POS_15_EVEN } \\ & \text { Ouput crossbar switch control for DOUT15 even cycles. Legal values: }[0,31] . \end{aligned}$
R0x3CD2	15:0	0x1010	TX_XBAR_POS_16 (R/W)
	15:13	X	Reserved
	12:8	0x0010	\|TX_XBAR_POS_16_ODD Ouput crossbar switch control for DOUT16 odd cycles. Legal values: [0,31].
	7:5	X	Reserved
	4:0	0x0010	TX_XBAR_POS_16_EVEN Ouput crossbar switch control for DOUT16 even cycles. Legal values: [0,31].

TABLE 35. TX_SS
R/W (Read or Write) bit; RO (Read Only) bit.

Register (Hex)	Bits	Default	Name
	15:0	0x1111	TX_XBAR_POS_17 (R/W)
	15:13	X	Reserved
R0x3CD4	12:8	0x0011	\|TX_XBAR_POS_17_ODD Ouput crossbar switch control for DOUT17 odd cycles. Legal values: [0,31].
	7:5	X	Reserved
	4:0	0x0011	TX_XBAR_POS_17_EVEN Ouput crossbar switch control for DOUT17 even cycles. Legal values: [0,31].
	15:0	0x1212	TX_XBAR_POS_18 (R/W)
	15:13	X	Reserved
R0x3CD6	12:8	0x0012	\|TX_XBAR_POS_18_ODD Ouput crossbar switch control for DOUT18 odd cycles. Legal values: [0,31].
	7:5	X	Reserved
	4:0	0x0012	TX_XBAR_POS_18_EVEN Ouput crossbar switch control for DOUT18 even cycles. Legal values: [0,31].
	15:0	0x1313	TX_XBAR_POS_19 (R/W)
	15:13	X	Reserved
R0x3CD8	12:8	0x0013	TX_XBAR_POS_19_ODD Ouput crossbar switch control for DOUT19 odd cycles. Legal values: [0,31].
	7:5	X	Reserved
	4:0	0x0013	TX_XBAR_POS_19_EVEN Ouput crossbar switch control for DOUT19 even cycles. Legal values: [0,31].
	15:0	0x1414	TX_XBAR_POS_20 (R/W)
	15:13	X	Reserved
R0x3CDA	12:8	0x0014	TX_XBAR_POS_20_ODD Ouput crossbar switch control for DOUT20 odd cycles. Legal values: [0,31].
	7:5	X	Reserved
	4:0	0x0014	TX_XBAR_POS_20_EVEN Ouput crossbar switch control for DOUT20 even cycles. Legal values: [0,31].
R0x3CDC	15:0	0x1515	TX_XBAR_POS_21 (R/W)
	15:13	X	Reserved
	12:8	0x0015	TX_XBAR_POS_21_ODD Ouput crossbar switch control for DOUT21 odd cycles. Legal values: [0,31].
	7:5	X	Reserved
	4:0	0x0015	TX_XBAR_POS_21_EVEN Ouput crossbar switch control for DOUT21 even cycles. Legal values: [0,31].

TABLE 35. TX_SS
R/W (Read or Write) bit; RO (Read Only) bit.

Register (Hex)	Bits	Default	Name
R0x3CDE	15:0	0x1616	TX_XBAR_POS_22 (R/W)
	15:13	X	Reserved
	12:8	0x0016	TX_XBAR_POS_22_ODD Ouput crossbar switch control for DOUT22 odd cycles. Legal values: [0,31].
	7:5	X	Reserved
	4:0	0x0016	TX_XBAR_POS_22_EVEN Ouput crossbar switch control for DOUT22 even cycles. Legal values: [0,31].
R0x3CE0	15:0	0x1717	TX_XBAR_POS_23 (R/W)
	15:13	X	Reserved
	12:8	0x0017	TX_XBAR_POS_23_ODD Ouput crossbar switch control for DOUT23 odd cycles. Legal values: [0,31].
	7:5	X	Reserved
	4:0	0x0017	TX_XBAR_POS_23_EVEN Ouput crossbar switch control for DOUT23 even cycles. Legal values: [0,31].
R0x3CE2	15:0	0x1818	TX_XBAR_POS_24 (R/W)
	15:13	X	Reserved
	12:8	0x0018	TX_XBAR_POS_24_ODD Ouput crossbar switch control for LINE_VALID odd cycles. Legal values: [0,31].
	7:5	X	Reserved
	4:0	0x0018	$\begin{aligned} & \text { TX_XBAR_POS_24_EVEN } \\ & \text { Ouput crossbar switch control for LINE_VALID even cycles. Legal values: [0,31]. } \end{aligned}$
R0x3CE4	15:0	0x1919	TX_XBAR_POS_25 (R/W)
	15:13	X	Reserved
	12:8	0x0019	TX_XBAR_POS_25_ODD Ouput crossbar switch control for FRAME_VALID odd cycles. Legal values: [0,31].
	7:5	X	Reserved
	4:0	0x0019	$\begin{array}{\|l} \text { TX_XBAR_POS_25_EVEN } \\ \text { Ouput crossbar switch control for FRAME_VALID even cycles. Legal values: [0,31]. } \end{array}$
R0x3CE6	15:0	0x1A1A	TX_XBAR_POS_26 (R/W)
	15:13	X	Reserved
	12:8	0x001A	$\begin{aligned} & \text { TX_XBAR_POS_26_ODD } \\ & \text { Ouput crossbar switch control for META_LINE_VALID odd cycles. Legal values: [0,31]. } \end{aligned}$
	7:5	X	Reserved
	4:0	0x001A	TX_XBAR_POS_26_EVEN Ouput crossbar switch control for META_LINE_VALID even cycles. Legal values: [0,31].

TABLE 35. TX_SS
R/W (Read or Write) bit; RO (Read Only) bit.

Register (Hex)	Bits	Default	Name
	15:0	0x0F0E	TX_XBAR_METADATA_REMAP_0_1 (R/W)
	15:13	X	Reserved
R0x3CF0	12:8	0x000F	TX_XBAR_METADATA_REMAP_1 Remap metadata bit 1 to this input of the xbar switch. Legal values: [0, 23].
	7:5	X	Reserved
	4:0	0x000E	TX_XBAR_METADATA_REMAP_0 Remap metadata bit 0 to this input of the xbar switch. Legal values: [0,23].
	15:0	0×1110	TX_XBAR_METADATA_REMAP_2_3 (R/W)
	15:13	X	Reserved
R0x3CF2	12:8	0x0011	TX_XBAR_METADATA_REMAP_3 Remap metadata bit 3 to this input of the xbar switch. Legal values: [0, 23].
	7:5	X	Reserved
	4:0	0x0010	TX_XBAR_METADATA_REMAP_2 Remap metadata bit 2 to this input of the xbar switch. Legal values: [0, 23].
	15:0	0x1312	TX_XBAR_METADATA_REMAP_4_5 (R/W)
	15:13	X	Reserved
R0x3CF4	12:8	0x0013	TX_XBAR_METADATA_REMAP_5 Remap metadata bit 5 to this input of the xbar switch. Legal values: [0,23].
	7:5	X	Reserved
	4:0	0x0012	TX_XBAR_METADATA_REMAP_4 Remap metadata bit 4 to this input of the xbar switch. Legal values: [0, 23].
	15:0	0x1514	TX_XBAR_METADATA_REMAP_6_7 (R/W)
	15:13	X	Reserved
R0x3CF6	12:8	0x0015	TX_XBAR_METADATA_REMAP_7 Remap metadata bit 7 to this input of the xbar switch. Legal values: [0, 23].
	7:5	X	Reserved
	4:0	0x0014	TX_XBAR_METADATA_REMAP_6 Remap metadata bit 6 to this input of the xbar switch. Legal values: [0, 23].
R0x3CF8	15:0	0x1716	TX_XBAR_METADATA_REMAP_8_9 (R/W)
	15:13	X	Reserved
	12:8	0x0017	TX_XBAR_METADATA_REMAP_9 Remap metadata bit 9 to this input of the xbar switch. Legal values: [0, 23].
	7:5	X	Reserved
	4:0	0x0016	TX_XBAR_METADATA_REMAP_8 Remap metadata bit 8 to this input of the xbar switch. Legal values: [0,23].

TABLE 36. OTPM
R/W (Read or Write) bit; RO (Read Only) bit.

Register (Hex)	Bits	Default	Name
	15:0	0x0000	OTPM_DATA_0 (R/W)
R0x3800	Data for OTPM automatic read and write sequences. After an OTPM automatic read sequence, read data is presented in the OTPM_DATA_* registers. Before performing an OTPM automatic write (programming) sequence, the data to be written is presented in the OTPM_DATA_* registers. These registers cannot be accessed when the system is in soft standby (writes will be ignored and reads will return 0). Internal use only. Register is not reset. Initial value is unknown. Legal values: [0, 65535].		
R0x3802	15:0	0x0000	OTPM_DATA_1 (R/W)
	Internal use only. Register is not reset. Initial value is unknown. Legal values: [0, 65535].		
R0x3804	15:0	0x0000	OTPM_DATA_2 (R/W)
	Internal use only. Register is not reset. Initial value is unknown. Legal values: [0, 65535].		
R0x3806	15:0	0x0000	OTPM_DATA_3 (R/W)
	Internal use only. Register is not reset. Initial value is unknown. Legal values: [0, 65535].		
R0x3808	15:0	0x0000	OTPM_DATA_4 (R/W)
	Internal use only. Register is not reset. Initial value is unknown. Legal values: [0, 65535].		
R0x380A	15:0	0x0000	OTPM_DATA_5 (R/W)
	Internal use only. Register is not reset. Initial value is unknown. Legal values: [0, 65535].		
R0x380C	15:0	0x0000	OTPM_DATA_6 (R/W)
	Internal use only. Register is not reset. Initial value is unknown. Legal values: [0, 65535].		
R0x380E	15:0	0x0000	OTPM_DATA_7 (R/W)
	Internal use only. Register is not reset. Initial value is unknown. Legal values: [0, 65535].		

TABLE 36. OTPM
R/W (Read or Write) bit; RO (Read Only) bit.

Register (Hex)	Bits	Default	Name
R0x3900	15:0	0x0000	OTPM_CONTROL (R/W)
	15:11	X	Reserved
	10	0x0000	OTPM_ENABLE_STANDBY OTPM standby enable. When this bit is 0 , the "standby" signal will never be asserted to the HV switch. When this bit is 1 , the "standby" signal will be controlled automatically to the HV switch: negated when an OTPM read or write operation is being performed, and asserted otherwise. Asserting the "standby" signal to the HV switch connects the internal vemn signal to gndio preventing leakage though any programmed anti-fuses. Internal use only.
	9	0x0000	OTPM_SINGLE_RECORD_ONLY OTPM single record only. 1: Automatic read sequence will end after one record has been read from OTPM. 0: Automatic read sequence will end after all records (of specified record type) have been read from OTPM. The total size of the records read must not exceed the space available; the total size of the otpm_data_* registers. Internal use only.
	8	0x0000	OTPM_AUTO_RD_START_NEXT Automatic read start next. When bypass_record (in otpm_expr) $=0$, and single_record_only $=1$, determine the start address for an automatic read sequence triggered by auto_rd_start: 0: read first record that matches (search from start of OTPM). 1: read next record that matches (search from current location in OTPM). Internal use only.
	7	X	Reserved
	6	RO	OTPM_AUTO_RD_SUCCESS Indicates whether the automatic read sequence was successful. Internal use only. Read-only.
	5	RO	OTPM_AUTO_RD_END Indicates whether the automatic read sequence has finished. Internal use only. Read-only.
	4	0x0000	OTPM_AUTO_RD_START Trigger OTPM automatic read sequence. bypass_record (in otpm_expr) $=0$: Search for the next record of a type specified by the otpm_record register. If the record is found, its payload can be read from the otpm_data* registers. When this bit is set and auto_rd_start_next=0, the search starts at the first location in the OTPM. When this bit is set and auto_rd_start_next=1, the search starts at the current location in the OTPM (the location following the record most recently read). bypass_record = 1: Read data from OTPM. The OTPM address at which to start the read is taken from the otpm_manual_addr register. The length of the data to read is taken from the otpm_record register. The data can be read from the otpm_data* registers. Internal use only.
	3	X	Reserved
	2	RO	OTPM_AUTO_WR_SUCCESS Indicates whether the automatic write sequence was successful. Internal use only. Read-only.
	1	RO	OTPM_AUTO_WR_END Indicates whether the automatic write sequence has finished. Internal use only. Read-only.
	0	0x0000	OTPM_AUTO_WR_START Trigger OTPM automatic write sequence. The high voltage must be available on the high voltage pad before the write sequence is triggered. bypass_record (in otpm_expr) $=0$: The OTPM address at which to start the write is determined automatically by searching the existing OTPM contents for the next free location. The record type and length is taken from the otpm_record register. The record payload (data to write) is taken from the otpm_data* registers. bypass_record=1: The OTPM address at which to start the write is taken from the otpm_manual_addr register. The length of the data to program is taken from the otpm_record register. The data to write is taken from the otpm_data* registers. Internal use only. Readable. Write one to set. Self clearing upon completion.

TABLE 36. OTPM
R/W (Read or Write) bit; RO (Read Only) bit.

Register (Hex)	Bits	Default	Name
	Internal use only. Legal values: [0, 1911].		
R0x3902	15:0	0x0200	OTPM_RECORD (R/W)
	15:8	0x0002	OTPM_RECORD_TYPE OTPM record type. Currently supported types are x02-Default registers; x2n - Register sets. When writing a record, defines the type of the record to be written. When searching for a record, defines the type of the record to be searched for. Internal use only. Legal values: [0, 255].
	7:0	0x0000	OTPM_RECORD_LENGTH OTPM record length. Length of record payload in 16-bit words (between 1 and 128). When writing a record, defines the length of the record to be written. Ignored when searching for a record. Internal use only. Legal values: [0, 128].
	Internal use only.		

TABLE 37. 0: MONITOR VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

TABLE 37. 0: MONITOR VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0x8016	15:0	0x0000	MON_WATCHDOG_STATUS (RO)
	15:9	X	Reserved
	8	0x0000	Reserved
	7	0x00	Reserved
	6	0x00	Reserved
	5	0x00	Reserved
	4	0x00	Reserved
	3	0x00	Reserved
	2	0x00	Reserved
	1	0x00	Reserved
	0	0x00	Reserved
	Watchdog Monitor status indicator. A zero value indicates that the Watchdog has not detected any failures. A non-zero value indicates a failure has occurred and the host should take corrective action. This value is unsigned. Updates immediately (unsynchronized).		
0x805A	7:0	0x00	MON_FLASH_CONFIG_VERSION_ID (RO)
	This variable is to be used to set flash config version id. This value is unsigned. Updates immediately (unsynchronized).		

TABLE 38. 1: SEQUENCER VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	
$\mathbf{0 x 8 4 0 6}$	7:0	0x00	SEQ_ERROR_CODE (RO)
	Indicates the status of the last SEQ_REFRESH command. Possible values are: 0: ENOERR: command completed successfully. 9: EBUSY: busy and cannot execute the command at this time. 12: EINVAL: There is an error in the value of one of the variables so the command cannot run. 14: ERANGE: One of the variables is set to out of its allowed range for this configuration so the command cannot run. This value is unsigned. Updates after a Refresh command.		

TABLE 39. 3: NETWORK CONFIGURATION
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0x8C00	15:0	0x0000	NET_CFG_PHY_FLAGS (R/W)
	15:2	X	Reserved
	1	0x00	NET_CFG_PHY_BCM89810_MASTER Enable master mode (for Broadcom BCM89810 PHY only). This value is unsigned. Changes take effect after a Change-Config command.
	0	0x00	NET_CFG_PHY_MDIO_CONTINUOUS_CLOCK Enable continuous clock signal on MDIO_CLK pin. This value is unsigned. Changes take effect after a Change-Config command.
	PHY option mask. This value is unsigned. Changes take effect after a Change-Config command.		

TABLE 39. 3: NETWORK CONFIGURATION
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
	7:0	0x00	NET_CFG_PHY_TYPE (R/W)
0x8C02	PHY driver selection. 0: Reserved 1: Broadcom BCM89810 100Mbps PHY over MII 2: Micrel KSZ8051MNL 100Mbps PHY over MII 3: Micrel KSZ8081MNL 100Mbps PHY over MII 4: Micrel KSZ9031MNL 100Mbps/1Gbps PHY over GMII 5: National DP83848C 100Mbps PHY over RMII This value is unsigned. Changes take effect after a Change-Config command.		
0x8C03	7:0	0x00	NET_CFG_PHY_ADDRESS (R/W)
	PHY address on MDIO bus (0-31). This value is unsigned. Changes take effect after a Change-Config command.		
0x8C04	31:0	0x002625A0	NET_CFG_PHY_MDIO_FREQ (R/W)
	Frequency of MDIO clock (MDIO spec\' d value $=2.5 \mathrm{Mhz}$). This value is unsigned. Changes take effect after a ChangeConfig command.		
0x8C08	7:0	0x00	NET_CFG_MAC_FLAGS (R/W)
	7	0x00	Reserved
	6:4	X	Reserved
	3	0x00	NET_CFG_MAC_ENABLE_GTXCLK_OUT Enable the GTXCLK output pad (always true in GMII mode). This value is unsigned. Changes take effect after a Change-Config command.
	2	0x00	NET_CFG_MAC_INVERT_RXCLK_IN Invert Network RX clock input pad. This value is unsigned. Changes take effect after a ChangeConfig command.
	1	0x00	NET_CFG_MAC_INVERT_GTXCLK_OUT Invert Network GTX clock output pad. This value is unsigned. Changes take effect after a Change-Config command.
	0	0x00	NET_CFG_MAC_INVERT_TXCLK_IN Invert Network TX clock input pad. This value is unsigned. Changes take effect after a ChangeConfig command.
	MAC config mask. This value is unsigned. Changes take effect after a Change-Config command.		
0x8C09	7:0	0x01	NET_CFG_MAC_MODE (R/W)
	MAC mode. 0: RMII 1: MII 2: Reserved 3: GMII This value is unsigned. Changes take effect after a Change-Config command.		
0x8C0A	15:0	0x0200	NET_CFG_MAC_DEFAULT_ADDRESS_0 (R/W)
	Default MAC address, high 16 bits. This value is unsigned. Changes take effect after a Change-Config command.		
0x8C0C	15:0	0x0000	NET_CFG_MAC_DEFAULT_ADDRESS_2 (R/W)
	Default MAC address, middle 16 bits. This value is unsigned. Changes take effect after a Change-Config command.		
0x8C0E	15:0	0x0001	NET_CFG_MAC_DEFAULT_ADDRESS_4 (R/W)
	Default MAC address, low 16 bits. This value is unsigned. Changes take effect after a Change-Config command.		
0x8C10	15:0	0x0000	NET_CFG_MAC_ERROR_DISABLES (R/W)
	MAC Error disable bits (for testing only). This value is unsigned. Changes take effect after a Change-Config command.		

TABLE 39. 3: NETWORK CONFIGURATION
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0x8C14	15:0	0x0000	NET_CFG_NET_FLAGS (R/W)
	15:1	X	Reserved
	0	0x00	NET_CFG_NET_ENABLE_SERVICE_PROXY Enable Service Proxy feature. This value is unsigned. Changes take effect after a Change-Config command.
	NET global config mask. This value is unsigned. Changes take effect after a Change-Config command.		
0x8C16	7:0	0x19	NET_CFG_NET_CLOCK_FREQ (R/W)
	NET clock frequency in $\mathrm{MHz}(25,50$, or 125). This value is unsigned. Changes take effect after a Change-Config command.		
0x8C17	7:0	0x08	NET_CFG_NET_TX_QUEUE_SIZE (R/W)
	Maximum number of packets queued for transmit. This value is unsigned. Changes take effect after a Change-Config command.		
0x8C18	15:0	0xC351	NET_CFG_NET_UDP_CMD_PORT (R/W)
	ACCP UDP command port number. This value is unsigned. Changes take effect after a Change-Config command.		

TABLE 39. 3: NETWORK CONFIGURATION
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0x8C1C	31:0	0x00012017	NET_CFG_IFC0_FEATURES (R/W)
	31:29	X	Reserved
	28	0x000000000	Reserved
	27:25	X	Reserved
	24	0x000000000	Reserved
	23:21	X	Reserved
	20	0x00000000	Reserved
	19	X	Reserved
	18	0x00000000	Reserved
	17	0x00000000	Reserved
	16	0x00000001	NET_CFG_IFC0_PROTOCOL_ACCP Enable Aptina Camera Control Protocol. This value is unsigned. Changes take effect after a Change-Config command.
	15	X	Reserved
	14	0x0000	NET_CFG_IFC0_PROTOCOL_PTP Enable IEEE 1588v2 (PTP). This value is unsigned. Changes take effect after a Change-Config command.
	13	0x0001	NET_CFG_IFC0_PROTOCOL_GPTP Enable IEEE 802.1AS (gPTP). This value is unsigned. Changes take effect after a Change-Config command.
	12	0x0000	Reserved
	11:10	X	Reserved
	9	0x0000	Reserved
	8	0x0000	Reserved
	7:5	X	Reserved
	4	0x01	NET_CFG_IFC0_PROTOCOL_IPV6 Enable Internet Protocol Version 6. This value is unsigned. Changes take effect after a ChangeConfig command.
	3	0x00	NET_CFG_IFC0_PROTOCOL_RARP Enable Reverse Address Resolution Protocol. This value is unsigned. Changes take effect after a Change-Config command.
	2	0x01	NET_CFG_IFC0_PROTOCOL_IGMP Enable Internet Group Management Protocol. This value is unsigned. Changes take effect after a Change-Config command.
	1	0x01	NET_CFG_IFC0_PROTOCOL_ICMP Enable Internet Control Management Protocol. This value is unsigned. Changes take effect after a Change-Config command.
	0	0x01	NET_CFG_IFC0_PROTOCOL_IPV4 Enable Internet Protocol Version 4. This value is unsigned. Changes take effect after a ChangeConfig command.
	Protocol Feature enable mask. This value is unsigned. Changes take effect after a Change-Config command.		

TABLE 39. 3: NETWORK CONFIGURATION
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0x8C28	31:0	0xC0A80105	NET_CFG_IFC0_IPV4_ADDRESS (R/W)
	IPv4 address (32 bits). This value is unsigned. Changes take effect after a Change-Config command.		
0x8C2C	31:0	0xFFFFFF00	NET_CFG_IFC0_IPV4_NETMASK (R/W)
	IPv4 netmask (32 bits). This value is unsigned. Changes take effect after a Change-Config command.		
0x8C88	31:0	0x00010000	NET_CFG_VID_FLAGS (R/W)
	31:18	X	Reserved
	17:16	0x00000001	NET_CFG_VID_PROTOCOL Select network video protocol ($1=\mathrm{AVB}, 2=\mathrm{RTP} / \mathrm{IPv} 4,3=\mathrm{RTP} / \mathrm{IPv} 6$). This value is unsigned. Changes take effect after a Change-Config command.
	15:6	X	Reserved
	5:4	0x00	NET_CFG_VID_AVB_ETHERTYPE Use given Ethertype for AVB video: ($0=0 \times 22 \mathrm{~F} 0$ [std], $1=0 \times 88 \mathrm{~B} 5,2=$ custom $)$. This value is unsigned. Changes take effect after a Change-Config command.
	3:2	X	Reserved
	1	0x00	NET_CFG_VID_USE_CUSTOM_SRC_MAC_ADDR Use custom source MAC address instead of default MAC address. This value is unsigned. Changes take effect after a Change-Config command.
	0	0x00	NET_CFG_VID_USE_CUSTOM_DEST_MAC_ADDR Use custom destination MAC address instead of default MAC address. This value is unsigned. Changes take effect after a Change-Config command.
	Network video configuration mask. This value is unsigned. Changes take effect after a Change-Config command.		
0x8C8C	15:0	0x0000	NET_CFG_VID_DEST_MAC_ADDRESS_0 (R/W)
	Custom network video dest MAC address, high 16 bits. This value is unsigned. Changes take effect after a Change-Config command.		
0x8C8E	15:0	0x0000	NET_CFG_VID_DEST_MAC_ADDRESS_2 (R/W)
	Custom network video dest MAC address, middle 16 bits. This value is unsigned. Changes take effect after a Change-Config command.		
0x8C90	15:0	0x0000	NET_CFG_VID_DEST_MAC_ADDRESS_4 (R/W)
	Custom network video dest MAC address, low 16 bits. This value is unsigned. Changes take effect after a Change-Config command.		
0x8C92	15:0	0x0000	NET_CFG_VID_SRC_MAC_ADDRESS_0 (R/W)
	Custom network video src MAC address, high 16 bits. This value is unsigned. Changes take effect after a Change-Config command.		
0x8C94	15:0	0x0000	NET_CFG_VID_SRC_MAC_ADDRESS_2 (R/W)
	Custom network video src MAC address, middle 16 bits. This value is unsigned. Changes take effect after a Change-Config command.		
0x8C96	15:0	0x0000	NET_CFG_VID_SRC_MAC_ADDRESS_4 (R/W)
	Custom network video src MAC address, low 16 bits. This value is unsigned. Changes take effect after a Change-Config command.		

TABLE 39. 3: NETWORK CONFIGURATION
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0x8C98	15:0	0x0000	NET_CFG_VID_VLAN_ID (R/W)
	Custom network video IEEE 802.1Q VLAN tag. This value is unsigned. Changes take effect after a Change-Config command.		
0x8C9A	15:0	0x0000	NET_CFG_VID_ETHERTYPE (R/W)
	Custom network video Ethertype. This value is unsigned. Changes take effect after a Change-Config command.		
0x8C9C	15:0	0x0123	NET_CFG_VID_STREAM_ID_0 (R/W)
	Network video Stream ID, highest 16 bits. This value is unsigned. Changes take effect after a Change-Config command.		
0x8C9E	15:0	0x4567	NET_CFG_VID_STREAM_ID_1 (R/W)
	Network video Stream ID, high middle 16 bits. This value is unsigned. Changes take effect after a Change-Config command.		
0x8CA0	15:0	0x89AB	NET_CFG_VID_STREAM_ID_2 (R/W)
	Network video Stream ID, low middle 16 bits. This value is unsigned. Changes take effect after a Change-Config command.		
0x8CA2	15:0	0xCDEF	NET_CFG_VID_STREAM_ID_3 (R/W)
	Network video Stream ID, lowest 16 bits. This value is unsigned. Changes take effect after a Change-Config command.		
0x8CA4	31:0	0xC0A80105	NET_CFG_VID_SOURCE_IP_0 (R/W)
	RTP video source IPv4 / IPv6 address. This value is unsigned. Changes take effect after a Change-Config command.		
0x8CA8	31:0	0x00000000	NET_CFG_VID_SOURCE_IP_1 (R/W)
	RTP video source IPv4 / IPv6 address. This value is unsigned. Changes take effect after a Change-Config command.		
0x8CAC	31:0	0x00000000	NET_CFG_VID_SOURCE_IP_2 (R/W)
	RTP video source IPv4 / IPv6 address. This value is unsigned. Changes take effect after a Change-Config command.		
0x8CB0	31:0	0x00000000	NET_CFG_VID_SOURCE_IP_3 (R/W)
	RTP video source IPv4 / IPv6 address. This value is unsigned. Changes take effect after a Change-Config command.		
0x8CB4	31:0	0xFFFFFFFF	NET_CFG_VID_DESTINATION_IP_0 (R/W)
	RTP video destination IPv4 / IPv6 address. This value is unsigned. Changes take effect after a Change-Config command.		
0x8CB8	31:0	0x00000000	NET_CFG_VID_DESTINATION_IP_1 (R/W)
	RTP video destination IPv4 / IPv6 address. This value is unsigned. Changes take effect after a Change-Config command.		
0x8CBC	31:0	0x00000000	NET_CFG_VID_DESTINATION_IP_2 (R/W)
	RTP video destination IPv4 / IPv6 address. This value is unsigned. Changes take effect after a Change-Config command.		
0x8CC0	31:0	0x00000000	NET_CFG_VID_DESTINATION_IP_3 (R/W)
	RTP video destination IPv4 / IPv6 address. This value is unsigned. Changes take effect after a Change-Config command.		
0x8CC4	15:0	0x138C	NET_CFG_VID_SOURCE_PORT (R/W)
	RTP video UDP src port. This value is unsigned. Changes take effect after a Change-Config command.		
0x8CC6	15:0	0x138C	NET_CFG_VID_DESTINATION_PORT (R/W)
	RTP video UDP dest port. This value is unsigned. Changes take effect after a Change-Config command.		
0x8CC8	7:0	0x00	NET_CFG_VID_PAYLOAD_TYPE (R/W)
	RTP video payload type. This value is unsigned. Changes take effect after a Change-Config command.		

TABLE 40. 9: AE_RULE VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xA404	15:0	0x0003	AE_RULE_ALGO (R/W)
	15:3	X	Reserved
	2:0	0x03	AE_RULE_EXEC_RULE_AVGY_ALGO Auto exposure rule algorithm control. 0: Average Brightness 1: Weighted Brightness 2: Average Log Brightness 3: Weighted Log Brightness. Note: Modes 0 and 1 are only intended for usage in SDR mode (for backwards compatibility with previous automotive SOCs). This value is unsigned. Changes take effect during Vertical Blanking.
	AE Rule algorithm control. This value is unsigned. Changes take effect during Vertical Blanking.		
0xA408	15:0	0x0000	AE_RULE_AVG_LOG_Y_FROM_STATS (RO)
	Average of the log of each AE zone luminance statistics This value is unsigned fixed-point with 8 fractional bits. Updates during Vertical Blanking.		
0xA40A	7:0	0x19	AE_RULE_AE_WEIGHT_TABLE_0_0 (R/W)
	Percentage weight for window row 0 , column 0 . This value is unsigned. Changes take effect during Vertical Blanking.		
0xA40B	7:0	0x19	AE_RULE_AE_WEIGHT_TABLE_0_1 (R/W)
	Percentage weight for window row 0 , column 1. This value is unsigned. Changes take effect during Vertical Blanking.		
0xA40C	7:0	0x19	AE_RULE_AE_WEIGHT_TABLE_0_2 (R/W)
	Percentage weight for window row 0, column 2. This value is unsigned. Changes take effect during Vertical Blanking.		
0xA40D	7:0	0x19	AE_RULE_AE_WEIGHT_TABLE_0_3 (R/W)
	Percentage weight for window row 0 , column 3. This value is unsigned. Changes take effect during Vertical Blanking.		
0xA40E	7:0	0x19	AE_RULE_AE_WEIGHT_TABLE_0_4 (R/W)
	Percentage weight for window row 0 , column 4. This value is unsigned. Changes take effect during Vertical Blanking.		
0xA40F	7:0	0x19	AE_RULE_AE_WEIGHT_TABLE_1_0 (R/W)
	Percentage weight for window row 1, column 0 . This value is unsigned. Changes take effect during Vertical Blanking.		
0xA410	7:0	0x4B	AE_RULE_AE_WEIGHT_TABLE_1_1 (R/W)
	Percentage weight for window row 1, column 1. This value is unsigned. Changes take effect during Vertical Blanking.		
0xA411	7:0	0x4B	AE_RULE_AE_WEIGHT_TABLE_1_2 (R/W)
	Percentage weight for window row 1, column 2. This value is unsigned. Changes take effect during Vertical Blanking.		
0xA412	7:0	0x4B	AE_RULE_AE_WEIGHT_TABLE_1_3 (R/W)
	Percentage weight for window row 1, column 3. This value is unsigned. Changes take effect during Vertical Blanking.		
0xA413	7:0	0x19	AE_RULE_AE_WEIGHT_TABLE_1_4 (R/W)
	Percentage weight for window row 1, column 4. This value is unsigned. Changes take effect during Vertical Blanking.		
0xA414	7:0	0x19	AE_RULE_AE_WEIGHT_TABLE_2_0 (R/W)
	Percentage weight for window row 2, column 0 . This value is unsigned. Changes take effect during Vertical Blanking.		
0xA415	7:0	0x4B	AE_RULE_AE_WEIGHT_TABLE_2_1 (R/W)
	Percentage weight for window row 2, column 1. This value is unsigned. Changes take effect during Vertical Blanking.		
0xA416	7:0	0x64	AE_RULE_AE_WEIGHT_TABLE_2_2 (R/W)
	Percentage weight for window row 2, column 2. This value is unsigned. Changes take effect during Vertical Blanking.		

TABLE 40. 9: AE_RULE VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xA417	7:0	0x4B	AE_RULE_AE_WEIGHT_TABLE_2_3 (R/W)
	Percentage weight for window row 2, column 3. This value is unsigned. Changes take effect during Vertical Blanking.		
0xA418	7:0	0x19	AE_RULE_AE_WEIGHT_TABLE_2_4 (R/W)
	Percentage weight for window row 2, column 4. This value is unsigned. Changes take effect during Vertical Blanking.		
0xA419	7:0	0x19	AE_RULE_AE_WEIGHT_TABLE_3_0 (R/W)
	Percentage weight for window row 3, column 0 . This value is unsigned. Changes take effect during Vertical Blanking.		
0xA41A	7:0	0x4B	AE_RULE_AE_WEIGHT_TABLE_3_1 (R/W)
	Percentage weight for window row 3, column 1. This value is unsigned. Changes take effect during Vertical Blanking.		
0xA41B	7:0	0x4B	AE_RULE_AE_WEIGHT_TABLE_3_2 (R/W)
	Percentage weight for window row 3, column 2. This value is unsigned. Changes take effect during Vertical Blanking.		
0xA41C	7:0	0x4B	AE_RULE_AE_WEIGHT_TABLE_3_3 (R/W)
	Percentage weight for window row 3, column 3. This value is unsigned. Changes take effect during Vertical Blanking.		
0xA41D	7:0	0x19	AE_RULE_AE_WEIGHT_TABLE_3_4 (R/W)
	Percentage weight for window row 3, column 4. This value is unsigned. Changes take effect during Vertical Blanking.		
0xA41E	7:0	0x19	AE_RULE_AE_WEIGHT_TABLE_4_0 (R/W)
	Percentage weight for window row 4, column 0 . This value is unsigned. Changes take effect during Vertical Blanking.		
0xA41F	7:0	0x19	AE_RULE_AE_WEIGHT_TABLE_4_1 (R/W)
	Percentage weight for window row 4, column 1. This value is unsigned. Changes take effect during Vertical Blanking.		
0xA420	7:0	0x19	AE_RULE_AE_WEIGHT_TABLE_4_2 (R/W)
	Percentage weight for window row 4, column 2. This value is unsigned. Changes take effect during Vertical Blanking.		
0xA421	7:0	0x19	AE_RULE_AE_WEIGHT_TABLE_4_3 (R/W)
	Percentage weight for window row 4, column 3. This value is unsigned. Changes take effect during Vertical Blanking.		
0xA422	7:0	0x19	AE_RULE_AE_WEIGHT_TABLE_4_4 (R/W)
	Percentage weight for window row 4, column 4. This value is unsigned. Changes take effect during Vertical Blanking.		

TABLE 41. 10: AE_TRACK VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xA800	15:0	0x0000	AE_TRACK_STATUS (RO)
	15:8	X	Reserved
	7	RO	AE_TRACK_AE_STATUS_FLICKER_AVOIDANCE_DISABLED When set, AE will ignore flicker avoidance in low light conditions This value is unsigned.
	6	RO	AE_TRACK_AE_STATUS_SETTLED Status of AE track settling: 0x0: AE not settled 0×1 : AE has settled This value is unsigned. Updates during Vertical Blanking.
	5	RO	Reserved
	4	RO	Reserved
	3	RO	AE_TRACK_AE_STATUS_READY When this bit is 1 it indicates that the AE Track algorithm has settled, or exposure and gain limits have been reached. This value is unsigned. Updates during Vertical Blanking.
	2	RO	Reserved
	1	RO	AE_TRACK_AE_STATUS_LIMITHIGH When this bit is 1 it indicates that the AE Track algorithm has reached the high limit (the maximum permitted coarse/fine integration times and virtual gain). This value is unsigned. Updates during Vertical Blanking.
	0	RO	AE_TRACK_AE_STATUS_LIMITLOW When this bit is 1 it indicates that the AE Track algorithm has reached the low limit (the minimum permitted coarse/fine integration times and virtual gain). This value is unsigned. Updates during Vertical Blanking.
	AE Track status flags. This value is unsigned. Updates during Vertical Blanking.		

TABLE 41. 10: AE_TRACK VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xA802	15:0	0x001C	AE_TRACK_MODE (R/W)
	15:7	X	Reserved
	6	0x00	Reserved
	5	X	Reserved
	4	0x01	AE_TRACK_AE_MODE_MIN_DIGITAL_GAIN Enable minimum digital gain calculation. The minimum digital gain feature is used to exchange integration time for digital gain since the noise degradation from exchanging integration time for digital can be smaller compared to the noise improvement by deriving those pixels using the long exposure instead of the short exposure. In order to calculate the amount of exposure reduction in terms of integration time, the histogram valley point is computed. The valley is the lowest point between the 2 peaks of a bimodal histogram. The goal is to move that valley point to within the T1 saturation point. In order to achieve this, the digital gain must be greater than the ratio of the histogram valley point luminance over a programmable target value which should be less than or equal to the T1 saturation point. 0: Disabled 1: Enabled Note this mode is disabled when in SDR. This value is unsigned. Changes take effect during Vertical Blanking.
	3	0x01	AE_TRACK_AE_MODE_CLIPPING 0: Disabled 1: Enabled Enable use of clip stats. This feature is enabled when this bit is enabled as well as the ae_track_ae_mode_percentile bit and the percentile of clipped pixels is greater than 2 * the histogram high end percentile. AE uses the exposure derived from the high end percentile or the exposure derived from high light clipping, depending on which is less. The high end percentile point is calculated from the histogram using a programmable target value. An exposure from highlight clipping is computed from a curve derived from sample data from an image database. This curve is used to calculate how much an exposure has to be reduced to get the number of clipped pixels down to 0 . This value is unsigned. Changes take effect during Vertical Blanking.
	2	0x01	AE_TRACK_AE_MODE_PERCENTILE 0 : disabled 1: enabled When this bit is enabled, AE ensures that high light clipping is within a set tolerance. AE tries to place a histogram high end percentile point below a target value. The amount of highlight clipping permitted varies with the number of pixels in the histogram low end. The more pixels that are in the histogram low end, the more important the low end pixels are and thus more clipping is allowed. The maximum exposure adjustment by histogram percentile is controlled by ae_track_max_perc_exp_adjust. This value is unsigned. Changes take effect during Vertical Blanking.
	1	0x00	Reserved
	0	X	Reserved
	AE Track mode control. This value is unsigned. Changes take effect during Vertical Blanking.		
0xA804	15:0	0x003F	AE_TRACK_ALGO (R/W)
	15:7	X	Reserved
	6	0x00	Reserved
	5	0x01	Reserved
	4	0x01	Reserved
	3	0x01	AE_TRACK_EXEC_CALC_TARGET_LUMA Execute target luma calculation routine 0 : Disabled 1: Enabled This value is unsigned. Changes take effect during Vertical Blanking.
	2	0x01	Reserved
	1	0x01	Reserved
	0	0x01	Reserved
	AE Track algorithm control. This value is unsigned. Changes take effect during Vertical Blanking.		
0xA806	15:0	0x0000	AE_TRACK_AVG_LOG_Y_TARGET (RO)
	Luma target in $\log 2$ space. This value is unsigned fixed-point with 8 fractional bits. Updates during Vertical Blanking.		

TABLE 41. 10: AE_TRACK VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xA810	15:0	0x0080	AE_TRACK_TRACK_EXP_SPEED (R/W)
	This controls the speed at which AE exposure will settle. 0: Slow reaction to changes 256: Fast reaction to changes This value is unsigned. Changes take effect during Vertical Blanking.		
0xA812	7:0	0x04	AE_TRACK_ADAPT_THRESH (R/W)
	AE tracking threshold. This is equivalent to a gate around the target within which AE can settle. This value is unsigned fixedpoint with 5 fractional bits. Changes take effect during Vertical Blanking.		
0xA813	7:0	0x03	AE_TRACK_DAMP_MAX (R/W)
	Maximum AE damping. This value is the damping speed when the exposure is near the target (0 is the slowest adaptation). This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
0xA814	7:0	0x03	AE_TRACK_DAMP_SLOPE (R/W)
	Adaptive AE damping slope. This increases the distance between damp_max and damp_min. The smaller the value the bigger the distance. This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
0xA815	7:0	0x1C	AE_TRACK_DAMP_MIN (R/W)
	Minimum AE damping. This value is the damping speed when the exposure is far from the target (1 is the fastest adaptation). This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
0xA81C	7:0	0x86	AE_TRACK_MIN_GAIN_GATE (R/W)
	Gate around the minimum digital gain. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
0xA81D	7:0	0x08	AE_TRACK_TRACK_MIN_GAIN_SPEED (R/W)
	This controls the speed for the minimum gain algorithm. 0: Slow 32: Fast This value is unsigned. Changes take effect immediately (unsynchronized).		
0xA826	15:0	0x000A	AE_TRACK_HIST_VALLEY_COUNT (RO)
	A number representing a percentage of the total number of samples in the histogram. This value is unsigned fixed-point with 10 fractional bits. Updates during Vertical Blanking.		
0xA82C	15:0	0x07C0	AE_TRACK_LOG_Y_TARGET_0 (R/W)
	Target table for exposure. These variables can be tuned to provide, for example, high noise immunity or high flicker avoidance. This value is unsigned fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xA82E	15:0	0x081F	AE_TRACK_LOG_Y_TARGET_1 (R/W)
	Target table for exposure. These variables can be tuned to provide, for example, high noise immunity or high flicker avoidance. This value is unsigned fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xA830	15:0	0x0880	AE_TRACK_LOG_Y_TARGET_2 (R/W)
	Target table for exposure. These variables can be tuned to provide, for example, high noise immunity or high flicker avoidance. This value is unsigned fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xA832	15:0	0x08D1	AE_TRACK_LOG_Y_TARGET_3 (R/W)
	Target table for exposure. These variables can be tuned to provide, for example, high noise immunity or high flicker avoidance. This value is unsigned fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xA834	15:0	0x0921	AE_TRACK_LOG_Y_TARGET_4 (R/W)
	Target table for exposure. These variables can be tuned to provide, for example, high noise immunity or high flicker avoidance. This value is unsigned fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xA836	15:0	0x09AE	AE_TRACK_LOG_Y_TARGET_5 (R/W)
	Target table for exposure. These variables can be tuned to provide, for example, high noise immunity or high flicker avoidance. This value is unsigned fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xA838	15:0	0x09AE	AE_TRACK_LOG_Y_TARGET_6 (R/W)
	Target table for exposure. These variables can be tuned to provide, for example, high noise immunity or high flicker avoidance. This value is unsigned fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		

TABLE 41. 10: AE_TRACK VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	
$\mathbf{0 x A 8 3 A}$	$\mathbf{1 5 : 0}$	0x09AE	AE_TRACK_LOG_Y_TARGET_7 (R/W)
	Target table for exposure. These variables can be tuned to provide, for example, high noise immunity or high flicker avoidance. This value is unsigned fixed - point with 8 fractional bits. Changes take effect during Vertical Blanking.		

TABLE 42. 11: AWB VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variabler (Hex)	Bits	Default	Name
0xAC00	15:0	0x0000	AWB_STATUS (RO)
	15:5	X	Reserved
	4	RO	AWB_LIMITS_REACHED 0x0: AWB has not reached the gain limits. 0x1: AWB has reached the gain limits. This value is unsigned. Updates during Vertical Blanking.
	3	RO	AWB_NO_STATS 0x0: AWB has white balance statistics. 0x1: AWB has no white balance statistics to process. This value is unsigned. Updates during Vertical Blanking.
	2	X	Reserved
	1	RO	AWB_COLOR_TEMPERATURE_LIMITS 0x0: AWB is within valid color temperature limits. 0x1: AWB has reached the color temperature limits. This value is unsigned. Updates during Vertical Blanking.
	0	RO	AWB_STEADY 0x0: AWB is busy. 0x1: AWB has reached a steady state. This value is unsigned. Updates during Vertical Blanking.
	AWB status flags. This value is unsigned. Updates during Vertical Blanking.		
0xAC02	15:0	0x01C8	AWB_MODE (R/W)
	15:9	X	Reserved
	8	0x0001	AWB_3RD_CCM_ENABLE Enables the \'middle\' (3rd) CCM: 0: AWB interpolates between the \'left\' and \'right\' CCMs. 1: AWB interpolates between the \'left\' and \'middle\' CCMs, and the \'middle\' and \'right\' CCMs, dependent upon the calculated color temperature. This value is unsigned. Changes take effect during Vertical Blanking.
	7	0x01	Reserved
	6	0x01	Reserved
	5:4	X	Reserved
	3	0x01	Reserved
	2:0	X	Reserved
	AWB mode control. This value is unsigned. Changes take effect during Vertical Blanking.		
0xAC06	7:0	0x63	AWB_R_RATIO_LOWER (R/W)
	Lower value for the awb_r_ratio_post_awb threshold. This threshold is used to stop AWB calculating new ratios when the difference is small. This value is unsigned. Changes take effect during Vertical Blanking.		

TABLE 42. 11: AWB VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variabler (Hex)	Bits	Default	Name
0xAC07	7:0	0x65	AWB_R_RATIO_UPPER (R/W)
	Upper value for the awb_r_ratio_post_awb threshold. This threshold is used to stop AWB calculating new ratios when the difference is small. This value is unsigned. Changes take effect during Vertical Blanking.		
0xAC08	7:0	0x63	AWB_B_RATIO_LOWER (R/W)
	Lower value for the awb_b_ratio_post_awb threshold. This threshold is used to stop AWB calculating new ratios when the difference is small. This value is unsigned. Changes take effect during Vertical Blanking.		
0xAC09	7:0	0x65	AWB_B_RATIO_UPPER (R/W)
	Upper value for the awb_b_ratio_post_awb threshold. This threshold is used to stop AWB calculating new ratios when the difference is small. This value is unsigned. Changes take effect during Vertical Blanking.		
0xAC0A	7:0	0x00	AWB_R_SCENE_RATIO_LOWER (R/W)
	Lower limit value for awb_r_ratio_pre_awb. This value is unsigned. Changes take effect during Vertical Blanking.		
0xAC0B	7:0	0xFF	AWB_R_SCENE_RATIO_UPPER (R/W)
	Upper limit value for awb_r_ratio_pre_awb. This value is unsigned. Changes take effect during Vertical Blanking.		
0xAC0C	7:0	0x00	AWB_B_SCENE_RATIO_LOWER (R/W)
	Lower limit value for awb_b_ratio_pre_awb. This value is unsigned. Changes take effect during Vertical Blanking.		
0xAC0D	7:0	0xFF	AWB_B_SCENE_RATIO_UPPER (R/W)
	Upper limit value for awb_b_ratio_pre_awb. This value is unsigned. Changes take effect during Vertical Blanking.		
0xAC0E	7:0	0x64	AWB_R_RATIO_PRE_AWB (RO)
	R/G ratio from the stats (before AWB gains applied). This value is unsigned. Updates during Vertical Blanking.		
0xAC0F	7:0	0x64	AWB_B_RATIO_PRE_AWB (RO)
	B/G ratio from the stats (before AWB gains applied). This value is unsigned. Updates during Vertical Blanking.		
0xAC10	7:0	0x64	AWB_R_RATIO_POST_AWB (RO)
	Scene R/G color ratio calculated from raw AWB statistics, unity is 100 (read only). This value is unsigned. Updates during Vertical Blanking.		
0xAC11	7:0	0x64	AWB_B_RATIO_POST_AWB (RO)
	Scene B/G color ratio calculated from raw AWB statistics, unity is 100 (read only). This value is unsigned. Updates during Vertical Blanking.		
0xAC12	15:0	0x0080	AWB_R_GAIN (RO)
	Red channel gain in effect for next frame. This value is unsigned fixed-point with 7 fractional bits. Updates during Vertical Blanking.		
0xAC14	15:0	0x0080	AWB_B_GAIN (RO)
	Blue channel gain in effect for next frame. This value is unsigned fixed-point with 7 fractional bits. Updates during Vertical Blanking.		
0xAC16	7:0	0x0A	AWB_PRE_AWB_RATIOS_TRACKING_SPEED (R/W)
	Controls the dampening speed for pre-AWB ratios tracking: 0: Maximum dampening. 32: No dampening. This value is unsigned. Changes take effect during Vertical Blanking.		
0xAC24	15:0	0x0900	AWB_IR_CONTROL_BRIGHTNESS_TH (R/W)
	Threshold for brightness metric log to force Daylight CCM (unity = 256). This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		

TABLE 42. 11: AWB VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variabler (Hex)	Bits	Default	Name
0xAC28	15:0	0x00CD	AWB_IR_CONTROL_THRESHOLD_1 (R/W)
	Threshold parameter for the A-F boundary line. Unity is 128 (7 bit precision). This value is signed $2 \&$ apos;s complement fixedpoint with 7 fractional bits. Changes take effect during Vertical Blanking.		
0xAC2A	15:0	0x0004	AWB_IR_CONTROL_THRESHOLD_1_GATE (R/W)
	Hysteresis gate for awb_ir_control_threshold_1. Unity is 128 (7 bit precision). This value is signed 2\'s complement fixedpoint with 7 fractional bits. Changes take effect during Vertical Blanking.		
0xAC2C	15:0	0xFF40	AWB_IR_CONTROL_SLOPE_K1 (R/W)
	Slope for the A-F boundary line. Unity is 128 (7 bit precision). This value is signed 2\'s complement fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
0xAC2E	15:0	0x000D	AWB_IR_CONTROL_THRESHOLD_2 (R/W)
	Threshold parameter for the Day-A boundary line. Unity is 128 (7 bit precision). This value is signed 2\'s complement fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
0xAC30	15:0	0x0004	AWB_IR_CONTROL_THRESHOLD_2_GATE (R/W)
	Hysteresis gate for awb_ir_control_threshold_2. Unity is 128 (7 bit precision). This value is signed 2\'s complement fixedpoint with 7 fractional bits. Changes take effect during Vertical Blanking.		
0xAC32	15:0	0x00A4	AWB_IR_CONTROL_SLOPE_K2 (R/W)
	Slope for the Day-A boundary line. Unity is 128 (7 bit precision). This value is signed 2\'s complement fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
0xAC3A	15:0	0x0080	AWB_DGAIN_SENSOR_MIN (R/W)
	The minimum sensor digital gain for all channels (unity=128). This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		

TABLE 43. 12: BLACKLEVEL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xB004	15:0	0x0004	BLACKLEVEL_ALGO (R/W)
	15:3	X	Reserved
	2	0x01	BLACKLEVEL_EXEC_CALC_BLACKLEVEL Controls the automatic blacklevel calculation: 0: Disabled: use cam_cpipe_control_second_black_level to enable manual control. 1: Automatic: firmware calculates the second black level subtraction and stretch. This value is unsigned. Changes take effect during Vertical Blanking.
	1:0	X	Reserved
	Blacklevel algorithm control. This value is unsigned. Changes take effect during Vertical Blanking.		
0xB00C	7:0	0x00	BLACKLEVEL_MAX_BLACK_LEVEL (R/W)
	Controls the maximum black level that the firmware can subtract. This value is unsigned. Changes take effect during Vertical Blanking.		
0xB00D	7:0	0x06	BLACKLEVEL_BLACK_LEVEL_DAMPING (R/W)
	Controls the dampening speed for the current blacklevel: 0: Maximum dampening. 32: No dampening. This value is unsigned. Changes take effect during Vertical Blanking.		

TABLE 44. 13: CCM VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xB404	15:0	0x0030	CCM_ALGO (R/W)
	15:6	X	Reserved
	5	0x01	Reserved
	4	0x01	Reserved
	3:0	X	Reserved
	Controls the CCM algorithms: 0x0: Disabled - manual CCM control. 0x30: Automatic CCM control This value is unsigned. Changes take effect during Vertical Blanking.		
0xB406	15:0	0x0000	CCM_0 (RO)
	Color Correction Matrix value for column 0 and row 0 . This value is signed 2\'s complement fixed-point with 8 fractional bits. Updates during Vertical Blanking.		
0xB408	15:0	0x0000	CCM_1 (RO)
	Color Correction Matrix value for column 1 and row 0 . This value is signed 2\'s complement fixed-point with 8 fractional bits. Updates during Vertical Blanking.		
0xB40A	15:0	0x0000	CCM_2 (RO)
	Color Correction Matrix value for column 2 and row 0 . This value is signed 2\'s complement fixed-point with 8 fractional bits. Updates during Vertical Blanking.		
0xB40C	15:0	0x0000	CCM_3 (RO)
	Color Correction Matrix value for column 0 and row 1. This value is signed 2\'s complement fixed-point with 8 fractional bits. Updates during Vertical Blanking.		
0xB40E	15:0	0x0000	CCM_4 (RO)
	Color Correction Matrix value for column 1 and row 1. This value is signed 2\'s complement fixed-point with 8 fractional bits. Updates during Vertical Blanking.		
0xB410	15:0	0x0000	CCM_5 (RO)
	Color Correction Matrix value for column 2 and row 1. This value is signed 2\'s complement fixed-point with 8 fractional bits. Updates during Vertical Blanking.		
0xB412	15:0	0x0000	CCM_6 (RO)
	Color Correction Matrix value for column 0 and row 2. This value is signed 2\'s complement fixed-point with 8 fractional bits. Updates during Vertical Blanking.		
0xB414	15:0	0x0000	CCM_7 (RO)
	Color Correction Matrix value for column 1 and row 2. This value is signed 2\'s complement fixed-point with 8 fractional bits. Updates during Vertical Blanking.		
0xB416	15:0	0x0000	CCM_8 (RO)
	Color Correction Matrix value for column 2 and row 2. This value is signed 2\'s complement fixed-point with 8 fractional bits. Updates during Vertical Blanking.		

TABLE 45. 14: STAT VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
	31:0	0x00000000	STAT_AVERAGE_LUMA (RO)
	Weighted average luma of included pixels (zones with excluded pixels have lower weight). Unity=1. This value is unsigned. Updates during Vertical Blanking.		
0xB808	15:0	0x0000	STAT_LOG_AVERAGE_LUMA (RO)
	Log2(average_luma). Unity=256. This value is unsigned fixed-point with 8 fractional bits. Updates during Vertical Blanking.		
0xB80A	15:0	0x0000	STAT_AVERAGE_LOGY (RO)
	Weighted average $\log 2(\mathrm{Y})$ of included pixels (zones with excluded pixels have lower weight). Unity=2048. This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.		
0xB80C	31:0	0x00000000	STAT_ALTM_L_MIN (RO)
	Minimum L value from stats engine, default $2^{\wedge} 16^{*} 0.01$. L is the illuminant component which is estimated from the Shape Adaptive Filter operating on Luma Y. This value is unsigned. Updates during Vertical Blanking.		
0xB810	31:0	0x00000000	STAT_ALTM_L_MAX (RO)
	Maximum L value from stats engine, $2^{\wedge} 16^{*} 0.99$. L is the illuminant component which is estimated from the Shape Adaptive Filter operating on Luma Y. This value is unsigned. Updates during Vertical Blanking.		
0xB814	31:0	0x00000000	STAT_AWB_PIXELS_IN_STAT (RO)
	Total pixels used to generate AWB stats. This value is unsigned. Updates during Vertical Blanking.		
0xB818	15:0	0x0000	STAT_AWB_NORM_SUM_WEIGHTED_RED (RO)
	Normalized sum of weighted red. This value is unsigned. Updates during Vertical Blanking.		
0xB81A	15:0	0x0000	STAT_AWB_NORM_SUM_WEIGHTED_GREEN (RO)
	Normalized sum of weighted green. This value is unsigned. Updates during Vertical Blanking.		
0xB81C	15:0	0x0000	STAT_AWB_NORM_SUM_WEIGHTED_BLUE (RO)
	Normalized sum of weighted blue. This value is unsigned. Updates during Vertical Blanking.		
0xB820	31:0	0x00000000	STAT_CLIP_TOTAL_PIXELS_WIN (RO)
	Total number of pixels in CLIP window. This value is unsigned. Updates during Vertical Blanking.		
0xB824	15:0	0x0000	STAT_CLIP_NUM_LOWLIGHTS (RO)
	Percentage of pixels in the \' dark\' region (1024 = 100\%). This value is unsigned. Updates during Vertical Blanking.		
0xB858	15:0	0x0000	STAT_AE_ZONE_SIZE_CELLS (RO)
	Number of cells in each AE zone. This value is unsigned. Updates after a Refresh command.		
0xB85A	15:0	0x0000	STAT_AE_HISTOGRAM_SIZE (RO)
	Total number of cells in AE luma histogram. This value is unsigned. Updates during Vertical Blanking.		
0xB85C	31:0	0x00000000	STAT_AE_ZONE_AVGLUMA_0_0 (RO)
	Average luminance for AE window zone [0, 0 . This value is unsigned. Updates during Vertical Blanking.		
0xB860	31:0	0x00000000	STAT_AE_ZONE_AVGLUMA_0_1 (RO)
	Average luminance for AE window zone [0, 1]. This value is unsigned. Updates during Vertical Blanking.		
0xB864	31:0	0x00000000	STAT_AE_ZONE_AVGLUMA_0_2 (RO)
	Average luminance for AE window zone [0, 2]. This value is unsigned. Updates during Vertical Blanking.		

TABLE 45. 14: STAT VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xB868	31:0	0x00000000	STAT_AE_ZONE_AVGLUMA_0_3 (RO)
	Average luminance for AE window zone [0,3$]$. This value is unsigned. Updates during Vertical Blanking.		
0xB86C	31:0	0x00000000	STAT_AE_ZONE_AVGLUMA_0_4 (RO)
	Average luminance for AE window zone [0,4$]$. This value is unsigned. Updates during Vertical Blanking.		
0xB870	31:0	0x00000000	STAT_AE_ZONE_AVGLUMA_1_0 (RO)
	Average luminance for AE window zone [1, 0]. This value is unsigned. Updates during Vertical Blanking.		
0xB874	31:0	0x00000000	STAT_AE_ZONE_AVGLUMA_1_1 (RO)
	Average luminance for AE window zone [1, 1]. This value is unsigned. Updates during Vertical Blanking.		
0xB878	31:0	0x00000000	STAT_AE_ZONE_AVGLUMA_1_2 (RO)
	Average luminance for AE window zone [1, 2]. This value is unsigned. Updates during Vertical Blanking.		
0xB87C	31:0	0x00000000	STAT_AE_ZONE_AVGLUMA_1_3 (RO)
	Average luminance for AE window zone [1, 3]. This value is unsigned. Updates during Vertical Blanking.		
0xB880	31:0	0x00000000	STAT_AE_ZONE_AVGLUMA_1_4 (RO)
	Average luminance for AE window zone [1, 4]. This value is unsigned. Updates during Vertical Blanking.		
0xB884	31:0	0x00000000	STAT_AE_ZONE_AVGLUMA_2_0 (RO)
	Average luminance for AE window zone [2, 0]. This value is unsigned. Updates during Vertical Blanking.		
0xB888	31:0	0x00000000	STAT_AE_ZONE_AVGLUMA_2_1 (RO)
	Average luminance for AE window zone [2, 1]. This value is unsigned. Updates during Vertical Blanking.		
0xB88C	31:0	0x00000000	STAT_AE_ZONE_AVGLUMA_2_2 (RO)
	Average luminance for AE window zone [2, 2]. This value is unsigned. Updates during Vertical Blanking.		
0xB890	31:0	0x00000000	STAT_AE_ZONE_AVGLUMA_2_3 (RO)
	Average luminance for AE window zone [2, 3]. This value is unsigned. Updates during Vertical Blanking.		
0xB894	31:0	0x00000000	STAT_AE_ZONE_AVGLUMA_2_4 (RO)
	Average luminance for AE window zone [2, 4]. This value is unsigned. Updates during Vertical Blanking.		
0×88898	31:0	0x00000000	STAT_AE_ZONE_AVGLUMA_3_0 (RO)
	Average luminance for AE window zone [3, 0]. This value is unsigned. Updates during Vertical Blanking.		
0xB89C	31:0	0x00000000	STAT_AE_ZONE_AVGLUMA_3_1 (RO)
	Average luminance for AE window zone [3,1$]$. This value is unsigned. Updates during Vertical Blanking.		
0xB8A0	31:0	0x00000000	STAT_AE_ZONE_AVGLUMA_3_2 (RO)
	Average luminance for AE window zone [3, 2]. This value is unsigned. Updates during Vertical Blanking.		
0xB8A4	31:0	0x00000000	STAT_AE_ZONE_AVGLUMA_3_3 (RO)
	Average luminance for AE window zone [3, 3]. This value is unsigned. Updates during Vertical Blanking.		
0xB8A8	31:0	0x00000000	STAT_AE_ZONE_AVGLUMA_3_4 (RO)
	Average luminance for AE window zone [3, 4]. This value is unsigned. Updates during Vertical Blanking.		
0xB8AC	31:0	0x00000000	STAT_AE_ZONE_AVGLUMA_4_0 (RO)
	Average luminance for AE window zone [4, 0]. This value is unsigned. Updates during Vertical Blanking.		

TABLE 45. 14: STAT VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xB8B0	31:0	0x00000000	STAT_AE_ZONE_AVGLUMA_4_1 (RO)
	Average luminance for AE window zone [4, 1]. This value is unsigned. Updates during Vertical Blanking.		
0xB8B4	31:0	0x00000000	STAT_AE_ZONE_AVGLUMA_4_2 (RO)
	Average luminance for AE window zone [4, 2]. This value is unsigned. Updates during Vertical Blanking.		
0xB8B8	31:0	0x00000000	STAT_AE_ZONE_AVGLUMA_4_3 (RO)
	Average luminance for AE window zone [4, 3]. This value is unsigned. Updates during Vertical Blanking.		
0xB8BC	31:0	0x00000000	STAT_AE_ZONE_AVGLUMA_4_4 (RO)
	Average luminance for AE window zone [4, 4]. This value is unsigned. Updates during Vertical Blanking.		
0xB8C0	15:0	0x0000	STAT_AE_ZONE_AVGLOGY_0_0 (RO)
	Average of the $\log 2$ of luminance for AE window zone [0,0$]$. This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.		
0xB8C2	15:0	0x0000	STAT_AE_ZONE_AVGLOGY_0_1 (RO)
	Average of the $\log 2$ of luminance for AE window zone [0,1]. This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.		
0xB8C4	15:0	0x0000	STAT_AE_ZONE_AVGLOGY_0_2 (RO)
	Average of the $\log 2$ of luminance for AE window zone [0, 2]. This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.		
0xB8C6	15:0	0x0000	STAT_AE_ZONE_AVGLOGY_0_3 (RO)
	Average of the $\log 2$ of luminance for AE window zone [0, 3]. This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.		
0xB8C8	15:0	0x0000	STAT_AE_ZONE_AVGLOGY_0_4 (RO)
	Average of the $\log 2$ of luminance for AE window zone [0, 4]. This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.		
0xB8CA	15:0	0x0000	STAT_AE_ZONE_AVGLOGY_1_0 (RO)
	Average of the $\log 2$ of luminance for AE window zone [1, 0]. This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.		
0xB8CC	15:0	0x0000	STAT_AE_ZONE_AVGLOGY_1_1 (RO)
	Average of the $\log 2$ of luminance for AE window zone [1, 1]. This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.		
0xB8CE	15:0	0x0000	STAT_AE_ZONE_AVGLOGY_1_2 (RO)
	Average of the $\log 2$ of luminance for AE window zone [1, 2]. This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.		
0xB8D0	15:0	0x0000	STAT_AE_ZONE_AVGLOGY_1_3 (RO)
	Average of the $\log 2$ of luminance for AE window zone [1, 3]. This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.		
0xB8D2	15:0	0x0000	STAT_AE_ZONE_AVGLOGY_1_4 (RO)
	Average of the $\log 2$ of luminance for AE window zone [1, 4]. This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.		

TABLE 45. 14: STAT VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xB8D4	15:0	0x0000	STAT_AE_ZONE_AVGLOGY_2_0 (RO)
	Average of the $\log 2$ of luminance for AE window zone [2, 0]. This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.		
0xB8D6	15:0	0x0000	STAT_AE_ZONE_AVGLOGY_2_1 (RO)
	Average of the $\log 2$ of luminance for AE window zone $[2,1]$. This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.		
0xB8D8	15:0	0x0000	STAT_AE_ZONE_AVGLOGY_2_2 (RO)
	Average of the $\log 2$ of luminance for AE window zone [2, 2]. This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.		
0xB8DA	15:0	0x0000	STAT_AE_ZONE_AVGLOGY_2_3 (RO)
	Average of the $\log 2$ of luminance for AE window zone [2, 3]. This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.		
0xB8DC	15:0	0x0000	STAT_AE_ZONE_AVGLOGY_2_4 (RO)
	Average of the $\log 2$ of luminance for AE window zone [2, 4]. This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.		
0xB8DE	15:0	0x0000	STAT_AE_ZONE_AVGLOGY_3_0 (RO)
	Average of the $\log 2$ of luminance for AE window zone [3, 0]. This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.		
0xB8E0	15:0	0x0000	STAT_AE_ZONE_AVGLOGY_3_1 (RO)
	Average of the $\log 2$ of luminance for AE window zone $[3,1]$. This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.		
0xB8E2	15:0	0x0000	STAT_AE_ZONE_AVGLOGY_3_2 (RO)
	Average of the $\log 2$ of luminance for AE window zone [3, 2]. This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.		
0xB8E4	15:0	0x0000	STAT_AE_ZONE_AVGLOGY_3_3 (RO)
	Average of the $\log 2$ of luminance for AE window zone [3, 3]. This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.		
0xB8E6	15:0	0x0000	STAT_AE_ZONE_AVGLOGY_3_4 (RO)
	Average of the $\log 2$ of luminance for AE window zone [3, 4]. This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.		
0xB8E8	15:0	0x0000	STAT_AE_ZONE_AVGLOGY_4_0 (RO)
	Average of the $\log 2$ of luminance for AE window zone [4, 0]. This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.		
0xB8EA	15:0	0x0000	STAT_AE_ZONE_AVGLOGY_4_1 (RO)
	Average of the $\log 2$ of luminance for AE window zone $[4,1]$. This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.		
0xB8EC	15:0	0x0000	STAT_AE_ZONE_AVGLOGY_4_2 (RO)
	Average of the $\log 2$ of luminance for AE window zone [4, 2]. This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.		

TABLE 45. 14: STAT VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xB8EE	15:0	0x0000	STAT_AE_ZONE_AVGLOGY_4_3 (RO)
	Average of the $\log 2$ of luminance for AE window zone [4, 3]. This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.		
0xB8F0	15:0	0x0000	STAT_AE_ZONE_AVGLOGY_4_4 (RO)
	Average of the $\log 2$ of luminance for AE window zone [4, 4]. This value is unsigned fixed-point with 11 fractional bits. Updates during Vertical Blanking.		
0xB8F2	15:0	0x0000	STAT_AE_ZONE_WEIGHT_0_0 (RO)
	Weighting applied to AE zone $[0,0]$ when computing luminance statistics. This value is unsigned. Updates during Vertical Blanking.		
0xB8F4	15:0	0x0000	STAT_AE_ZONE_WEIGHT_0_1 (RO)
	Weighting applied to AE zone $[0,1]$ when computing luminance statistics. This value is unsigned. Updates during Vertical Blanking.		
0xB8F6	15:0	0x0000	STAT_AE_ZONE_WEIGHT_0_2 (RO)
	Weighting applied to AE zone $[0,2]$ when computing luminance statistics. This value is unsigned. Updates during Vertical Blanking.		
0xB8F8	15:0	0x0000	STAT_AE_ZONE_WEIGHT_0_3 (RO)
	Weighting applied to AE zone $[0,3]$ when computing luminance statistics. This value is unsigned. Updates during Vertical Blanking.		
0xB8FA	15:0	0x0000	STAT_AE_ZONE_WEIGHT_0_4 (RO)
	Weighting applied to AE zone $[0,4]$ when computing luminance statistics. This value is unsigned. Updates during Vertical Blanking.		
0xB8FC	15:0	0x0000	STAT_AE_ZONE_WEIGHT_1_0 (RO)
	Weighting applied to AE zone $[1,0]$ when computing luminance statistics. This value is unsigned. Updates during Vertical Blanking.		
0xB8FE	15:0	0x0000	STAT_AE_ZONE_WEIGHT_1_1 (RO)
	Weighting applied to AE zone $[1,1]$ when computing luminance statistics. This value is unsigned. Updates during Vertical Blanking.		
0xB900	15:0	0x0000	STAT_AE_ZONE_WEIGHT_1_2 (RO)
	Weighting applied to AE zone [1, 2] when computing luminance statistics. This value is unsigned. Updates during Vertical Blanking.		
0xB902	15:0	0x0000	STAT_AE_ZONE_WEIGHT_1_3 (RO)
	Weighting applied to AE zone $[1,3]$ when computing luminance statistics. This value is unsigned. Updates during Vertical Blanking.		
0xB904	15:0	0x0000	STAT_AE_ZONE_WEIGHT_1_4 (RO)
	Weighting applied to AE zone $[1,4]$ when computing luminance statistics. This value is unsigned. Updates during Vertical Blanking.		
0xB906	15:0	0x0000	STAT_AE_ZONE_WEIGHT_2_0 (RO)
	Weighting applied to AE zone $[2,0]$ when computing luminance statistics. This value is unsigned. Updates during Vertical Blanking.		

TABLE 45. 14: STAT VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xB908	15:0	0x0000	STAT_AE_ZONE_WEIGHT_2_1 (RO)
	Weighting applied to AE zone [2, 1] when computing luminance statistics. This value is unsigned. Updates during Vertical Blanking.		
0xB90A	15:0	0x0000	STAT_AE_ZONE_WEIGHT_2_2 (RO)
	Weighting applied to AE zone [2, 2] when computing luminance statistics. This value is unsigned. Updates during Vertical Blanking.		
0xB90C	15:0	0x0000	STAT_AE_ZONE_WEIGHT_2_3 (RO)
	Weighting applied to AE zone $[2,3]$ when computing luminance statistics. This value is unsigned. Updates during Vertical Blanking.		
0xB90E	15:0	0x0000	STAT_AE_ZONE_WEIGHT_2_4 (RO)
	Weighting applied to AE zone [2, 4] when computing luminance statistics. This value is unsigned. Updates during Vertical Blanking.		
0xB910	15:0	0x0000	STAT_AE_ZONE_WEIGHT_3_0 (RO)
	Weighting applied to AE zone [3, 0] when computing luminance statistics. This value is unsigned. Updates during Vertical Blanking.		
0xB912	15:0	0x0000	STAT_AE_ZONE_WEIGHT_3_1 (RO)
	Weighting applied to AE zone [3,1] when computing luminance statistics. This value is unsigned. Updates during Vertical Blanking.		
0xB914	15:0	0x0000	STAT_AE_ZONE_WEIGHT_3_2 (RO)
	Weighting applied to AE zone [3, 2] when computing luminance statistics. This value is unsigned. Updates during Vertical Blanking.		
0xB916	15:0	0x0000	STAT_AE_ZONE_WEIGHT_3_3 (RO)
	Weighting applied to AE zone [3, 3] when computing luminance statistics. This value is unsigned. Updates during Vertical Blanking.		
0xB918	15:0	0x0000	STAT_AE_ZONE_WEIGHT_3_4 (RO)
	Weighting applied to AE zone $[3,4]$ when computing luminance statistics. This value is unsigned. Updates during Vertical Blanking.		
0xB91A	15:0	0x0000	STAT_AE_ZONE_WEIGHT_4_0 (RO)
	Weighting applied to AE zone $[4,0]$ when computing luminance statistics. This value is unsigned. Updates during Vertical Blanking.		
0xB91C	15:0	0x0000	STAT_AE_ZONE_WEIGHT_4_1 (RO)
	Weighting applied to AE zone $[4,1]$ when computing luminance statistics. This value is unsigned. Updates during Vertical Blanking.		
0xB91E	15:0	0x0000	STAT_AE_ZONE_WEIGHT_4_2 (RO)
	Weighting applied to AE zone $[4,2]$ when computing luminance statistics. This value is unsigned. Updates during Vertical Blanking.		
0xB920	15:0	0x0000	STAT_AE_ZONE_WEIGHT_4_3 (RO)
	Weighting applied to AE zone $[4,3]$ when computing luminance statistics. This value is unsigned. Updates during Vertical Blanking.		

AND9802/D

TABLE 45. 14: STAT VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
	15:0	0x0000	STAT_AE_ZONE_WEIGHT_4_4 (RO)
0xB922	Weighting applied to AE zone $[4,4]$ when computing luminance statistics. This value is unsigned. Updates during Vertical Blanking.		
	15:0	0x0000	STAT_AE_HISTOGRAM_0 (RO)
	Luminance statistics histogram bin 0 . This value is unsigned. Updates during Vertical Blanking.		
0xB926	15:0	0x0000	STAT_AE_HISTOGRAM_1 (RO)
	Luminance statistics histogram bin 1. This value is unsigned. Updates during Vertical Blanking.		
0xB928	15:0	0x0000	STAT_AE_HISTOGRAM_2 (RO)
	Luminance statistics histogram bin 2. This value is unsigned. Updates during Vertical Blanking.		
0xB92A	15:0	0x0000	STAT_AE_HISTOGRAM_3 (RO)
	Luminance statistics histogram bin 3. This value is unsigned. Updates during Vertical Blanking.		
0xB92C	15:0	0x0000	STAT_AE_HISTOGRAM_4 (RO)
	Luminance statistics histogram bin 4. This value is unsigned. Updates during Vertical Blanking.		
0xB92E	15:0	0x0000	STAT_AE_HISTOGRAM_5 (RO)
	Luminance statistics histogram bin 5. This value is unsigned. Updates during Vertical Blanking.		
0xB930	15:0	0x0000	STAT_AE_HISTOGRAM_6 (RO)
	Luminance statistics histogram bin 6. This value is unsigned. Updates during Vertical Blanking.		
0xB932	15:0	0x0000	STAT_AE_HISTOGRAM_7 (RO)
	Luminance statistics histogram bin 7. This value is unsigned. Updates during Vertical Blanking.		
0xB934	15:0	0x0000	STAT_AE_HISTOGRAM_8 (RO)
	Luminance statistics histogram bin 8. This value is unsigned. Updates during Vertical Blanking.		
0×8936	15:0	0x0000	STAT_AE_HISTOGRAM_9 (RO)
	Luminance statistics histogram bin 9. This value is unsigned. Updates during Vertical Blanking.		
0xB938	15:0	0x0000	STAT_AE_HISTOGRAM_10 (RO)
	Luminance statistics histogram bin 10. This value is unsigned. Updates during Vertical Blanking.		
0xB93A	15:0	0x0000	STAT_AE_HISTOGRAM_11 (RO)
	Luminance statistics histogram bin 11. This value is unsigned. Updates during Vertical Blanking.		
0xB93C	15:0	0x0000	STAT_AE_HISTOGRAM_12 (RO)
	Luminance statistics histogram bin 12. This value is unsigned. Updates during Vertical Blanking.		
0xB93E	15:0	0x0000	STAT_AE_HISTOGRAM_13 (RO)
	Luminance statistics histogram bin 13. This value is unsigned. Updates during Vertical Blanking.		
0xB940	15:0	0x0000	STAT_AE_HISTOGRAM_14 (RO)
	Luminance statistics histogram bin 14. This value is unsigned. Updates during Vertical Blanking.		
0×38942	15:0	0x0000	STAT_AE_HISTOGRAM_15 (RO)
	Luminance statistics histogram bin 15. This value is unsigned. Updates during Vertical Blanking.		

TABLE 45. 14: STAT VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xB944	15:0	0x0000	STAT_AE_HISTOGRAM_16 (RO)
	Luminance statistics histogram bin 16. This value is unsigned. Updates during Vertical Blanking.		
0xB946	15:0	0x0000	STAT_AE_HISTOGRAM_17 (RO)
	Luminance statistics histogram bin 17. This value is unsigned. Updates during Vertical Blanking.		
0xB948	15:0	0x0000	STAT_AE_HISTOGRAM_18 (RO)
	Luminance statistics histogram bin 18. This value is unsigned. Updates during Vertical Blanking.		
0xB94A	15:0	0x0000	STAT_AE_HISTOGRAM_19 (RO)
	Luminance statistics histogram bin 19. This value is unsigned. Updates during Vertical Blanking.		
0xB94C	15:0	0x0000	STAT_AE_HISTOGRAM_20 (RO)
	Luminance statistics histogram bin 20. This value is unsigned. Updates during Vertical Blanking.		
0xB94E	15:0	0x0000	STAT_AE_HISTOGRAM_21 (RO)
	Luminance statistics histogram bin 21. This value is unsigned. Updates during Vertical Blanking.		
0xB950	15:0	0x0000	STAT_AE_HISTOGRAM_22 (RO)
	Luminance statistics histogram bin 22. This value is unsigned. Updates during Vertical Blanking.		
0xB952	15:0	0x0000	STAT_AE_HISTOGRAM_23 (RO)
	Luminance statistics histogram bin 23. This value is unsigned. Updates during Vertical Blanking.		
0xB954	15:0	0x0000	STAT_AE_HISTOGRAM_24 (RO)
	Luminance statistics histogram bin 24. This value is unsigned. Updates during Vertical Blanking.		
0xB956	15:0	0x0000	STAT_AE_HISTOGRAM_25 (RO)
	Luminance statistics histogram bin 25 . This value is unsigned. Updates during Vertical Blanking.		
0xB958	15:0	0x0000	STAT_AE_HISTOGRAM_26 (RO)
	Luminance statistics histogram bin 26. This value is unsigned. Updates during Vertical Blanking.		
0xB95A	15:0	0x0000	STAT_AE_HISTOGRAM_27 (RO)
	Luminance statistics histogram bin 27. This value is unsigned. Updates during Vertical Blanking.		
0xB95C	15:0	0x0000	STAT_AE_HISTOGRAM_28 (RO)
	Luminance statistics histogram bin 28. This value is unsigned. Updates during Vertical Blanking.		
0xB95E	15:0	0x0000	STAT_AE_HISTOGRAM_29 (RO)
	Luminance statistics histogram bin 29. This value is unsigned. Updates during Vertical Blanking.		
0xB960	15:0	0x0000	STAT_AE_HISTOGRAM_30 (RO)
	Luminance statistics histogram bin 30. This value is unsigned. Updates during Vertical Blanking.		
0xB962	15:0	0x0000	STAT_AE_HISTOGRAM_31 (RO)
	Luminance statistics histogram bin 31. This value is unsigned. Updates during Vertical Blanking.		
0xB964	15:0	0x0000	STAT_AE_HISTOGRAM_32 (RO)
	Luminance statistics histogram bin 32 . This value is unsigned. Updates during Vertical Blanking.		
0xB966	15:0	0x0000	STAT_AE_HISTOGRAM_33 (RO)
	Luminance statistics histogram bin 33. This value is unsigned. Updates during Vertical Blanking.		

TABLE 45. 14: STAT VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xB968	15:0	0x0000	STAT_AE_HISTOGRAM_34 (RO)
	Luminance statistics histogram bin 34. This value is unsigned. Updates during Vertical Blanking.		
0xB96A	15:0	0x0000	STAT_AE_HISTOGRAM_35 (RO)
	Luminance statistics histogram bin 35 . This value is unsigned. Updates during Vertical Blanking.		
0xB96C	15:0	0x0000	STAT_AE_HISTOGRAM_36 (RO)
	Luminance statistics histogram bin 36. This value is unsigned. Updates during Vertical Blanking.		
0xB96E	15:0	0x0000	STAT_AE_HISTOGRAM_37 (RO)
	Luminance statistics histogram bin 37. This value is unsigned. Updates during Vertical Blanking.		
0xB970	15:0	0x0000	STAT_AE_HISTOGRAM_38 (RO)
	Luminance statistics histogram bin 38 . This value is unsigned. Updates during Vertical Blanking.		
0xB972	15:0	0x0000	STAT_AE_HISTOGRAM_39 (RO)
	Luminance statistics histogram bin 39. This value is unsigned. Updates during Vertical Blanking.		
0xB974	15:0	0x0000	STAT_AE_HISTOGRAM_40 (RO)
	Luminance statistics histogram bin 40 . This value is unsigned. Updates during Vertical Blanking.		
0xB976	15:0	0x0000	STAT_AE_HISTOGRAM_41 (RO)
	Luminance statistics histogram bin 41. This value is unsigned. Updates during Vertical Blanking.		
0xB978	15:0	0x0000	STAT_AE_HISTOGRAM_42 (RO)
	Luminance statistics histogram bin 42. This value is unsigned. Updates during Vertical Blanking.		
0xB97A	15:0	0x0000	STAT_AE_HISTOGRAM_43 (RO)
	Luminance statistics histogram bin 43. This value is unsigned. Updates during Vertical Blanking.		
0xB97C	15:0	0x0000	STAT_AE_HISTOGRAM_44 (RO)
	Luminance statistics histogram bin 44. This value is unsigned. Updates during Vertical Blanking.		
0xB97E	15:0	0x0000	STAT_AE_HISTOGRAM_45 (RO)
	Luminance statistics histogram bin 45 . This value is unsigned. Updates during Vertical Blanking.		
0×8980	15:0	0x0000	STAT_AE_HISTOGRAM_46 (RO)
	Luminance statistics histogram bin 46. This value is unsigned. Updates during Vertical Blanking.		
0×8982	15:0	0x0000	STAT_AE_HISTOGRAM_47 (RO)
	Luminance statistics histogram bin 47. This value is unsigned. Updates during Vertical Blanking.		
0xB984	15:0	0x0000	STAT_AE_HISTOGRAM_48 (RO)
	Luminance statistics histogram bin 48. This value is unsigned. Updates during Vertical Blanking.		
0×8986	15:0	0x0000	STAT_AE_HISTOGRAM_49 (RO)
	Luminance statistics histogram bin 49. This value is unsigned. Updates during Vertical Blanking.		
0×8988	15:0	0x0000	STAT_AE_HISTOGRAM_50 (RO)
	Luminance statistics histogram bin 50 . This value is unsigned. Updates during Vertical Blanking.		
0xB98A	15:0	0x0000	STAT_AE_HISTOGRAM_51 (RO)
	Luminance statistics histogram bin 51. This value is unsigned. Updates during Vertical Blanking.		

TABLE 45. 14: STAT VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xB98C	15:0	0x0000	STAT_AE_HISTOGRAM_52 (RO)
	Luminance statistics histogram bin 52. This value is unsigned. Updates during Vertical Blanking.		
0xB98E	15:0	0x0000	STAT_AE_HISTOGRAM_53 (RO)
	Luminance statistics histogram bin 53. This value is unsigned. Updates during Vertical Blanking.		
0xB990	15:0	0x0000	STAT_AE_HISTOGRAM_54 (RO)
	Luminance statistics histogram bin 54. This value is unsigned. Updates during Vertical Blanking.		
0xB992	15:0	0x0000	STAT_AE_HISTOGRAM_55 (RO)
	Luminance statistics histogram bin 55. This value is unsigned. Updates during Vertical Blanking.		
0xB994	15:0	0x0000	STAT_AE_HISTOGRAM_56 (RO)
	Luminance statistics histogram bin 56. This value is unsigned. Updates during Vertical Blanking.		
0xB996	15:0	0x0000	STAT_AE_HISTOGRAM_57 (RO)
	Luminance statistics histogram bin 57. This value is unsigned. Updates during Vertical Blanking.		
0xB998	15:0	0x0000	STAT_AE_HISTOGRAM_58 (RO)
	Luminance statistics histogram bin 58. This value is unsigned. Updates during Vertical Blanking.		
0xB99A	15:0	0x0000	STAT_AE_HISTOGRAM_59 (RO)
	Luminance statistics histogram bin 59. This value is unsigned. Updates during Vertical Blanking.		
0xB99C	15:0	0x0000	STAT_AE_HISTOGRAM_60 (RO)
	Luminance statistics histogram bin 60 . This value is unsigned. Updates during Vertical Blanking.		
0xB99E	15:0	0x0000	STAT_AE_HISTOGRAM_61 (RO)
	Luminance statistics histogram bin 61. This value is unsigned. Updates during Vertical Blanking.		
0xB9A0	15:0	0x0000	STAT_AE_HISTOGRAM_62 (RO)
	Luminance statistics histogram bin 62. This value is unsigned. Updates during Vertical Blanking.		
0xB9A2	15:0	0x0000	STAT_AE_HISTOGRAM_63 (RO)
	Luminance statistics histogram bin 63. This value is unsigned. Updates during Vertical Blanking.		
0xB9A4	15:0	0x0000	STAT_AE_HISTOGRAM_64 (RO)
	Luminance statistics histogram bin 64. This value is unsigned. Updates during Vertical Blanking.		
0xB9A6	15:0	0x0000	STAT_AE_HISTOGRAM_65 (RO)
	Luminance statistics histogram bin 65 . This value is unsigned. Updates during Vertical Blanking.		
0xB9A8	15:0	0x0000	STAT_AE_HISTOGRAM_66 (RO)
	Luminance statistics histogram bin 66. This value is unsigned. Updates during Vertical Blanking.		
0xB9AA	15:0	0x0000	STAT_AE_HISTOGRAM_67 (RO)
	Luminance statistics histogram bin 67. This value is unsigned. Updates during Vertical Blanking.		
0xB9AC	15:0	0x0000	STAT_AE_HISTOGRAM_68 (RO)
	Luminance statistics histogram bin 68. This value is unsigned. Updates during Vertical Blanking.		
0xB9AE	15:0	0x0000	STAT_AE_HISTOGRAM_69 (RO)
	Luminance statistics histogram bin 69. This value is unsigned. Updates during Vertical Blanking.		

TABLE 45. 14: STAT VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xB9B0	15:0	0x0000	STAT_AE_HISTOGRAM_70 (RO)
	Luminance statistics histogram bin 70. This value is unsigned. Updates during Vertical Blanking.		
0xB9B2	15:0	0x0000	STAT_AE_HISTOGRAM_71 (RO)
	Luminance statistics histogram bin 71. This value is unsigned. Updates during Vertical Blanking.		
0xB9B4	15:0	0x0000	STAT_AE_HISTOGRAM_72 (RO)
	Luminance statistics histogram bin 72. This value is unsigned. Updates during Vertical Blanking.		
0xB9B6	15:0	0x0000	STAT_AE_HISTOGRAM_73 (RO)
	Luminance statistics histogram bin 73. This value is unsigned. Updates during Vertical Blanking.		
0xB9B8	15:0	0x0000	STAT_AE_HISTOGRAM_74 (RO)
	Luminance statistics histogram bin 74. This value is unsigned. Updates during Vertical Blanking.		
0xB9BA	15:0	0x0000	STAT_AE_HISTOGRAM_75 (RO)
	Luminance statistics histogram bin 75. This value is unsigned. Updates during Vertical Blanking.		
0xB9BC	15:0	0x0000	STAT_AE_HISTOGRAM_76 (RO)
	Luminance statistics histogram bin 76. This value is unsigned. Updates during Vertical Blanking.		
0xB9BE	15:0	0x0000	STAT_AE_HISTOGRAM_77 (RO)
	Luminance statistics histogram bin 77. This value is unsigned. Updates during Vertical Blanking.		
0xB9C0	15:0	0x0000	STAT_AE_HISTOGRAM_78 (RO)
	Luminance statistics histogram bin 78. This value is unsigned. Updates during Vertical Blanking.		
0xB9C2	15:0	0x0000	STAT_AE_HISTOGRAM_79 (RO)
	Luminance statistics histogram bin 79. This value is unsigned. Updates during Vertical Blanking.		
0xB9C4	15:0	0x0000	STAT_AE_HISTOGRAM_80 (RO)
	Luminance statistics histogram bin 80 . This value is unsigned. Updates during Vertical Blanking.		
0xB9C6	15:0	0x0000	STAT_AE_HISTOGRAM_81 (RO)
	Luminance statistics histogram bin 81 . This value is unsigned. Updates during Vertical Blanking.		
0xB9C8	15:0	0x0000	STAT_AE_HISTOGRAM_82 (RO)
	Luminance statistics histogram bin 82 . This value is unsigned. Updates during Vertical Blanking.		
0xB9CA	15:0	0x0000	STAT_AE_HISTOGRAM_83 (RO)
	Luminance statistics histogram bin 83 . This value is unsigned. Updates during Vertical Blanking.		
0xB9CC	15:0	0x0000	STAT_AE_HISTOGRAM_84 (RO)
	Luminance statistics histogram bin 84. This value is unsigned. Updates during Vertical Blanking.		
0xB9CE	15:0	0x0000	STAT_AE_HISTOGRAM_85 (RO)
	Luminance statistics histogram bin 85 . This value is unsigned. Updates during Vertical Blanking.		
0xB9D0	15:0	0x0000	STAT_AE_HISTOGRAM_86 (RO)
	Luminance statistics histogram bin 86 . This value is unsigned. Updates during Vertical Blanking.		
0xB9D2	15:0	0x0000	STAT_AE_HISTOGRAM_87 (RO)
	Luminance statistics histogram bin 87. This value is unsigned. Updates during Vertical Blanking.		

TABLE 45. 14: STAT VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xB9D4	15:0	0x0000	STAT_AE_HISTOGRAM_88 (RO)
	Luminance statistics histogram bin 88. This value is unsigned. Updates during Vertical Blanking.		
0xB9D6	15:0	0x0000	STAT_AE_HISTOGRAM_89 (RO)
	Luminance statistics histogram bin 89. This value is unsigned. Updates during Vertical Blanking.		
0xB9D8	15:0	0x0000	STAT_AE_HISTOGRAM_90 (RO)
	Luminance statistics histogram bin 90 . This value is unsigned. Updates during Vertical Blanking.		
0xB9DA	15:0	0x0000	STAT_AE_HISTOGRAM_91 (RO)
	Luminance statistics histogram bin 91. This value is unsigned. Updates during Vertical Blanking.		
0xB9DC	15:0	0x0000	STAT_AE_HISTOGRAM_92 (RO)
	Luminance statistics histogram bin 92. This value is unsigned. Updates during Vertical Blanking.		
0xB9DE	15:0	0x0000	STAT_AE_HISTOGRAM_93 (RO)
	Luminance statistics histogram bin 93. This value is unsigned. Updates during Vertical Blanking.		
0xB9E0	15:0	0x0000	STAT_AE_HISTOGRAM_94 (RO)
	Luminance statistics histogram bin 94. This value is unsigned. Updates during Vertical Blanking.		
0xB9E2	15:0	0x0000	STAT_AE_HISTOGRAM_95 (RO)
	Luminance statistics histogram bin 95. This value is unsigned. Updates during Vertical Blanking.		
0xB9E4	15:0	0x0000	STAT_AE_HISTOGRAM_96 (RO)
	Luminance statistics histogram bin 96. This value is unsigned. Updates during Vertical Blanking.		
0xB9E6	15:0	0x0000	STAT_AE_HISTOGRAM_97 (RO)
	Luminance statistics histogram bin 97. This value is unsigned. Updates during Vertical Blanking.		
0xB9E8	15:0	0x0000	STAT_AE_HISTOGRAM_98 (RO)
	Luminance statistics histogram bin 98. This value is unsigned. Updates during Vertical Blanking.		
0xB9EA	15:0	0x0000	STAT_AE_HISTOGRAM_99 (RO)
	Luminance statistics histogram bin 99. This value is unsigned. Updates during Vertical Blanking.		
0xB9EC	15:0	0x0000	STAT_AE_HISTOGRAM_100 (RO)
	Luminance statistics histogram bin 100 . This value is unsigned. Updates during Vertical Blanking.		
0xB9EE	15:0	0x0000	STAT_AE_HISTOGRAM_101 (RO)
	Luminance statistics histogram bin 101. This value is unsigned. Updates during Vertical Blanking.		
0xB9F0	15:0	0x0000	STAT_AE_HISTOGRAM_102 (RO)
	Luminance statistics histogram bin 102. This value is unsigned. Updates during Vertical Blanking.		
0xB9F2	15:0	0x0000	STAT_AE_HISTOGRAM_103 (RO)
	Luminance statistics histogram bin 103. This value is unsigned. Updates during Vertical Blanking.		
0xB9F4	15:0	0x0000	STAT_AE_HISTOGRAM_104 (RO)
	Luminance statistics histogram bin 104. This value is unsigned. Updates during Vertical Blanking.		
0xB9F6	15:0	0x0000	STAT_AE_HISTOGRAM_105 (RO)
	Luminance statistics histogram bin 105. This value is unsigned. Updates during Vertical Blanking.		

TABLE 45. 14: STAT VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xB9F8	15:0	0x0000	STAT_AE_HISTOGRAM_106 (RO)
	Luminance statistics histogram bin 106. This value is unsigned. Updates during Vertical Blanking.		
0xB9FA	15:0	0x0000	STAT_AE_HISTOGRAM_107 (RO)
	Luminance statistics histogram bin 107. This value is unsigned. Updates during Vertical Blanking.		
0xB9FC	15:0	0x0000	STAT_AE_HISTOGRAM_108 (RO)
	Luminance statistics histogram bin 108. This value is unsigned. Updates during Vertical Blanking.		
0xB9FE	15:0	0x0000	STAT_AE_HISTOGRAM_109 (RO)
	Luminance statistics histogram bin 109. This value is unsigned. Updates during Vertical Blanking.		
0xBA00	15:0	0x0000	STAT_AE_HISTOGRAM_110 (RO)
	Luminance statistics histogram bin 110. This value is unsigned. Updates during Vertical Blanking.		
0xBA02	15:0	0x0000	STAT_AE_HISTOGRAM_111 (RO)
	Luminance statistics histogram bin 111. This value is unsigned. Updates during Vertical Blanking.		
0xBA04	15:0	0x0000	STAT_AE_HISTOGRAM_112 (RO)
	Luminance statistics histogram bin 112. This value is unsigned. Updates during Vertical Blanking.		
0xBA06	15:0	0x0000	STAT_AE_HISTOGRAM_113 (RO)
	Luminance statistics histogram bin 113. This value is unsigned. Updates during Vertical Blanking.		
0xBA08	15:0	0x0000	STAT_AE_HISTOGRAM_114 (RO)
	Luminance statistics histogram bin 114. This value is unsigned. Updates during Vertical Blanking.		
0xBA0A	15:0	0x0000	STAT_AE_HISTOGRAM_115 (RO)
	Luminance statistics histogram bin 115. This value is unsigned. Updates during Vertical Blanking.		
0xBA0C	15:0	0x0000	STAT_AE_HISTOGRAM_116 (RO)
	Luminance statistics histogram bin 116. This value is unsigned. Updates during Vertical Blanking.		
0xBA0E	15:0	0x0000	STAT_AE_HISTOGRAM_117 (RO)
	Luminance statistics histogram bin 117. This value is unsigned. Updates during Vertical Blanking.		
0xBA10	15:0	0x0000	STAT_AE_HISTOGRAM_118 (RO)
	Luminance statistics histogram bin 118. This value is unsigned. Updates during Vertical Blanking.		
0xBA12	15:0	0x0000	STAT_AE_HISTOGRAM_119 (RO)
	Luminance statistics histogram bin 119. This value is unsigned. Updates during Vertical Blanking.		
0xBA14	15:0	0x0000	STAT_AE_HISTOGRAM_120 (RO)
	Luminance statistics histogram bin 120. This value is unsigned. Updates during Vertical Blanking.		
0xBA16	15:0	0x0000	STAT_AE_HISTOGRAM_121 (RO)
	Luminance statistics histogram bin 121. This value is unsigned. Updates during Vertical Blanking.		
0xBA18	15:0	0x0000	STAT_AE_HISTOGRAM_122 (RO)
	Luminance statistics histogram bin 122. This value is unsigned. Updates during Vertical Blanking.		
0xBA1A	15:0	0x0000	STAT_AE_HISTOGRAM_123 (RO)
	Luminance statistics histogram bin 123. This value is unsigned. Updates during Vertical Blanking.		

TABLE 45. 14: STAT VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xBA1C	15:0	0x0000	STAT_AE_HISTOGRAM_124 (RO)
	Luminance statistics histogram bin 124. This value is unsigned. Updates during Vertical Blanking.		
0xBA1E	15:0	0x0000	STAT_AE_HISTOGRAM_125 (RO)
	Luminance statistics histogram bin 125. This value is unsigned. Updates during Vertical Blanking.		
0xBA20	15:0	0x0000	STAT_AE_HISTOGRAM_126 (RO)
	Luminance statistics histogram bin 126. This value is unsigned. Updates during Vertical Blanking.		
0xBA22	15:0	0x0000	STAT_AE_HISTOGRAM_127 (RO)
	Luminance statistics histogram bin 127. This value is unsigned. Updates during Vertical Blanking.		
0xBA24	15:0	0x0000	STAT_AE_HISTOGRAM_128 (RO)
	Luminance statistics histogram bin 128. This value is unsigned. Updates during Vertical Blanking.		
0xBA26	15:0	0x0000	STAT_AE_HISTOGRAM_129 (RO)
	Luminance statistics histogram bin 129. This value is unsigned. Updates during Vertical Blanking.		
0xBA28	15:0	0x0000	STAT_AE_HISTOGRAM_130 (RO)
	Luminance statistics histogram bin 130. This value is unsigned. Updates during Vertical Blanking.		
0xBA2A	15:0	0x0000	STAT_AE_HISTOGRAM_131 (RO)
	Luminance statistics histogram bin 131. This value is unsigned. Updates during Vertical Blanking.		
0xBA2C	15:0	0x0000	STAT_AE_HISTOGRAM_132 (RO)
	Luminance statistics histogram bin 132. This value is unsigned. Updates during Vertical Blanking.		
0xBA2E	15:0	0x0000	STAT_AE_HISTOGRAM_133 (RO)
	Luminance statistics histogram bin 133. This value is unsigned. Updates during Vertical Blanking.		
0xBA30	15:0	0x0000	STAT_AE_HISTOGRAM_134 (RO)
	Luminance statistics histogram bin 134. This value is unsigned. Updates during Vertical Blanking.		
0xBA32	15:0	0x0000	STAT_AE_HISTOGRAM_135 (RO)
	Luminance statistics histogram bin 135. This value is unsigned. Updates during Vertical Blanking.		
0xBA34	15:0	0x0000	STAT_AE_HISTOGRAM_136 (RO)
	Luminance statistics histogram bin 136. This value is unsigned. Updates during Vertical Blanking.		
0xBA36	15:0	0x0000	STAT_AE_HISTOGRAM_137 (RO)
	Luminance statistics histogram bin 137. This value is unsigned. Updates during Vertical Blanking.		
0xBA38	15:0	0x0000	STAT_AE_HISTOGRAM_138 (RO)
	Luminance statistics histogram bin 138. This value is unsigned. Updates during Vertical Blanking.		
0xBA3A	15:0	0x0000	STAT_AE_HISTOGRAM_139 (RO)
	Luminance statistics histogram bin 139. This value is unsigned. Updates during Vertical Blanking.		
0xBA3C	15:0	0x0000	STAT_AE_HISTOGRAM_140 (RO)
	Luminance statistics histogram bin 140. This value is unsigned. Updates during Vertical Blanking.		
0xBA3E	15:0	0x0000	STAT_AE_HISTOGRAM_141 (RO)
	Luminance statistics histogram bin 141. This value is unsigned. Updates during Vertical Blanking.		

TABLE 45. 14: STAT VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

$\begin{aligned} & \text { Variable } \\ & \text { (Hex) } \end{aligned}$	Bits	Default	Name
0xBA40	15:0	0x0000	STAT_AE_HISTOGRAM_142 (RO)
	Luminance statistics histogram bin 142. This value is unsigned. Updates during Vertical Blanking.		
0xBA42	15:0	0x0000	STAT_AE_HISTOGRAM_143 (RO)
	Luminance statistics histogram bin 143. This value is unsigned. Updates during Vertical Blanking.		
0xBA44	15:0	0x0000	STAT_AE_HISTOGRAM_144 (RO)
	Luminance statistics histogram bin 144. This value is unsigned. Updates during Vertical Blanking.		
0xBA46	15:0	0x0000	STAT_AE_HISTOGRAM_145 (RO)
	Luminance statistics histogram bin 145. This value is unsigned. Updates during Vertical Blanking.		
0xBA48	15:0	0x0000	STAT_AE_HISTOGRAM_146 (RO)
	Luminance statistics histogram bin 146. This value is unsigned. Updates during Vertical Blanking.		
0xBA4A	15:0	0x0000	STAT_AE_HISTOGRAM_147 (RO)
	Luminance statistics histogram bin 147. This value is unsigned. Updates during Vertical Blanking.		
0xBA4C	15:0	0x0000	STAT_AE_HISTOGRAM_148 (RO)
	Luminance statistics histogram bin 148. This value is unsigned. Updates during Vertical Blanking.		
0xBA4E	15:0	0x0000	STAT_AE_HISTOGRAM_149 (RO)
	Luminance statistics histogram bin 149. This value is unsigned. Updates during Vertical Blanking.		
0xBA50	15:0	0x0000	STAT_AE_HISTOGRAM_150 (RO)
	Luminance statistics histogram bin 150. This value is unsigned. Updates during Vertical Blanking.		
0xBA52	15:0	0x0000	STAT_AE_HISTOGRAM_151 (RO)
	Luminance statistics histogram bin 151. This value is unsigned. Updates during Vertical Blanking.		
0xBA54	15:0	0x0000	STAT_AE_HISTOGRAM_152 (RO)
	Luminance statistics histogram bin 152. This value is unsigned. Updates during Vertical Blanking.		
0xBA56	15:0	0x0000	STAT_AE_HISTOGRAM_153 (RO)
	Luminance statistics histogram bin 153 . This value is unsigned. Updates during Vertical Blanking.		
0xBA58	15:0	0x0000	STAT_AE_HISTOGRAM_154 (RO)
	Luminance statistics histogram bin 154. This value is unsigned. Updates during Vertical Blanking.		
0xBA5A	15:0	0x0000	STAT_AE_HISTOGRAM_155 (RO)
	Luminance statistics histogram bin 155. This value is unsigned. Updates during Vertical Blanking.		
0xBA5C	15:0	0x0000	STAT_AE_HISTOGRAM_156 (RO)
	Luminance statistics histogram bin 156. This value is unsigned. Updates during Vertical Blanking.		
0xBA5E	15:0	0x0000	STAT_AE_HISTOGRAM_157 (RO)
	Luminance statistics histogram bin 157. This value is unsigned. Updates during Vertical Blanking.		
0xBA60	15:0	0x0000	STAT_AE_HISTOGRAM_158 (RO)
	Luminance statistics histogram bin 158. This value is unsigned. Updates during Vertical Blanking.		
0xBA62	15:0	0x0000	STAT_AE_HISTOGRAM_159 (RO)
	Luminance statistics histogram bin 159. This value is unsigned. Updates during Vertical Blanking.		

TABLE 45. 14: STAT VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xBA64	15:0	0x0000	STAT_AE_HISTOGRAM_160 (RO)
	Luminance statistics histogram bin 160 . This value is unsigned. Updates during Vertical Blanking.		
0xBA66	15:0	0x0000	STAT_AE_HISTOGRAM_161 (RO)
	Luminance statistics histogram bin 161. This value is unsigned. Updates during Vertical Blanking.		
0xBA68	15:0	0x0000	STAT_AE_HISTOGRAM_162 (RO)
	Luminance statistics histogram bin 162. This value is unsigned. Updates during Vertical Blanking.		
0xBA6A	15:0	0x0000	STAT_AE_HISTOGRAM_163 (RO)
	Luminance statistics histogram bin 163. This value is unsigned. Updates during Vertical Blanking.		
0xBA6C	15:0	0x0000	STAT_AE_HISTOGRAM_164 (RO)
	Luminance statistics histogram bin 164. This value is unsigned. Updates during Vertical Blanking.		
0xBA6E	15:0	0x0000	STAT_AE_HISTOGRAM_165 (RO)
	Luminance statistics histogram bin 165. This value is unsigned. Updates during Vertical Blanking.		
0xBA70	15:0	0x0000	STAT_AE_HISTOGRAM_166 (RO)
	Luminance statistics histogram bin 166. This value is unsigned. Updates during Vertical Blanking.		
0xBA72	15:0	0x0000	STAT_AE_HISTOGRAM_167 (RO)
	Luminance statistics histogram bin 167. This value is unsigned. Updates during Vertical Blanking.		
0xBA74	15:0	0x0000	STAT_AE_HISTOGRAM_168 (RO)
	Luminance statistics histogram bin 168. This value is unsigned. Updates during Vertical Blanking.		
0xBA76	15:0	0x0000	STAT_AE_HISTOGRAM_169 (RO)
	Luminance statistics histogram bin 169. This value is unsigned. Updates during Vertical Blanking.		
0xBA78	15:0	0x0000	STAT_AE_HISTOGRAM_170 (RO)
	Luminance statistics histogram bin 170. This value is unsigned. Updates during Vertical Blanking.		
0xBA7A	15:0	0x0000	STAT_AE_HISTOGRAM_171 (RO)
	Luminance statistics histogram bin 171. This value is unsigned. Updates during Vertical Blanking.		
0xBA7C	15:0	0x0000	STAT_AE_HISTOGRAM_172 (RO)
	Luminance statistics histogram bin 172. This value is unsigned. Updates during Vertical Blanking.		
0xBA7E	15:0	0x0000	STAT_AE_HISTOGRAM_173 (RO)
	Luminance statistics histogram bin 173. This value is unsigned. Updates during Vertical Blanking.		
0xBA80	15:0	0x0000	STAT_AE_HISTOGRAM_174 (RO)
	Luminance statistics histogram bin 174. This value is unsigned. Updates during Vertical Blanking.		
0xBA82	15:0	0x0000	STAT_AE_HISTOGRAM_175 (RO)
	Luminance statistics histogram bin 175. This value is unsigned. Updates during Vertical Blanking.		
0xBA84	15:0	0x0000	STAT_AE_HISTOGRAM_176 (RO)
	Luminance statistics histogram bin 176. This value is unsigned. Updates during Vertical Blanking.		
0xBA86	15:0	0x0000	STAT_AE_HISTOGRAM_177 (RO)
	Luminance statistics histogram bin 177. This value is unsigned. Updates during Vertical Blanking.		

TABLE 45. 14: STAT VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xBA88	15:0	0x0000	STAT_AE_HISTOGRAM_178 (RO)
	Luminance statistics histogram bin 178. This value is unsigned. Updates during Vertical Blanking.		
0xBA8A	15:0	0x0000	STAT_AE_HISTOGRAM_179 (RO)
	Luminance statistics histogram bin 179. This value is unsigned. Updates during Vertical Blanking.		
0xBA8C	15:0	0x0000	STAT_AE_HISTOGRAM_180 (RO)
	Luminance statistics histogram bin 180. This value is unsigned. Updates during Vertical Blanking.		
0xBA8E	15:0	0x0000	STAT_AE_HISTOGRAM_181 (RO)
	Luminance statistics histogram bin 181. This value is unsigned. Updates during Vertical Blanking.		
0xBA90	15:0	0x0000	STAT_AE_HISTOGRAM_182 (RO)
	Luminance statistics histogram bin 182. This value is unsigned. Updates during Vertical Blanking.		
0xBA92	15:0	0x0000	STAT_AE_HISTOGRAM_183 (RO)
	Luminance statistics histogram bin 183. This value is unsigned. Updates during Vertical Blanking.		
0xBA94	15:0	0x0000	STAT_AE_HISTOGRAM_184 (RO)
	Luminance statistics histogram bin 184. This value is unsigned. Updates during Vertical Blanking.		
0xBA96	15:0	0x0000	STAT_AE_HISTOGRAM_185 (RO)
	Luminance statistics histogram bin 185. This value is unsigned. Updates during Vertical Blanking.		
0xBA98	15:0	0x0000	STAT_AE_HISTOGRAM_186 (RO)
	Luminance statistics histogram bin 186. This value is unsigned. Updates during Vertical Blanking.		
0xBA9A	15:0	0x0000	STAT_AE_HISTOGRAM_187 (RO)
	Luminance statistics histogram bin 187. This value is unsigned. Updates during Vertical Blanking.		
0xBA9C	15:0	0x0000	STAT_AE_HISTOGRAM_188 (RO)
	Luminance statistics histogram bin 188. This value is unsigned. Updates during Vertical Blanking.		
0xBA9E	15:0	0x0000	STAT_AE_HISTOGRAM_189 (RO)
	Luminance statistics histogram bin 189. This value is unsigned. Updates during Vertical Blanking.		
0xBAA0	15:0	0x0000	STAT_AE_HISTOGRAM_190 (RO)
	Luminance statistics histogram bin 190. This value is unsigned. Updates during Vertical Blanking.		
0xBAA2	15:0	0x0000	STAT_AE_HISTOGRAM_191 (RO)
	Luminance statistics histogram bin 191. This value is unsigned. Updates during Vertical Blanking.		
0xBAA4	15:0	0x0000	STAT_AE_HISTOGRAM_192 (RO)
	Luminance statistics histogram bin 192. This value is unsigned. Updates during Vertical Blanking.		
0xBAA6	15:0	0x0000	STAT_AE_HISTOGRAM_193 (RO)
	Luminance statistics histogram bin 193. This value is unsigned. Updates during Vertical Blanking.		
0xBAA8	15:0	0x0000	STAT_AE_HISTOGRAM_194 (RO)
	Luminance statistics histogram bin 194. This value is unsigned. Updates during Vertical Blanking.		
0xBAAA	15:0	0x0000	STAT_AE_HISTOGRAM_195 (RO)
	Luminance statistics histogram bin 195. This value is unsigned. Updates during Vertical Blanking.		

TABLE 45. 14: STAT VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xBAAC	15:0	0x0000	STAT_AE_HISTOGRAM_196 (RO)
	Luminance statistics histogram bin 196. This value is unsigned. Updates during Vertical Blanking.		
0xBAAE	15:0	0x0000	STAT_AE_HISTOGRAM_197 (RO)
	Luminance statistics histogram bin 197. This value is unsigned. Updates during Vertical Blanking.		
0xBAB0	15:0	0x0000	STAT_AE_HISTOGRAM_198 (RO)
	Luminance statistics histogram bin 198. This value is unsigned. Updates during Vertical Blanking.		
0xBAB2	15:0	0x0000	STAT_AE_HISTOGRAM_199 (RO)
	Luminance statistics histogram bin 199. This value is unsigned. Updates during Vertical Blanking.		
0xBAB4	15:0	0x0000	STAT_AE_HISTOGRAM_200 (RO)
	Luminance statistics histogram bin 200. This value is unsigned. Updates during Vertical Blanking.		
0xBAB6	15:0	0x0000	STAT_AE_HISTOGRAM_201 (RO)
	Luminance statistics histogram bin 201. This value is unsigned. Updates during Vertical Blanking.		
0xBAB8	15:0	0x0000	STAT_AE_HISTOGRAM_202 (RO)
	Luminance statistics histogram bin 202. This value is unsigned. Updates during Vertical Blanking.		
0xBABA	15:0	0x0000	STAT_AE_HISTOGRAM_203 (RO)
	Luminance statistics histogram bin 203. This value is unsigned. Updates during Vertical Blanking.		
0xBABC	15:0	0x0000	STAT_AE_HISTOGRAM_204 (RO)
	Luminance statistics histogram bin 204. This value is unsigned. Updates during Vertical Blanking.		
0xBABE	15:0	0x0000	STAT_AE_HISTOGRAM_205 (RO)
	Luminance statistics histogram bin 205. This value is unsigned. Updates during Vertical Blanking.		
0xBAC0	15:0	0x0000	STAT_AE_HISTOGRAM_206 (RO)
	Luminance statistics histogram bin 206. This value is unsigned. Updates during Vertical Blanking.		
0xBAC2	15:0	0x0000	STAT_AE_HISTOGRAM_207 (RO)
	Luminance statistics histogram bin 207. This value is unsigned. Updates during Vertical Blanking.		
0xBAC4	15:0	0x0000	STAT_AE_HISTOGRAM_208 (RO)
	Luminance statistics histogram bin 208. This value is unsigned. Updates during Vertical Blanking.		
0xBAC6	15:0	0x0000	STAT_AE_HISTOGRAM_209 (RO)
	Luminance statistics histogram bin 209. This value is unsigned. Updates during Vertical Blanking.		
0xBAC8	15:0	0x0000	STAT_AE_HISTOGRAM_210 (RO)
	Luminance statistics histogram bin 210. This value is unsigned. Updates during Vertical Blanking.		
0xBACA	15:0	0x0000	STAT_AE_HISTOGRAM_211 (RO)
	Luminance statistics histogram bin 211. This value is unsigned. Updates during Vertical Blanking.		
0xBACC	15:0	0x0000	STAT_AE_HISTOGRAM_212 (RO)
	Luminance statistics histogram bin 212. This value is unsigned. Updates during Vertical Blanking.		
0xBACE	15:0	0x0000	STAT_AE_HISTOGRAM_213 (RO)
	Luminance statistics histogram bin 213. This value is unsigned. Updates during Vertical Blanking.		

TABLE 45. 14: STAT VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xBAD0	15:0	0x0000	STAT_AE_HISTOGRAM_214 (RO)
	Luminance statistics histogram bin 214. This value is unsigned. Updates during Vertical Blanking.		
0xBAD2	15:0	0x0000	STAT_AE_HISTOGRAM_215 (RO)
	Luminance statistics histogram bin 215. This value is unsigned. Updates during Vertical Blanking.		
0xBAD4	15:0	0x0000	STAT_AE_HISTOGRAM_216 (RO)
	Luminance statistics histogram bin 216. This value is unsigned. Updates during Vertical Blanking.		
0xBAD6	15:0	0x0000	STAT_AE_HISTOGRAM_217 (RO)
	Luminance statistics histogram bin 217. This value is unsigned. Updates during Vertical Blanking.		
0xBAD8	15:0	0x0000	STAT_AE_HISTOGRAM_218 (RO)
	Luminance statistics histogram bin 218. This value is unsigned. Updates during Vertical Blanking.		
0xBADA	15:0	0x0000	STAT_AE_HISTOGRAM_219 (RO)
	Luminance statistics histogram bin 219. This value is unsigned. Updates during Vertical Blanking.		
0xBADC	15:0	0x0000	STAT_AE_HISTOGRAM_220 (RO)
	Luminance statistics histogram bin 220. This value is unsigned. Updates during Vertical Blanking.		
0xBADE	15:0	0x0000	STAT_AE_HISTOGRAM_221 (RO)
	Luminance statistics histogram bin 221. This value is unsigned. Updates during Vertical Blanking.		
0xBAE0	15:0	0x0000	STAT_AE_HISTOGRAM_222 (RO)
	Luminance statistics histogram bin 222. This value is unsigned. Updates during Vertical Blanking.		
0xBAE2	15:0	0x0000	STAT_AE_HISTOGRAM_223 (RO)
	Luminance statistics histogram bin 223. This value is unsigned. Updates during Vertical Blanking.		
0xBAE4	15:0	0x0000	STAT_AE_HISTOGRAM_224 (RO)
	Luminance statistics histogram bin 224. This value is unsigned. Updates during Vertical Blanking.		
0xBAE6	15:0	0x0000	STAT_AE_HISTOGRAM_225 (RO)
	Luminance statistics histogram bin 225 . This value is unsigned. Updates during Vertical Blanking.		
0xBAE8	15:0	0x0000	STAT_AE_HISTOGRAM_226 (RO)
	Luminance statistics histogram bin 226. This value is unsigned. Updates during Vertical Blanking.		
0xBAEA	15:0	0x0000	STAT_AE_HISTOGRAM_227 (RO)
	Luminance statistics histogram bin 227. This value is unsigned. Updates during Vertical Blanking.		
0xBAEC	15:0	0x0000	STAT_AE_HISTOGRAM_228 (RO)
	Luminance statistics histogram bin 228. This value is unsigned. Updates during Vertical Blanking.		
0xBAEE	15:0	0x0000	STAT_AE_HISTOGRAM_229 (RO)
	Luminance statistics histogram bin 229. This value is unsigned. Updates during Vertical Blanking.		
0xBAF0	15:0	0x0000	STAT_AE_HISTOGRAM_230 (RO)
	Luminance statistics histogram bin 230. This value is unsigned. Updates during Vertical Blanking.		
0xBAF2	15:0	0x0000	STAT_AE_HISTOGRAM_231 (RO)
	Luminance statistics histogram bin 231. This value is unsigned. Updates during Vertical Blanking.		

TABLE 45. 14: STAT VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xBAF4	15:0	0x0000	STAT_AE_HISTOGRAM_232 (RO)
	Luminance statistics histogram bin 232. This value is unsigned. Updates during Vertical Blanking.		
0xBAF6	15:0	0x0000	STAT_AE_HISTOGRAM_233 (RO)
	Luminance statistics histogram bin 233. This value is unsigned. Updates during Vertical Blanking.		
0xBAF8	15:0	0x0000	STAT_AE_HISTOGRAM_234 (RO)
	Luminance statistics histogram bin 234. This value is unsigned. Updates during Vertical Blanking.		
0xBAFA	15:0	0x0000	STAT_AE_HISTOGRAM_235 (RO)
	Luminance statistics histogram bin 235. This value is unsigned. Updates during Vertical Blanking.		
0xBAFC	15:0	0x0000	STAT_AE_HISTOGRAM_236 (RO)
	Luminance statistics histogram bin 236. This value is unsigned. Updates during Vertical Blanking.		
0xBAFE	15:0	0x0000	STAT_AE_HISTOGRAM_237 (RO)
	Luminance statistics histogram bin 237. This value is unsigned. Updates during Vertical Blanking.		
0xBB00	15:0	0x0000	STAT_AE_HISTOGRAM_238 (RO)
	Luminance statistics histogram bin 238. This value is unsigned. Updates during Vertical Blanking.		
0xBB02	15:0	0x0000	STAT_AE_HISTOGRAM_239 (RO)
	Luminance statistics histogram bin 239. This value is unsigned. Updates during Vertical Blanking.		
0xBB04	15:0	0x0000	STAT_AE_HISTOGRAM_240 (RO)
	Luminance statistics histogram bin 240. This value is unsigned. Updates during Vertical Blanking.		
0xBB06	15:0	0x0000	STAT_AE_HISTOGRAM_241 (RO)
	Luminance statistics histogram bin 241. This value is unsigned. Updates during Vertical Blanking.		
0xBB08	15:0	0x0000	STAT_AE_HISTOGRAM_242 (RO)
	Luminance statistics histogram bin 242. This value is unsigned. Updates during Vertical Blanking.		
0xBB0A	15:0	0x0000	STAT_AE_HISTOGRAM_243 (RO)
	Luminance statistics histogram bin 243. This value is unsigned. Updates during Vertical Blanking.		
0xBB0C	15:0	0x0000	STAT_EXPOSURE_COARSE_INTEGRATION_TIME (RO)
	Coarse integration time during the frame when the statistics were captured. This value is unsigned. Updates during Vertical Blanking.		
0xBB0E	15:0	0x0000	STAT_EXPOSURE_FINE_INTEGRATION_TIME (RO)
	Fine adjustment for the integration time specified in pixel clocks during the frame when the statistics were captured. This value is unsigned. Updates during Vertical Blanking.		
0xBB10	15:0	0x0000	STAT_EXPOSURE_ANALOG_RED_GAIN (RO)
	Analog gain for the red channel during the frame when the statistics were captured. This value is unsigned fixed-point with 5 fractional bits. Updates during Vertical Blanking.		
0xBB12	15:0	0x0000	STAT_EXPOSURE_ANALOG_GREEN1_GAIN (RO)
	Analog gain for the green1 channel during the frame when the statistics were captured. This value is unsigned fixed-point with 5 fractional bits. Updates during Vertical Blanking.		

TABLE 45. 14: STAT VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
$0 \times 8 B 14$	15:0	0x0000	STAT_EXPOSURE_ANALOG_GREEN2_GAIN (RO)
	Analog gain for the green2 channel during the frame when the statistics were captured. This value is unsigned fixed-point with 5 fractional bits. Updates during Vertical Blanking.		
0xBB16	15:0	0x0000	STAT_EXPOSURE_ANALOG_BLUE_GAIN (RO)
	Analog gain for the blue channel during the frame when the statistics were captured. This value is unsigned fixed-point with 5 fractional bits. Updates during Vertical Blanking.		
0xBB18	15:0	0x0000	STAT_EXPOSURE_FRAME_LENGTH_LINES (RO)
	Number of lines within the frame when the statistics were captured. This value is unsigned. Updates during Vertical Blanking.		
0xBB1A	15:0	0x0000	STAT_EXPOSURE_LINE_LENGTH_PCK (RO)
	Number of pixel clocks for each line during the frame when the statistics were captured. This value is unsigned. Updates during Vertical Blanking.		
0xBB1C	7:0	0x00	STAT_EXPOSURE_COLUMN_GAIN (RO)
	Column gain selection for all channels during the frame when the statistics were captured. This value is unsigned. Updates during Vertical Blanking.		
0xBB1D	7:0	0x00	STAT_EXPOSURE_DCG_GAIN (RO)
	Dual conversion gain state for all channels during the frame when the statistics were captured. This value is unsigned. Updates during Vertical Blanking.		
0xBB1E	15:0	0x0000	STAT_EXPOSURE_DGAIN_RED (RO)
	Sensor digital gain for the red channel during the frame when the statistics were captured. This value is unsigned fixed-point with 7 fractional bits. Updates during Vertical Blanking.		
0xBB20	15:0	0x0000	STAT_EXPOSURE_DGAIN_GREEN1 (RO)
	Sensor digital gain for the green1 channel during the frame when the statistics were captured. This value is unsigned fixed-point with 7 fractional bits. Updates during Vertical Blanking.		
0xBB22	15:0	0x0000	STAT_EXPOSURE_DGAIN_GREEN2 (RO)
	Sensor digital gain for the green 2 channel during the frame when the statistics were captured. This value is unsigned fixed-point with 7 fractional bits. Updates during Vertical Blanking.		
0xBB24	15:0	0x0000	STAT_EXPOSURE_DGAIN_BLUE (RO)
	Sensor digital gain for the blue channel during the frame when the statistics were captured. This value is unsigned fixed-point with 7 fractional bits. Updates during Vertical Blanking.		
0xBB26	15:0	0x0000	STAT_EXPOSURE_CPIPE_DGAIN_RED (RO)
	Cpipe gain for the red channel during the frame when the statistics were captured. This value is unsigned fixed-point with 7 fractional bits. Updates during Vertical Blanking.		
0xBB28	15:0	0x0000	STAT_EXPOSURE_CPIPE_DGAIN_GREEN1 (RO)
	Cpipe gain for the green1 channel during the frame when the statistics were captured. This value is unsigned fixed-point with 7 fractional bits. Updates during Vertical Blanking.		
0xBB2A	15:0	0x0000	STAT_EXPOSURE_CPIPE_DGAIN_GREEN2 (RO)
	Cpipe gain for the green 2 channel during the frame when the statistics were captured. This value is unsigned fixed-point with 7 fractional bits. Updates during Vertical Blanking.		

TABLE 45. 14: STAT VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xBB2C	15:0	0x0000	STAT_EXPOSURE_CPIPE_DGAIN_BLUE (RO)
	Cpipe gain for the blue channel during the frame when the statistics were captured. This value is unsigned fixed-point with 7 fractional bits. Updates during Vertical Blanking.		
0xBB2E	15:0	0x0000	STAT_EXPOSURE_CPIPE_DGAIN_SECOND (RO)
	Cpipe secondary gain for all channels during the frame when the statistics were captured. This value is unsigned fixed-point with 7 fractional bits. Updates during Vertical Blanking.		
0xBB30	7:0	0x00	STAT_EXPOSURE_RATIO_T1_T2 (RO)
	Sensor T1/T2 exposure ratio during the frame when the statistics were captured. This value is unsigned. Updates during Vertical Blanking.		
0xBB31	7:0	0x00	STAT_EXPOSURE_RATIO_T2_T3 (RO)
	Sensor T2/T3 exposure ratio during the frame when the statistics were captured. This value is unsigned. Updates during Vertical Blanking.		
$0 \times 8 \mathrm{BB} 32$	7:0	0x00	STAT_EXPOSURE_HDR_SDR_MODE (RO)
	Exposure mode. 0: HDR 1: SDR This value is unsigned. Updates during Vertical Blanking.		

TABLE 46. 15: LOW LIGHT VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
$0 \times 8 \mathrm{CO} 2$	15:0	0x02C7	LL_MODE (R/W)
	15:10	X	Reserved
	9	0x0001	Reserved
	8	0x0000	Reserved
	7	0x01	Reserved
	6	0x01	Reserved
	5	X	Reserved
	4	0x00	Reserved
	3	0x00	LL_ENABLE_FADE_TO_BLACK Controls the Fade-To-Black mode: 0: Fade-To-Black mode will not be active under lowlight conditions. 1: Fade-To-Black mode will be active under lowlight conditions. This value is unsigned. Changes take effect during Vertical Blanking.
	2	0x01	LL_ADACD_GR_PIXEL_WEIGHTS This mode automatically controls the strength of the noise reduction filter using ADACD Green pixel weights. This value is unsigned. Changes take effect during Vertical Blanking.
	1	0x01	Reserved
	0	0x01	LL_NR_ENABLE Enable automatic control of Noise Reduction (DC and AdaCD). 0: Disabled 1: Enabled This value is unsigned. Changes take effect during Vertical Blanking.
	Lowlight mode control. This value is unsigned. Changes take effect during Vertical Blanking.		

TABLE 46. 15: LOW LIGHT VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
	7:0	0x00	LL_GAMMA_SELECT (R/W)
0xBC07	Selects between gamma curves. Gamma selection is overridden when the average luma (ll_average_luma_fade_to_black) is less than the fade-to-black threshold (cam_11_bright_fade_to_black_luma). 0: Interpolate between the contrast gamma curve in bright light and the noise reduction gamma curve in low light. 1: Always use contrast gamma curve. 2: Always use noise reduction gamma curve. This value is unsigned. Changes take effect during Vertical Blanking.		
$0 \times 8 \mathrm{C} 0 \mathrm{~A}$	15:0	0x0000	LL_GAMMA_CONTRAST_CURVE_0 (R/W)
	Gamma curve to preserve contrast in bright images. This is the knee point value for index 0 . This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC0C	15:0	0x0000	LL_GAMMA_CONTRAST_CURVE_1 (R/W)
	Gamma curve to preserve contrast in bright images. This is the knee point value for index 128. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC0E	15:0	0x0000	LL_GAMMA_CONTRAST_CURVE_2 (R/W)
	Gamma curve to preserve contrast in bright images. This is the knee point value for index 256 . This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC10	15:0	0x0000	LL_GAMMA_CONTRAST_CURVE_3 (R/W)
	Gamma curve to preserve contrast in bright images. This is the knee point value for index 384. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC12	15:0	0x0000	LL_GAMMA_CONTRAST_CURVE_4 (R/W)
	Gamma curve to preserve contrast in bright images. This is the knee point value for index 512. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC14	15:0	0x0000	LL_GAMMA_CONTRAST_CURVE_5 (R/W)
	Gamma curve to preserve contrast in bright images. This is the knee point value for index 640. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC16	15:0	0x0000	LL_GAMMA_CONTRAST_CURVE_6 (R/W)
	Gamma curve to preserve contrast in bright images. This is the knee point value for index 768 . This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC18	15:0	0x0000	LL_GAMMA_CONTRAST_CURVE_7 (R/W)
	Gamma curve to preserve contrast in bright images. This is the knee point value for index 896. This value is unsigned. Changes take effect during Vertical Blanking.		
$0 \times 8 \mathrm{BC1A}$	15:0	0x0000	LL_GAMMA_CONTRAST_CURVE_8 (R/W)
	Gamma curve to preserve contrast in bright images. This is the knee point value for index 1024. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC1C	15:0	0x0000	LL_GAMMA_CONTRAST_CURVE_9 (R/W)
	Gamma curve to preserve contrast in bright images. This is the knee point value for index 1152. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC1E	15:0	0x0000	LL_GAMMA_CONTRAST_CURVE_10 (R/W)
	Gamma curve to preserve contrast in bright images. This is the knee point value for index 1280. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC20	15:0	0x0000	LL_GAMMA_CONTRAST_CURVE_11 (R/W)
	Gamma curve to preserve contrast in bright images. This is the knee point value for index 1408. This value is unsigned. Changes take effect during Vertical Blanking.		

TABLE 46. 15: LOW LIGHT VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
$0 \times 8 \mathrm{BC} 22$	15:0	0x0000	LL_GAMMA_CONTRAST_CURVE_12 (R/W)
	Gamma curve to preserve contrast in bright images. This is the knee point value for index 1536. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC24	15:0	0x0000	LL_GAMMA_CONTRAST_CURVE_13 (R/W)
	Gamma curve to preserve contrast in bright images. This is the knee point value for index 1664. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC26	15:0	0x0000	LL_GAMMA_CONTRAST_CURVE_14 (R/W)
	Gamma curve to preserve contrast in bright images. This is the knee point value for index 1792. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC28	15:0	0x0000	LL_GAMMA_CONTRAST_CURVE_15 (R/W)
	Gamma curve to preserve contrast in bright images. This is the knee point value for index 1920. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC2A	15:0	0x0000	LL_GAMMA_CONTRAST_CURVE_16 (R/W)
	Gamma curve to preserve contrast in bright images. This is the knee point value for index 2048. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC2C	15:0	0x0000	LL_GAMMA_CONTRAST_CURVE_17 (R/W)
	Gamma curve to preserve contrast in bright images. This is the knee point value for index 2176. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC2E	15:0	0x0000	LL_GAMMA_CONTRAST_CURVE_18 (R/W)
	Gamma curve to preserve contrast in bright images. This is the knee point value for index 2304. This value is unsigned. Changes take effect during Vertical Blanking.		
$0 \times 8 \mathrm{CBC30}$	15:0	0x0000	LL_GAMMA_CONTRAST_CURVE_19 (R/W)
	Gamma curve to preserve contrast in bright images. This is the knee point value for index 2432. This value is unsigned. Changes take effect during Vertical Blanking.		
$0 \times 8 \mathrm{BC} 32$	15:0	0x0000	LL_GAMMA_CONTRAST_CURVE_20 (R/W)
	Gamma curve to preserve contrast in bright images. This is the knee point value for index 2560 . This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC34	15:0	0x0000	LL_GAMMA_CONTRAST_CURVE_21 (R/W)
	Gamma curve to preserve contrast in bright images. This is the knee point value for index 2688. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC36	15:0	0x0000	LL_GAMMA_CONTRAST_CURVE_22 (R/W)
	Gamma curve to preserve contrast in bright images. This is the knee point value for index 2816. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC38	15:0	0x0000	LL_GAMMA_CONTRAST_CURVE_23 (R/W)
	Gamma curve to preserve contrast in bright images. This is the knee point value for index 2944. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC3A	15:0	0x0000	LL_GAMMA_CONTRAST_CURVE_24 (R/W)
	Gamma curve to preserve contrast in bright images. This is the knee point value for index 3072. This value is unsigned. Changes take effect during Vertical Blanking.		

TABLE 46. 15: LOW LIGHT VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xBC3C	15:0	0x0000	LL_GAMMA_CONTRAST_CURVE_25 (R/W)
	Gamma curve to preserve contrast in bright images. This is the knee point value for index 3200 . This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC3E	15:0	0x0000	LL_GAMMA_CONTRAST_CURVE_26 (R/W)
	Gamma curve to preserve contrast in bright images. This is the knee point value for index 3328. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC40	15:0	0x0000	LL_GAMMA_CONTRAST_CURVE_27 (R/W)
	Gamma curve to preserve contrast in bright images. This is the knee point value for index 3456 . This value is unsigned. Changes take effect during Vertical Blanking.		
$0 \times 8 \mathrm{BC42}$	15:0	0x0000	LL_GAMMA_CONTRAST_CURVE_28 (R/W)
	Gamma curve to preserve contrast in bright images. This is the knee point value for index 3584. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC44	15:0	0x0000	LL_GAMMA_CONTRAST_CURVE_29 (R/W)
	Gamma curve to preserve contrast in bright images. This is the knee point value for index 3712. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC46	15:0	0x0000	LL_GAMMA_CONTRAST_CURVE_30 (R/W)
	Gamma curve to preserve contrast in bright images. This is the knee point value for index 3840. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC48	15:0	0x0000	LL_GAMMA_CONTRAST_CURVE_31 (R/W)
	Gamma curve to preserve contrast in bright images. This is the knee point value for index 3968. This value is unsigned. Changes take effect during Vertical Blanking.		
$0 \mathrm{xBC4} A$	15:0	0x0000	LL_GAMMA_CONTRAST_CURVE_32 (R/W)
	Gamma curve to preserve contrast in bright images. This is the knee point value for index 4096 . This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC4C	15:0	0x0000	LL_GAMMA_NRCURVE_0 (R/W)
	The \'Noise-Reduction\' gamma curve. This is the knee point value for index 0 . This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC4E	15:0	0x0000	LL_GAMMA_NRCURVE_1 (R/W)
	The \'Noise-Reduction\' gamma curve. This is the knee point value for index 128. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC50	15:0	0x0000	LL_GAMMA_NRCURVE_2 (R/W)
	The \'Noise-Reduction\' gamma curve. This is the knee point value for index 256. This value is unsigned. Changes take effect during Vertical Blanking.		
$0 \times 8 \mathrm{C} 52$	15:0	0x0000	LL_GAMMA_NRCURVE_3 (R/W)
	The \'Noise-Reduction\' gamma curve. This is the knee point value for index 384. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC54	15:0	0x0000	LL_GAMMA_NRCURVE_4 (R/W)
	The \'Noise-Reduction\' gamma curve. This is the knee point value for index 512 . This value is unsigned. Changes take effect during Vertical Blanking.		

TABLE 46. 15: LOW LIGHT VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
$0 \times 8 \mathrm{BC} 56$	15:0	0x0000	LL_GAMMA_NRCURVE_5 (R/W)
	The \'Noise-Reduction\' gamma curve. This is the knee point value for index 640. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC58	15:0	0x0000	LL_GAMMA_NRCURVE_6 (R/W)
	The \'Noise-Reduction\' gamma curve. This is the knee point value for index 768. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC5A	15:0	0x0000	LL_GAMMA_NRCURVE_7 (R/W)
	The \'Noise-Reduction\' gamma curve. This is the knee point value for index 896. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC5C	15:0	0x0000	LL_GAMMA_NRCURVE_8 (R/W)
	The \'Noise-Reduction\' gamma curve. This is the knee point value for index 1024. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC5E	15:0	0x0000	LL_GAMMA_NRCURVE_9 (R/W)
	The \'Noise-Reduction\' gamma curve. This is the knee point value for index 1152. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC60	15:0	0x0000	LL_GAMMA_NRCURVE_10 (R/W)
	The \'Noise-Reduction\' gamma curve. This is the knee point value for index 1280. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC62	15:0	0x0000	LL_GAMMA_NRCURVE_11 (R/W)
	The \'Noise-Reduction\' gamma curve. This is the knee point value for index 1408. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC64	15:0	0x0000	LL_GAMMA_NRCURVE_12 (R/W)
	The \'Noise-Reduction\' gamma curve. This is the knee point value for index 1536. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC66	15:0	0x0000	LL_GAMMA_NRCURVE_13 (R/W)
	The \'Noise-Reduction\' gamma curve. This is the knee point value for index 1664. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC68	15:0	0x0000	LL_GAMMA_NRCURVE_14 (R/W)
	The \'Noise-Reduction\' gamma curve. This is the knee point value for index 1792. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC6A	15:0	0x0000	LL_GAMMA_NRCURVE_15 (R/W)
	The \'Noise-Reduction\' gamma curve. This is the knee point value for index 1920. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC6C	15:0	0x0000	LL_GAMMA_NRCURVE_16 (R/W)
	The \'Noise-Reduction\' gamma curve. This is the knee point value for index 2048. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC6E	15:0	0x0000	LL_GAMMA_NRCURVE_17 (R/W)
	The \'Noise-Reduction\' gamma curve. This is the knee point value for index 2176. This value is unsigned. Changes take effect during Vertical Blanking.		

TABLE 46. 15: LOW LIGHT VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xBC70	15:0	0x0000	LL_GAMMA_NRCURVE_18 (R/W)
	The \'Noise-Reduction\' gamma curve. This is the knee point value for index 2304. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC72	15:0	0x0000	LL_GAMMA_NRCURVE_19 (R/W)
	The \'Noise-Reduction\' gamma curve. This is the knee point value for index 2432. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC74	15:0	0x0000	LL_GAMMA_NRCURVE_20 (R/W)
	The \'Noise-Reduction\' gamma curve. This is the knee point value for index 2560. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC76	15:0	0x0000	LL_GAMMA_NRCURVE_21 (R/W)
	The \'Noise-Reduction\' gamma curve. This is the knee point value for index 2688. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC78	15:0	0x0000	LL_GAMMA_NRCURVE_22 (R/W)
	The \'Noise-Reduction\' gamma curve. This is the knee point value for index 2816. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC7A	15:0	0x0000	LL_GAMMA_NRCURVE_23 (R/W)
	The \'Noise-Reduction\' gamma curve. This is the knee point value for index 2944. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC7C	15:0	0x0000	LL_GAMMA_NRCURVE_24 (R/W)
	The \'Noise-Reduction\' gamma curve. This is the knee point value for index 3072. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC7E	15:0	0x0000	LL_GAMMA_NRCURVE_25 (R/W)
	The \'Noise-Reduction\' gamma curve. This is the knee point value for index 3200 . This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC80	15:0	0x0000	LL_GAMMA_NRCURVE_26 (R/W)
	The \'Noise-Reduction\' gamma curve. This is the knee point value for index 3328. This value is unsigned. Changes take effect during Vertical Blanking.		
\|0xBC82	15:0	0x0000	LL_GAMMA_NRCURVE_27 (R/W)
	The \'Noise-Reduction\' gamma curve. This is the knee point value for index 3456. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC84	15:0	0x0000	LL_GAMMA_NRCURVE_28 (R/W)
	The \'Noise-Reduction\' gamma curve. This is the knee point value for index 3584. This value is unsigned. Changes take effect during Vertical Blanking.		
$0 \times 8 \mathrm{CB6}$	15:0	0x0000	LL_GAMMA_NRCURVE_29 (R/W)
	The \'Noise-Reduction\' gamma curve. This is the knee point value for index 3712. This value is unsigned. Changes take effect during Vertical Blanking.		
$0 \times 8 \mathrm{CBC8}$	15:0	0x0000	LL_GAMMA_NRCURVE_30 (R/W)
	The \'Noise-Reduction\' gamma curve. This is the knee point value for index 3840. This value is unsigned. Changes take effect during Vertical Blanking.		

TABLE 46. 15: LOW LIGHT VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xBC8A	15:0	0x0000	LL_GAMMA_NRCURVE_31 (R/W)
	The \'Noise-Reduction\' gamma curve. This is the knee point value for index 3968. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC8C	15:0	0x0000	LL_GAMMA_NRCURVE_32 (R/W)
	The \'Noise-Reduction\' gamma curve. This is the knee point value for index 4096. This value is unsigned. Changes take effect during Vertical Blanking.		
0xBC8E	15:0	0x0000	LL_AVERAGE_LUMA_FADE_TO_BLACK (RO)
	When fade to black is enabled this internal variable contains the maximum average luma from the current statistics AE zones, otherwise it is set to cam_ll_bright_fade_to_black_luma. This value is unsigned. Updates during Vertical Blanking.		
0xBCB4	15:0	0x003F	LL_ALTM_DAMPING_FAST (R/W)
	Damping value for the fast response. This value is unsigned fixed-point with 6 fractional bits. Changes take effect during Vertical Blanking.		
0xBCB6	15:0	0x000F	LL_ALTM_DAMPING_MED (R/W)
	Damping value for the medium response. This value is unsigned fixed-point with 6 fractional bits. Changes take effect during Vertical Blanking.		
0xBCB8	15:0	0x0007	LL_ALTM_DAMPING_SLOW (R/W)
	Damping value for the slow response. Normally also used the as default. This value is unsigned fixed-point with 6 fractional bits. Changes take effect during Vertical Blanking.		
0xBCC2	15:0	0x0000	LL_ALTM_LMIN_STATS_THRESHOLD (R/W)
	Percent of AE histogram cells with luma value below the ALTM lmin. ALTM lmin is determined by counting the AE cells in histogram bins, starting from bin 0 , until this count (as a percent of the histogram total count) is reached. ALTM lmin is the luma value corresponding to the bin where this count of AE cells is reached. A value of 0 means the lowest value AE cell luma will be used. The luma of an AE cell in the histogram is an average of the pixel values within that spatial cell. This value is unsigned fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xBCC4	15:0	0x003B	LL_ALTM_LMAX_STATS_THRESHOLD (R/W)
	Percent of AE histogram cells with luma value above the ALTM lmax. ALTM lmax is determined by counting the AE cells in histogram bins, starting from the last bin, until this count (as a percent of the histogram total count) is reached. ALTM lmax is the luma value corresponding to the bin where this count of AE cells is reached. A value of 0 means the highest value AE cell luma will be used. The luma of an AE cell in the histogram is an average of the pixel values within that spatial cell. This value is unsigned fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		

TABLE 47. 16: FLICKER DETECT VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xC000	15:0	0x0000	FLICKER_DETECT_STATUS (RO)
	15:8	X	Reserved
	7	RO	Reserved
	6	X	Reserved
	5	RO	FLICKER_DETECT_FD_STATUS_RUNNING Flicker Detection status: 0: Flicker Detection is idle. 1: Flicker Detection is active. This value is unsigned. Updates during Vertical Blanking.
	4	RO	FLICKER_DETECT_FD_STATUS_FLICKER_CHANGE_DETECTED Flicker detection status: 0: No flicker has been detected. 1: Flicker detected in the current scene. Note: This flag is automatically cleared after a Change-Config, Refresh, or Standby operation. This value is unsigned. Updates during Vertical Blanking.
	3	RO	FLICKER_DETECT_FD_STATUS_SYNC_FRAME_RATE Synchronized frame rate status: 0: Flicker Detection can run. 1: Flicker Detection cannot run because the current frame rate is in sync (or nearly) with the period of the flicker source to be detected. (For example, 60 frames-per-second and 60 Hz flicker source). This value is unsigned. Updates during Vertical Blanking.
	2:1	X	Reserved
	0	RO	Reserved
	Flicker Detection status. This value is unsigned. Updates during Vertical Blanking.		

TABLE 48. 17: PATCH VARIABLES FOR GENERAL PATCHES
R/W (Read or Write) bit; RO (Read Only) bit.

TABLE 48. 17: PATCH VARIABLES FOR GENERAL PATCHES
R/W (Read or Write) bit; RO (Read Only) bit.

TABLE 48. 17: PATCH VARIABLES FOR GENERAL PATCHES
R/W (Read or Write) bit; RO (Read Only) bit.

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xC804	15:0	0x0008	CAM_SENSOR_CFG_Y_ADDR_START (R/W)
	The first row of visible pixels to be read out (not counting any dark rows that may be read). Must be an even value. This value is unsigned. Changes take effect after a Change-Config command.		
0xC806	15:0	0x0002	CAM_SENSOR_CFG_X_ADDR_START (R/W)
	The first column of visible pixels to be read out (not counting any dark columns that may be read). Must be an even value. This value is unsigned. Changes take effect after a Change-Config command.		
0xC808	15:0	0x03C7	CAM_SENSOR_CFG_Y_ADDR_END (R/W)
	The last row of visible pixels to be read out. Must be an odd value. This value is unsigned. Changes take effect after a ChangeConfig command.		
0xC80A	15:0	0x0501	CAM_SENSOR_CFG_X_ADDR_END (R/W)
	The last column of visible pixels to be read out. Must be an odd value. This value is unsigned. Changes take effect after a Change-Config command.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xC80C	31:0	0x0337F980	CAM_SENSOR_CFG_PIXCLK (R/W)
	The sensor\'s pixel clock speed in Hertz. This value is unsigned. Changes take effect after a Change-Config command.		
0xC810	15:0	0x02BC	CAM_SENSOR_CFG_FINE_INTEG_TIME_MIN (R/W)
	Minimum fine integration time. This value is unsigned. Changes take effect after a Change-Config command.		
0xC812	15:0	0x068C	CAM_SENSOR_CFG_FINE_INTEG_TIME_MAX (R/W)
	Maximum fine integration time. This value is unsigned. Changes take effect after a Change-Config command.		
0xC814	15:0	0x0432	CAM_SENSOR_CFG_FRAME_LENGTH_LINES (R/W)
	The number of complete lines (rows) in the output frame. This includes visible lines and vertical blanking lines. This value is unsigned. Changes take effect after a Change-Config command.		
0xC816	15:0	0x068C	CAM_SENSOR_CFG_LINE_LENGTH_PCK (R/W)
	The number of pixel clock periods in one line (row) time. This includes visible pixels and horizontal blanking. This value is unsigned. Changes take effect after a Change-Config command.		
0xC818	15:0	0x0000	CAM_SENSOR_CFG_EXTRA_DELAY (R/W)
	Extra delay time, in sensor pixel clocks, added to the sensor\'s frame time. This must be zero for sensors that do not support extra delay. This must be less than the cam_sensor_cfg_line_length_pck value. This value is unsigned. Changes take effect after a Change-Config command.		
0xC834	7:0	0x20	CAM_SENSOR_CFG_CCI_BASE_ADDR_0 (R/W)
	CCI device address for the attached sensor. Used for sensor discovery. This value is unsigned. Changes take effect after a Change-Config command.		
0xC835	7:0	0x90	CAM_SENSOR_CFG_CCI_BASE_ADDR_1 (R/W)
	Alternate CCI device address for the attached sensor. Used for sensor discovery. This value is unsigned. Changes take effect after a Change-Config command.		
0xC836	7:0	0x01	CAM_SENSOR_CFG_DISCOVERY_TIME_M3_ROM_MS (R/W)
	Sensor discovery time in milliseconds when reading the M3 ROM. This value is unsigned. Changes take effect after a ChangeConfig command.		
0xC837	7:0	0x1F	CAM_SENSOR_CFG_DISCOVERY_TIME_OTPM_MS (R/W)
	Sensor discovery time in milliseconds when uploading the OTPM. This value is unsigned. Changes take effect after a ChangeConfig command.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xC838	31:0	0x04020841	CAM_SENSOR_CONTROL_EXTERNAL_PLL (R/W)
	31:29	X	Reserved
	28:23	0x00000008	CAM_SENSOR_CONTROL_EXTERNAL_PLL_P2 The Sensor PLL VCO P2 output divider. See the data sheet for the attached sensor for the setting of this value. This value should be obtained from Register Wizard. This value is unsigned. Changes take effect after a Change-Config command.
	22:17	0x00000001	CAM_SENSOR_CONTROL_EXTERNAL_PLL_P1 The Sensor PLL VCO P1 output divider. See the data sheet for the attached sensor for the setting of this value. This value should be obtained from Register Wizard. This value is unsigned. Changes take effect after a Change-Config command.
	16:10	0x00000002	CAM_SENSOR_CONTROL_EXTERNAL_PLL_N The Sensor PLL prescale divider. The Sensor PLL VCO divider. See the data sheet for the attached sensor for the setting of this value. This value should be obtained from Register Wizard. This value is unsigned. Changes take effect after a Change-Config command.
	9:1	0x0020	CAM_SENSOR_CONTROL_EXTERNAL_PLL_M The Sensor PLL VCO divider. See the data sheet for the attached sensor for the setting of this value. This value should be obtained from Register Wizard. This value is unsigned. Changes take effect after a Change-Config command.
	0	0x01	CAM_SENSOR_CONTROL_EXTERNAL_PLL_ENABLE Sensor phase lock loop enable. The PLL dividers should only be changed when the PLL is disabled. 0: Disabled (bypassed) 1: Enabled This value is unsigned. Changes take effect after a Change-Config command.
	Sensor PLL control variable. See individual bit descriptions for function. This value is unsigned. Changes take effect after a Change-Config command.		
0xC83C	7:0	0x00	CAM_SENSOR_CONTROL_BASE_ADDRESS (RO)
	This is the actual CCI device address for the attached sensor that was found during sensor discovery. This value is unsigned. Updates after a Change-Config command.		
0xC83D	7:0	0x00	CAM_SENSOR_CONTROL_REVISION_NUMBER (RO)
	Revision number of the attached sensor. This is updated during sensor discovery and is not valid before then. This value is unsigned. Updates after a Change-Config command.		
0xC83E	15:0	0x0000	CAM_SENSOR_CONTROL_MODEL_ID (RO)
	Model ID of the attached sensor. This is updated during sensor discovery and is not valid before then. This value is unsigned. Updates after a Change-Config command.		
0xC840	15:0	0x0000	CAM_SENSOR_CONTROL_EXTERNAL_OUTPUT_CLK_DIV (R/W)
	15:8	0x0000	CAM_SENSOR_CONTROL_EXTERNAL_OUTPUT_SYS_CLK_DIV The sensor output system clock divider. See the data sheet for the attached sensor for the setting of this value. This value should be obtained from Register Wizard. This value is unsigned. Changes take effect after a Change-Config command.
	7:0	0x00	CAM_SENSOR_CONTROL_EXTERNAL_OUTPUT_PIX_CLK_DIV The sensor output pixel clock divider. See the data sheet for the attached sensor for the setting of this value. This value should be obtained from Register Wizard. This value is unsigned. Changes take effect after a Change-Config command.
	Sensor output clock controls. See individual bit descriptions for function. This value is unsigned. Changes take effect after a Change-Config command.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xC842	7:0	0x00	CAM_SENSOR_CONTROL_REQUEST (R/W)
	7:3	X	Reserved
	2	0x00	CAM_SENSOR_CONTROL_HDR_CONFIG_REQUEST When set, requests the Sensor Manager commit a new HDR/SDR and T1/T2/T3 configuration. Auto-cleared when new configuration is applied. This value is unsigned. Changes take effect during Vertical Blanking.
	1	0x00	CAM_SENSOR_CONTROL_WB_REQUEST When set, requests the Sensor Manager commit a new white balance. Auto-cleared when new white balance is applied. This value is unsigned. Changes take effect during Vertical Blanking.
	0	0x00	CAM_SENSOR_CONTROL_EXPOSURE_REQUEST When set, requests the Sensor Manager commit a new exposure. Auto-cleared when new exposure is applied. This value is unsigned. Changes take effect during Vertical Blanking.
	Sensor exposure and white balance request bits from the host. This value is unsigned. Changes take effect during Vertical Blanking.		
0xC843	7:0	0x00	CAM_SENSOR_CONTROL_INTERNAL_REQUEST (RO)
	7:3	X	Reserved
	2	RO	CAM_SENSOR_CONTROL_HDR_CONFIG_INT_REQUEST When set, requests the Sensor Manager commit a new HDR/SDR and T1/T2/T3 configuration. For internal use only. Auto-cleared when new configuration is applied. This value is unsigned. Updates during Vertical Blanking.
	1	RO	CAM_SENSOR_CONTROL_WB_INT_REQUEST When set, requests the Sensor Manager commit a new white balance. For internal use only. Au-to-cleared when new white balance is applied. This value is unsigned. Updates during Vertical Blanking.
	0	RO	CAM_SENSOR_CONTROL_EXPOSURE_INT_REQUEST When set, requests the Sensor Manager commit a new exposure. For internal use only. Autocleared when new exposure is applied. This value is unsigned. Updates during Vertical Blanking.
	Exposure/WB request bits to the Sensor Manager (set internal). This value is unsigned. Updates during Vertical Blanking.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xC844	15:0	0x09C2	CAM_SENSOR_CONTROL_OPERATION_MODE (R/W)
	15:14	X	Reserved
	13	0x0000	Reserved
	12	0x0000	CAM_SENSOR_CONTROL_EMBEDDED_DATA_ENABLE Enable output of the sensor registers and statistics data embedded in the sensor output video stream. 0: Disabled 1: Enabled This value is unsigned. Changes take effect after a Change-Config command.
	11	0x0001	Reserved
	10:6	0x0007	Reserved
	5:4	0x00	CAM_SENSOR_CONTROL_OUTPUT_DATA Controls the output data format from the sensor to the companion chip. 0: 12 parallel 1: 12 bit HiSpi 2: 14 bit HiSpi This value is unsigned. Changes take effect after a Change-Config command.
	3	X	Reserved
	2:0	0x02	CAM_SENSOR_CONTROL_EXPOSURE_MODE Controls the exposure mode of the sensor. 0: SDR (standard dynamic range) 1: HDR (ME) 2: HDR (DLO) This value is unsigned. Changes take effect after a Change-Config command.
	Mode of operation for the sensor. This value is unsigned. Changes take effect after a Change-Config command.		
0xC846	15:0	0x0000	CAM_SENSOR_CONTROL_READ_MODE (R/W)
	15:10	X	Reserved
	9:8	RO	Reserved
	7:6	X	Reserved
	5:4	RO	Reserved
	3:2	X	Reserved
	1	0x00	CAM_SENSOR_CONTROL_VERT_FLIP_EN 0 : Readout is not flipped (mirrored) vertically. 1: Readout is flipped (mirrored) vertically so that the row specified by y_addr_end_is read out of the sensor first. This value is unsigned. Changes take effect after a Change-Config command.
	0	0x00	CAM_SENSOR_CONTROL_HORZ_MIRROR_EN 0 : Readout is not mirrored horizontally. 1: Readout is mirrored horizontally so that the column specified by x_addr_end_ is read out of the sensor first. This value is unsigned. Changes take effect after a Change-Config command.
	Controls the sensor read-mode. This value is unsigned. Changes take effect after a Change-Config command.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xC848	15:0	0x000B	CAM_HDR_MC_CTRL_MODE (R/W)
	15:4	X	Reserved
	3	0x01	CAM_HDR_MC_CTRL_MC_ENABLE_NOISE_FILTER Enable noise filtering for motion compensation algorithm. 0: Disabled 1: Enabled This value is unsigned. Changes take effect after a Change-Config command.
	2	0x00	Reserved
	1	0x01	CAM_HDR_MC_CTRL_MC_ENABLE_MOTION_CORRECTION_2D $2-\mathrm{D}$ motion detection and correction control. 0: 1-D 1:2-D This value is unsigned. Changes take effect after a Change-Config command.
	0	0x01	CAM_HDR_MC_CTRL_MC_ENABLE_MOTION_CORRECTION Motion detection and correction control. 0: Disabled 1: Enabled This value is unsigned. Changes take effect after a Change-Config command.
	Mode bits for motion compensation algorithm. This value is unsigned. Changes take effect after a Change-Config command.		
0xC84A	15:0	0x0BA0	CAM_HDR_MC_CTRL_S1_THRESHOLD (R/W)
	Separate S1 threshold (start of weighting function for smooth HDR pixel combination) for motion compensation. This value is unsigned. Changes take effect after a Change-Config command.		
0xC84C	15:0	0x0FA0	CAM_HDR_MC_CTRL_S2_THRESHOLD (R/W)
	Threshold level for end point of weighting transfer function. Pixel values above this level are chosen from exposure 2 only. This value is unsigned. Changes take effect after a Change-Config command.		
0xC84E	15:0	0x0800	CAM_HDR_MC_CTRL_S12_RANGE (R/W)
	Range of code values for the weighting transfer function defined by S2-S1. This value is unsigned. Changes take effect after a Change-Config command.		
0xC850	15:0	0x0300	CAM_HDR_MC_CTRL_DIFF_THRESHOLD (R/W)
	Value specifying how much greater than P2-lin, P1 must be for motion to be detected (the nearer this value is to 0 the less robust to noise it will be). This value is unsigned. Changes take effect after a Change-Config command.		
0xC854	15:0	0x0001	CAM_HDR_DLO_CTRL_MODE (R/W)
	15:3	X	Reserved
	2	0x00	CAM_HDR_DLO_CTRL_DLO_NCC_ENABLE Enable noise coring correction for DLO This value is unsigned. Changes take effect after a Change-Config command.
	1	0x00	CAM_HDR_DLO_CTRL_DLO_ENABLE_FILTER_QUAD Enable quadratic weighting for DLO noise filter. 0: Linear weighting 1: Quadratic weighting This value is unsigned. Changes take effect after a Change-Config command.
	0	0x01	CAM_HDR_DLO_CTRL_DLO_ENABLE_NOISE_FILTER Enable noise filtering fin the digital lateral overflow pixel combination. 0: Disabled 1: Enabled This value is unsigned. Changes take effect after a Change-Config command.
	Mode bits for digital lateral overflow algorithm. This value is unsigned. Changes take effect after a Change-Config command.		
0xC856	15:0	0x0BB8	CAM_HDR_DLO_CTRL_T1_BARRIER (R/W)
	Barrier for clipping T1 data in the digital lateral overflow combination method. This value is unsigned. Changes take effect after a Change-Config command.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xC858	15:0	0x0DAC	CAM_HDR_DLO_CTRL_T2_BARRIER (R/W)
	Barrier for clipping T2 data in the digital lateral overflow combination method. This value is unsigned. Changes take effect after a Change-Config command.		
0xC85A	15:0	0x0FA0	CAM_HDR_DLO_CTRL_T3_BARRIER (R/W)
	Barrier for clipping T3 data in the digital lateral overflow combination method. This value is unsigned. Changes take effect after a Change-Config command.		
0xC85C	15:0	0x0100	CAM_HDR_DLO_CTRL_NOISE_DISABLE_THRESHOLD (R/W)
	For the digital lateral overflow method, if either T1 data, T2 data or T3 data is greater than this threshold, noise filtering is turned off. Evaluated on a single pixel. This value is unsigned. Changes take effect after a Change-Config command.		
0xC85E	15:0	0x0040	CAM_HDR_DLO_CTRL_NOISE_S2_THRESHOLD (R/W)
	Threshold level for end point of noise filter weighting transfer function for digital lateral overflow. This value is unsigned. Changes take effect after a Change-Config command.		
0xC860	15:0	0x0005	CAM_HDR_DLO_CTRL_NOISE_S12_RANGE (R/W)
	Range of code values for the noise filter weighting transfer function for digital lateral overflow defined by s2_dlo - s1_dlo. This value is unsigned. Changes take effect after a Change-Config command.		
0xC862	15:0	0x0FA0	CAM_HDR_DLO_CTRL_T4_BARRIER (R/W)
	Barrier for clipping T4 data in the digital lateral overflow combination method. This value is unsigned. Changes take effect after a Change-Config command.		
0xC864	15:0	0x0001	CAM_EXP_CTRL_COARSE_INTEGRATION_TIME (R/W)
	Coarse integration time specified in lines. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned. Changes take effect during Vertical Blanking.		
0xC866	15:0	0x0000	CAM_EXP_CTRL_FINE_INTEGRATION_TIME (R/W)
	Fine integration time specified in pixel clocks. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned. Changes take effect during Vertical Blanking.		
0xC868	15:0	0x0020	CAM_EXP_CTRL_ANALOG_RED_GAIN (R/W)
	Analog gain for the red channel. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
0xC86A	15:0	0x0020	CAM_EXP_CTRL_ANALOG_GREEN1_GAIN (R/W)
	Analog gain for the green1 channel. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
0xC86C	15:0	0x0020	CAM_EXP_CTRL_ANALOG_GREEN2_GAIN (R/W)
	Analog gain for the green 2 channel. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
0xC86E	15:0	0x0020	CAM_EXP_CTRL_ANALOG_BLUE_GAIN (R/W)
	Analog gain for the blue channel. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
0xC870	15:0	0x0000	CAM_EXP_CTRL_FRAME_LENGTH_LINES (R/W)
	Number of lines within the frame. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned. Changes take effect during Vertical Blanking.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
$0 \mathrm{xC872}$	15:0	0x0000	CAM_EXP_CTRL_LINE_LENGTH_PCK (R/W)
	Number of pixel clocks within a line. This value is read-write in host-controlled exposure mode, read-only in all other modes. Changing this value generates a bad frame in the sensor. This value is unsigned. Changes take effect during Vertical Blanking.		
0xC874	7:0	0x00	CAM_EXP_CTRL_COLUMN_GAIN (R/W)
	Column gain selection for all channels. This value is read-write in host-controlled exposure mode, read-only in all other modes. 0: 1 x gain. 1: 2 x gain. 2: 4 x gain. 3: 8 x gain. Note: These values are sensor specific. This value is unsigned. Changes take effect during Vertical Blanking.		
0xC875	7:0	0x00	CAM_EXP_CTRL_DCG_GAIN (R/W)
	Dual-conversion gain for all channels. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
0xC876	15:0	0x0080	CAM_EXP_CTRL_DGAIN_RED (R/W)
	Sensor digital gain for the red channel. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
0xC878	15:0	0x0080	CAM_EXP_CTRL_DGAIN_GREEN1 (R/W)
	Sensor digital gain for the green1 channel. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
0xC87A	15:0	0x0080	CAM_EXP_CTRL_DGAIN_GREEN2 (R/W)
	Sensor digital gain for the green 2 channel. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
0xC87C	15:0	0x0080	CAM_EXP_CTRL_DGAIN_BLUE (R/W)
	Sensor digital gain for the blue channel. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
0xC87E	15:0	0x0080	CAM_EXP_CTRL_CPIPE_DGAIN_RED (R/W)
	Cpipe gain for the red channel. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
0xC880	15:0	0x0080	CAM_EXP_CTRL_CPIPE_DGAIN_GREEN1 (R/W)
	Cpipe gain for the green 1 channel. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
0xC882	15:0	0x0080	CAM_EXP_CTRL_CPIPE_DGAIN_GREEN2 (R/W)
	Cpipe gain for the green2 channel. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
0xC884	15:0	0x0080	CAM_EXP_CTRL_CPIPE_DGAIN_BLUE (R/W)
	Cpipe gain for the blue channel. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
0xC886	15:0	0x0080	CAM_EXP_CTRL_CPIPE_DGAIN_SECOND (R/W)
	Cpipe secondary gain for all channels. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
0xC888	7:0	0x02	CAM_EXP_CTRL_RATIO_T1_T2 (R/W)
	Sensor T1/T2 exposure ratio. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned. Changes take effect during Vertical Blanking.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xC889	7:0	0x02	CAM_EXP_CTRL_RATIO_T2_T3 (R/W)
	Sensor T2/T3 exposure ratio. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned. Changes take effect during Vertical Blanking.		
0xC88A	7:0	0x00	CAM_EXP_CTRL_HDR_SDR_MODE (R/W)
	Sensor HDR/SDR exposure mode. This value is read-write in host-controlled exposure mode, read-only in all other modes. This value is unsigned. Changes take effect during Vertical Blanking.		
0xC88C	15:0	0x00C8	CAM_CPIPE_CONTROL_FIRST_BLACK_LEVEL (R/W)
	Applied first blacklevel subtraction, should match sensor data pedestal, host configured. This value is unsigned. Changes take effect after a Change-Config command.		
0xC88E	15:0	0x0000	CAM_CPIPE_CONTROL_SECOND_BLACK_LEVEL (RO)
	Second Black Level control. This value is calculated based on the scene. This value is then subtracted from each pixel value to enhance contrast. This can be read-write if the black level algorithm is disabled. This value is unsigned. Updates during Vertical Blanking.		
	7:0	0x00	CAM_MODE_SELECT (R/W)
0xC890	Selection variable for the camera operation modes 0: Normal mode. 1: Lens Calibration mode. 2: Test Pattern Generator mode. 3: Synchronized mode. 4: Raw Bayer. 5: DCNR Bayer. 7: ALTM Bayer-12 mode. 8: ALTM Bayer-10 mode. 9: Raw Bayer companded from sensor. All other values are reserved. This value is unsigned. Changes take effect after a Change-Config command.		
0xC891	7:0	0x00	CAM_MODE_SYNC_TYPE (R/W)
	Selects type of synchronization: 0: Trigger (Standard) 1: Trigger (Deterministic) 2: Slave(Standard) 3: Slave (Shutter-Sync) All other values are reserved. This value is unsigned. Changes take effect after a Change-Config command.		
0xC892	7:0	0x00	CAM_MODE_SYNC_TRIGGER_MODE (R/W)
	Selects type of trigger when synchronization is set to one of the trigger types. 0: One-Shot 1: Continuous This value is unsigned. Changes take effect after a Change-Config command.		
0xC893	7:0	0x02	CAM_MODE_TEST_PATTERN_SELECT (R/W)
	Select the test pattern (in Test Pattern Generator mode): 1: Solid color. 2: 100% color bars. 5: Pseudo-random. 8: Fade-to-gray color bars. 9: Linear ramp. This value is unsigned. Changes take effect after a Change-Config command.		
0xC894	31:0	0x000FFFFF	CAM_MODE_TEST_PATTERN_RED (R/W)
	Variables cam_mode_test_pattern_red, cam_mode_test_pattern_green, and cam_mode_test_pattern_blue select the color for the solid color test pattern. This is a 20 -bit value when the part is in an HDR mode ($0-19$) and bits 20 and above are masked off before use. In non-HDR mode, this is limited to a 12 -bit value and bits 12 and above are masked off before use. This value is unsigned. Changes take effect after a Change-Config command.		
0xC898	31:0	0x000FFFFF	CAM_MODE_TEST_PATTERN_GREEN (R/W)
	Variables cam_mode_test_pattern_red, cam_mode_test_pattern_green, and cam_mode_test_pattern_blue select the color for the solid color test pattern. This is a 20 -bit value when the part is in an HDR mode ($0-19$) and bits 20 and above are masked off before use. In non-HDR mode, this is limited to a 12 -bit value and bits 12 and above are masked off before use. This value is unsigned. Changes take effect after a Change-Config command.		
0xC89C	31:0	0x000FFFFF	CAM_MODE_TEST_PATTERN_BLUE (R/W)
	Variables cam_mode_test_pattern_red, cam_mode_test_pattern_green, and cam_mode_test_pattern_blue select the color for the solid color test pattern. This is a 20 -bit value when the part is in an HDR mode ($0-19$) and bits 20 and above are masked off before use. In non-HDR mode, this is limited to a 12 -bit value and bits 12 and above are masked off before use. This value is unsigned. Changes take effect after a Change-Config command.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xC8A0	15:0	0x0000	CAM_CROP_WINDOW_XOFFSET (R/W)
	The horizontal offset in pixels of the crop window relative to the left edge of sensor\' Field of View (FOV). This can be used to pan the crop window within the FOV window. This value is unsigned. Changes take effect after a Refresh command.		
0xC8A2	15:0	0x0000	CAM_CROP_WINDOW_YOFFSET (R/W)
	The vertical offset in lines of the crop window relative to the top edge of the sensor\'s Field of View (FOV) window. This can be used to pan the crop window within the FOV window. This value is unsigned. Changes take effect after a Refresh command.		
0xC8A4	15:0	0x0500	CAM_CROP_WINDOW_WIDTH (R/W)
	The horizontal width of the crop window. This selects the number of columns from the sensor that will be used as input into the Scaler. This value is unsigned. Changes take effect after a Refresh command.		
0xC8A6	15:0	0x03C0	CAM_CROP_WINDOW_HEIGHT (R/W)
	The vertical height in lines of the crop window. This selects the number of rows from the sensor that will be used as input into the Scaler. This value is unsigned. Changes take effect after a Refresh command.		
0xC8A8	7:0	0x00	CAM_FOV_CALIB_X_OFFSET (R/W)
	Horizontal calibration offset for the sensor array. This shifts the center of Field of View (FOV) window relative to the center of the sensor. This is used to compensate for manufacturing tolerances when the sensor is mounted in a module, so that the image center is the same for all modules. A value of 0 centers the FOV horizontally on the center of the sensor. The limits for calib_x_offset are (calib_x_offset + CAM_SENSOR_CFG_X_ADDR_START) must be 0 or larger (not negative), and (calib_x_offset + CAM_SENSOR_CFG_X_ADDR_END) must be less than the maximum width of the sensor. When using the flip and mirror feature of the sensor, then the range for calib_x_offset might need to be increased to correct for the sensor\'s internal starting color adjustment. This value is signed 2\'s complement. Changes take effect after a Change-Config command.		
0xC8A9	7:0	0x00	CAM_FOV_CALIB_Y_OFFSET (R/W)
	Vertical calibration offset for the sensor array. This shifts the center of Field of View (FOV) window relative to the center of the sensor. This is used to compensate for manufacturing tolerances when the sensor is mounted in a module, so that the image center is the same for all modules. A value of 0 centers the FOV vertically on the center of the sensor. The limits for calib_x_offset are (calib_y_offset + CAM_SENSOR_CFG_Y_ADDR_START) must be 0 or larger (not negative), and (calib_y_offset + CAM_SENSOR_CFG_Y_ADDR_END) must be less than the maximum height of the sensor. When using the flip and mirror feature of the sensor, then the range for calib_y_offset might need to be increased to correct for the sensor\' s internal starting color adjustment. This value is signed $2 \&$ apos; s complement. Changes take effect after a Change-Config command.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xC8BC	7:0	0x00	CAM_AET_AEMODE (R/W)
	7	0x00	CAM_AET_MODE_MAX_INT_TIME Enable the \'maximize integration time\' mode. The integration time is fixed to the maximum possible for the given frame rate. Note this can be used in HDR to get the faster frame rates as the vblanking can be decreased. This value is unsigned. Changes take effect after a Change-Config command.
	6:4	0x00	CAM_AET_MODE_EXPOSURE Controls the Exposure operation mode 0: Auto Exposure 1: Triggered Auto Exposure 2: Manual Exposure 3: Host-Controlled All other values are reserved. This value is unsigned. Changes take effect after a Refresh command.
	3	X	Reserved
	2	0x00	CAM_AET_DISABLE_FLICKER_AVOIDANCE_AT_TARGET_GAIN If set, AE disables its flicker avoidance rules when the applied analog gain crosses a threshold This value is unsigned.
	1	0x00	CAM_AET_DISCRETE_FRAMERATE Controls variable frame-rate operation. 0: Continuously-variable: the frame rate varies in steps of 1 flicker period. 1: Discrete: the frame rate will vary by discrete steps. The discrete frame rates are determined by the cam_aet_frame_rate_0 through cam_aet_frame_rate_2 variables. Note this bit is only supported in SDR mode. This value is unsigned. Changes take effect after a ChangeConfig command.
	0	0x00	CAM_AET_MODE_INDOOR Enable \'indoor\' mode. 0: Disabled 1: Enabled: limit AE to minimum 1 flicker period of exposure This value is unsigned. Changes take effect after a Change-Config command.
	Execution modes for AE Track. This value is unsigned. Changes take effect after a Change-Config command.		
0xC8BE	15:0	0x001E	CAM_AET_BLACK_CLIPPING_TARGET (R/W)
	Black level control: sets the target percentage of \'dark\' pixels within the luma histogram (1024=100\%). The firmware adjusts the luma histogram by subtracting the calculated black level from each pixel, then equalizing the histogram. The blacklevel algorithm calculates the amount of subtraction (cam_cpipe_control_second_black_level) to be applied so that the \' dark\' percentage of the luma histogram matches the target. The maximum amount of black level subtraction that can be applied is limited by blacklevel_max_black_level. This value is unsigned. Changes take effect during Vertical Blanking.		
0xC8C0	15:0	0x0500	CAM_AET_EXPOSURE_TIME_MS (R/W)
	Manual exposure (integration) time in milliseconds. This variable is only processed in response to the \'host\' exposure request bit (cam_sensor_control_exposure_request) being set. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
0xC8C2	15:0	0x0080	CAM_AET_EXPOSURE_GAIN (R/W)
	Manual exposure (gain). This variable is only processed in response to the \'host\' exposure request bit (cam_sensor_control_exposure_request) being set. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
0xC8C6	15:0	0x0080	CAM_AET_AE_MIN_VIRT_DGAIN (R/W)
	This is the minimum value for the second digital gain that AE Track is permitted to use. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xC8C8	15:0	0x0280	CAM_AET_AE_MAX_VIRT_DGAIN (R/W)
	This the maximum value for the second digital gain that AE Track is permitted to use. The default maximum value is set to allow AE Track to use small amounts of digital gain to supplement system gain values. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
0xC8CA	15:0	0x0020	CAM_AET_AE_MIN_VIRT_AGAIN (R/W)
	This is the minimum value for the sensor analog gain that AE Track is permitted to use. This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
0xC8CC	15:0	0x0020	CAM_AET_AE_MAX_VIRT_AGAIN (R/W)
	This the maximum value for the sensor analog gain that AE Track is permitted to use. This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
0xC8D1	7:0	0x3C	CAM_AET_FLICKER_FREQ_HZ (R/W)
	The desired flicker avoidance frequency in Hertz $(50 \mathrm{~Hz}$ or 60 Hz$)$. This value is unsigned. Changes take effect after a ChangeConfig command.		
0xC8D2	15:0	0x1E00	CAM_AET_MAX_FRAME_RATE (RO)
	The maximum configured frame rate in Hertz (unity $=256$). Note this is the maximum frame-rate as determined by the current sensor configuration. This value is unsigned fixed-point with 8 fractional bits. Updates after a Change-Config command.		
0xC8D 4	15:0	0x0000	CAM_AET_FRAME_RATE_0 (R/W)
	First discrete mode frame rate in Hertz. Must be less than cam_aet_max_frame_rate and greater than cam_aet_frame_rate_1. Variable frame rate is not supported in Interlaced modes and HDR exposure modes. This value is unsigned fixed-point with 8 fractional bits. Changes take effect after a Change-Config command.		
0xC8D6	15:0	0x0000	CAM_AET_FRAME_RATE_1 (R/W)
	Second discrete mode frame rate in Hertz. Must be less than cam_aet_frame_rate_0 and greater than cam_aet_frame_rate 2 . Variable frame rate is not supported in Interlaced modes and HDR exposure modes. This value is unsigned fixed-point with 8 fractional bits. Changes take effect after a Change-Config command.		
0xC8D8	15:0	0x0000	CAM_AET_FRAME_RATE_2 (R/W)
	Third discrete mode frame rate in Hertz. Must be less than cam_aet_frame_rate_1. Variable frame rate is not supported in Interlaced modes and HDR exposure modes. This value is unsigned fixed-point with 8 fractional bits. Changes take effect after a Change-Config command.		
0xC8DA	15:0	0x0100	CAM_AET_TARGET_GAIN (R/W)
	Sets the target analog gain. This value is used by AE Track to determine the maximum gain before starting to reduce the frame rate. This is subject to the limitation that the minimum value has to be at least twice the minimum system gain - i.e. 2 x (cam_aet_ae_min_virt_again x cam_aet_ae_min_virt_dgain). This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
0xC8DC	15:0	0x009C	CAM_AWB_CCM_L_0 (R/W)
	Red-rich CCM value for column 0 and row 0 . This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xC8DE	15:0	0x002E	CAM_AWB_CCM_L_1 (R/W)
	Red-rich CCM value for column 1 and row 0 . This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xC8E0	15:0	0x0035	CAM_AWB_CCM_L_2 (R/W)
	Red-rich CCM value for column 2 and row 0 . This value is signed $2 \&$ apos;s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xC8E2	15:0	0xFFA8	CAM_AWB_CCM_L_3 (R/W)
	Red-rich CCM value for column 0 and row 1 . This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xC8E4	15:0	0x0117	CAM_AWB_CCM_L_4 (R/W)
	Red-rich CCM value for column 1 and row 1 . This value is signed $2 \&$ apos;s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xC8E6	15:0	0x0041	CAM_AWB_CCM_L_5 (R/W)
	Red-rich CCM value for column 2 and row 1 . This value is signed $2 \&$ apos;s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xC8E8	15:0	0xFFA2	CAM_AWB_CCM_L_6 (R/W)
	Red-rich CCM value for column 0 and row 2. This value is signed $2 \&$ apos;s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xC8EA	15:0	0x0004	CAM_AWB_CCM_L_7 (R/W)
	Red-rich CCM value for column 1 and row 2. This value is signed $2 \&$ apos;s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xC8EC	15:0	0x015A	CAM_AWB_CCM_L_8 (R/W)
	Red-rich CCM value for column 2 and row 2 . This value is signed $2 \&$ apos;s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xC8EE	15:0	0x00C5	CAM_AWB_CCM_M_0 (R/W)
	Intermediate CCM value for column 0 and row 0 . This value is signed $2 \&$ apos;s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xC8F0	15:0	0x0001	CAM_AWB_CCM_M_1 (R/W)
	Intermediate CCM value for column 1 and row 0 . This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xC8F2	15:0	0x003A	CAM_AWB_CCM_M_2 (R/W)
	Intermediate CCM value for column 2 and row 0 . This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xC8F4	15:0	0xFFEA	CAM_AWB_CCM_M_3 (R/W)
	Intermediate CCM value for column 0 and row 1 . This value is signed $2 \&$ apos;s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xC8F6	15:0	0x00E7	CAM_AWB_CCM_M_4 (R/W)
	Intermediate CCM value for column 1 and row 1. This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xC8F8	15:0	0x002F	CAM_AWB_CCM_M_5 (R/W)
	Intermediate CCM value for column 2 and row 1 . This value is signed $2 \&$ apos;s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xC8FA	15:0	0x0009	CAM_AWB_CCM_M_6 (R/W)
	Intermediate CCM value for column 0 and row 2. This value is signed $2 \&$ apos;s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xC8FC	15:0	0xFFF7	CAM_AWB_CCM_M_7 (R/W)
	Intermediate CCM value for column 1 and row 2. This value is signed $2 \&$ apos;s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xC8FE	15:0	0x0100	CAM_AWB_CCM_M_8 (R/W)
	Intermediate CCM value for column 2 and row 2 . This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xC900	15:0	0x00A4	CAM_AWB_CCM_R_0 (R/W)
	Blue-rich CCM value for column 0 and row 0 . This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xC902	15:0	0x004B	CAM_AWB_CCM_R_1 (R/W)
	Blue-rich CCM value for column 1 and row 0 . This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xC904	15:0	0x0011	CAM_AWB_CCM_R_2 (R/W)
	Blue-rich CCM value for column 2 and row 0 . This value is signed $2 \&$ apos;s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xC906	15:0	0xFFE8	CAM_AWB_CCM_R_3 (R/W)
	Blue-rich CCM value for column 0 and row 1 . This value is signed $2 \&$ apos;s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xC908	15:0	0x00E4	CAM_AWB_CCM_R_4 (R/W)
	Blue-rich CCM value for column 1 and row 1 . This value is signed $2 \&$ apos;s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xC90A	15:0	0x0034	CAM_AWB_CCM_R_5 (R/W)
	Blue-rich CCM value for column 2 and row 1 . This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xC90C	15:0	0x000A	CAM_AWB_CCM_R_6 (R/W)
	Blue-rich CCM value for column 0 and row 2 . This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xC90E	15:0	0x001F	CAM_AWB_CCM_R_7 (R/W)
	Blue-rich CCM value for column 1 and row 2. This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xC910	15:0	0x00D8	CAM_AWB_CCM_R_8 (R/W)
	Blue-rich CCM value for column 2 and row 2. This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
$0 \mathrm{xC912}$	15:0	0x005A	CAM_AWB_CCM_L_RG_GAIN (R/W)
	Red/Green ratio for Left Matrix. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
0xC914	15:0	0x0122	CAM_AWB_CCM_L_BG_GAIN (R/W)
	Blue/Green ratio for Left Matrix. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xC916	15:0	0x009C	CAM_AWB_CCM_M_RG_GAIN (R/W)
	Red/Green ratio for Intermediate Matrix. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
0xC918	15:0	0x0105	CAM_AWB_CCM_M_BG_GAIN (R/W)
	Blue/Green ratio for Intermediate Matrix. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
0xC91A	15:0	0x008B	CAM_AWB_CCM_R_RG_GAIN (R/W)
	Red/Green ratio for Right Matrix. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
0xC91C	15:0	0x00AC	CAM_AWB_CCM_R_BG_GAIN (R/W)
	Blue/Green ratio for Right Matrix. This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
0xC91E	15:0	0x09C4	CAM_AWB_CCM_L_CTEMP (R/W)
	Color temperature for the Left Matrix (in Kelvin). This value is unsigned. Changes take effect during Vertical Blanking.		
0xC920	15:0	0x0D67	CAM_AWB_CCM_M_CTEMP (R/W)
	Color temperature for Intermediate Matrix (in Kelvin). This value is unsigned. Changes take effect during Vertical Blanking.		
0xC922	15:0	0x1964	CAM_AWB_CCM_R_CTEMP (R/W)
	Color temperature for the Right Matrix (in Kelvin). This value is unsigned. Changes take effect during Vertical Blanking.		
0xC924	15:0	0x09C4	CAM_AWB_COLOR_TEMPERATURE_MIN (R/W)
	Minimum color temperature (degrees Kelvin) allowed for AWB. This value should be greater than or equal to cam_awb_ccm_1_ctemp. This constrains the range of AWB solutions. This value is unsigned. Changes take effect during Vertical Blanking.		
0xC926	15:0	0x1964	CAM_AWB_COLOR_TEMPERATURE_MAX (R/W)
	Maximum color temperature (degrees Kelvin) allowed for AWB. This value should be less than or equal to cam_awb_ccm_r_ctemp. This constrains the range of AWB solutions. This value is unsigned. Changes take effect during Vertical Blanking.		
0xC928	15:0	0x1964	CAM_AWB_COLOR_TEMPERATURE (R/W)
	Current matrix color temperature (degrees Kelvin). In manual white-balance mode (cam_awb_mode_control = 2) this sets the color temperature; the gain ratios are then adjusted accordingly. This value is constrained between cam_awb_ccm_1_ctemp and cam_awb_ccm_r_ctemp. This value is unsigned. Changes take effect during Vertical Blanking.		
0xC92A	15:0	0x001E	CAM_AWB_X_SHIFT (R/W)
	Shift parameter in horizontal direction in probability table, applied between rotation and scaling. This value is signed 2\'s complement. Changes take effect after a Refresh command.		
0xC92C	15:0	0x0020	CAM_AWB_Y_SHIFT (R/W)
	Shift parameter in vertical direction in probability table, applied between rotation and scaling. This value is signed 2\'s complement. Changes take effect after a Refresh command.		
0xC92E	15:0	0x009C	CAM_AWB_RECIP_X_SCALE (R/W)
	Reciprocal of scale factor times 512 to be applied to x index. This value is unsigned fixed-point with 9 fractional bits. Changes take effect after a Refresh command.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xC930	15:0	0x0044	CAM_AWB_RECIP_Y_SCALE (R/W)
	Reciprocal of scale factor times 512 to be applied to y index. This value is unsigned fixed-point with 9 fractional bits. Changes take effect after a Refresh command.		
0xC932	15:0	0x0007	CAM_AWB_ROT_CENTER_X (R/W)
	Center of rotation of weight map, x. This value is signed 2\'s complement. Changes take effect after a Refresh command.		
0xC934	15:0	0xFFDF	CAM_AWB_ROT_CENTER_Y (R/W)
	Center of rotation of weight map, y. This value is signed 2\'s complement. Changes take effect after a Refresh command.		
0xC936	7:0	0x3F	CAM_AWB_ROT_SIN (R/W)
	$64 * \sin ($ theta), where theta is the weight map rotation angle. This value is signed $2 \&$ apos;s complement fixed-point with 6 fractional bits. Changes take effect after a Refresh command.		
0xC937	7:0	0x0A	CAM_AWB_ROT_COS (R/W)
	$64^{*} \cos ($ theta), where theta is the weight map rotation angle. This value is signed $2 \&$ apos;s complement fixed-point with 6 fractional bits. Changes take effect after a Refresh command.		
0xC938	15:0	0x1111	CAM_AWB_WEIGHT_TABLE_0 (R/W)
	AWB weight table word 0 . This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
0xC93A	15:0	0x1111	CAM_AWB_WEIGHT_TABLE_1 (R/W)
	AWB weight table word 1. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
0xC93C	15:0	0x2222	CAM_AWB_WEIGHT_TABLE_2 (R/W)
	AWB weight table word 2. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
0xC93E	15:0	0x1111	CAM_AWB_WEIGHT_TABLE_3 (R/W)
	AWB weight table word 3. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
0xC940	15:0	0x1222	CAM_AWB_WEIGHT_TABLE_4 (R/W)
	AWB weight table word 4. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
0xC942	15:0	0x2223	CAM_AWB_WEIGHT_TABLE_5 (R/W)
	AWB weight table word 5. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
0xC944	15:0	0x4555	CAM_AWB_WEIGHT_TABLE_6 (R/W)
	AWB weight table word 6 . This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
0xC946	15:0	0x2221	CAM_AWB_WEIGHT_TABLE_7 (R/W)
	AWB weight table word 7. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
0xC948	15:0	0x2466	CAM_AWB_WEIGHT_TABLE_8 (R/W)
	AWB weight table word 8 . This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xC94A	15:0	0x6654	CAM_AWB_WEIGHT_TABLE_9 (R/W)
	AWB weight table word 9. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
0xC94C	15:0	0x3234	CAM_AWB_WEIGHT_TABLE_10 (R/W)
	AWB weight table word 10 . This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
0xC94E	15:0	0x3452	CAM_AWB_WEIGHT_TABLE_11 (R/W)
	AWB weight table word 11. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
0xC950	15:0	0x2577	CAM_AWB_WEIGHT_TABLE_12 (R/W)
	AWB weight table word 12. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
0xC952	15:0	0x6764	CAM_AWB_WEIGHT_TABLE_13 (R/W)
	AWB weight table word 13. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
0xC954	15:0	0x2212	CAM_AWB_WEIGHT_TABLE_14 (R/W)
	AWB weight table word 14. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
0xC956	15:0	0x2552	CAM_AWB_WEIGHT_TABLE_15 (R/W)
	AWB weight table word 15. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
0xC958	15:0	0x1354	CAM_AWB_WEIGHT_TABLE_16 (R/W)
	AWB weight table word 16. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
0xC95A	15:0	0x4565	CAM_AWB_WEIGHT_TABLE_17 (R/W)
	AWB weight table word 17. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
0xC95C	15:0	0x4422	CAM_AWB_WEIGHT_TABLE_18 (R/W)
	AWB weight table word 18. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
0xC95E	15:0	0x2331	CAM_AWB_WEIGHT_TABLE_19 (R/W)
	AWB weight table word 19. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
0xC960	15:0	0x1122	CAM_AWB_WEIGHT_TABLE_20 (R/W)
	AWB weight table word 20. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
0xC962	15:0	0x1234	CAM_AWB_WEIGHT_TABLE_21 (R/W)
	AWB weight table word 21. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xC964	15:0	0x3335	CAM_AWB_WEIGHT_TABLE_22 (R/W)
	AWB weight table word 22. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
0xC966	15:0	0x6652	CAM_AWB_WEIGHT_TABLE_23 (R/W)
	AWB weight table word 23. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
0xC968	15:0	0x1111	CAM_AWB_WEIGHT_TABLE_24 (R/W)
	AWB weight table word 24. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
0xC96A	15:0	0x1112	CAM_AWB_WEIGHT_TABLE_25 (R/W)
	AWB weight table word 25 . This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
0xC96C	15:0	0x1224	CAM_AWB_WEIGHT_TABLE_26 (R/W)
	AWB weight table word 26. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
0xC96E	15:0	0x5652	CAM_AWB_WEIGHT_TABLE_27 (R/W)
	AWB weight table word 27. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
0xC970	15:0	0x1111	CAM_AWB_WEIGHT_TABLE_28 (R/W)
	AWB weight table word 28. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
0xC972	15:0	0x1111	CAM_AWB_WEIGHT_TABLE_29 (R/W)
	AWB weight table word 29. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
0xC974	15:0	0x1112	CAM_AWB_WEIGHT_TABLE_30 (R/W)
	AWB weight table word 30. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
0xC976	15:0	0x2332	CAM_AWB_WEIGHT_TABLE_31 (R/W)
	AWB weight table word 31. This is derived from the output of the Sensor Tune tool. This value is unsigned. Changes take effect after a Refresh command.		
0xC979	7:0	0x10	CAM_AWB_LUMA_THRESH_LOW (R/W)
	Lower luma threshold for pixels used in AWB. This value is unsigned. Changes take effect after a Refresh command.		
0xC97A	7:0	0xF0	CAM_AWB_LUMA_THRESH_HIGH (R/W)
	Upper luma threshold for pixels used in AWB. This value is unsigned. Changes take effect after a Refresh command.		
0xC97B	7:0	0x01	CAM_AWB_WEIGHT_THRESH_LOW (R/W)
	Lower pixel weight threshold. This value is unsigned. Changes take effect after a Refresh command.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xC97D	7:0	0x00	CAM_AWB_MODE (R/W)
	7:5	X	Reserved
	4	0x00	Reserved
	3	0x00	CAM_AWB_MODE_IR_FILTER_ENABLE Dual-band infra-red AWB mode control: 0: Disabled. 1: Enabled. Note: This mode is available to allow use of lenses with a dual-band infra-red cut filter. This value is unsigned. Changes take effect during Vertical Blanking.
	2:0	0x00	CAM_AWB_MODE_CONTROL Controls the AWB mode: 0 : Auto-white-balance 1: Triggered auto-white-balance 2: Manual white-balance (via cam_awb_color_temperature) 3: Host controlled This value is unsigned. Changes take effect after a Change-Config command.
	Execution modes for AWB. This value is unsigned. Changes take effect during Vertical Blanking.		
0xC97E	15:0	0x0002	CAM_AWB_LIGHT_REGION (RO)
	Current region selected (when operating in dual-band IR AWB mode). 0: A-light. 1: F-light. 2: Daylight. This value is unsigned. Updates during Vertical Blanking.		
	15:0	0x0DAC	CAM_AWB_TINTS_CTEMP_THRESHOLD (R/W)
0xC980	Color temperature threshold in which to use the tint offsets. Color tints can be applied to the current CCM. There are two sets of tints: - cam_awb_k_r_1, cam_awb_k_g_1,cam_awb_k_b_1: red-rich illumination. - cam_awb_k_r_r, cam_awb_k_g_r, cam_awb_k_b_r: blue-rich illumination. Note: The tints applied are interpolated using cam_awb_color_temperature. This interpolation is performed when cam_awb_color_temperature is between cam_awb_ccm_1_ctemp and cam_awb_tints_ctemp_threshold. This value is unsigned. Changes take effect during Vertical Blanking.		
0xC982	7:0	0x80	CAM_AWB_K_R_L (R/W)
	Controls the tint for the red channel (at the color temperature set by cam_awb_ccm_l_ctemp). This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
0xC983	7:0	0x80	CAM_AWB_K_G_L (R/W)
	Controls the tint for the green channel (at the color temperature set by cam_awb_ccm_1_ctemp). This value is unsigned fixedpoint with 7 fractional bits. Changes take effect during Vertical Blanking.		
0xC984	7:0	0x80	CAM_AWB_K_B_L (R/W)
	Controls the tint for the blue channel (at the color temperature set by cam_awb_ccm_l_ctemp). This value is unsigned fixedpoint with 7 fractional bits. Changes take effect during Vertical Blanking.		
0xC985	7:0	0x80	CAM_AWB_K_R_R (R/W)
	Controls the tint for the red channel (at the color temperature threshold set by cam_awb_tints_ctemp_threshold). This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
0xC986	7:0	0x80	CAM_AWB_K_G_R (R/W)
	Controls the tint for the green channel (at the color temperature threshold set by cam_awb_tints_ctemp_threshold). This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		
0xC987	7:0	0x80	CAM_AWB_K_B_R (R/W)
	Controls the tint for the blue channel (at the color temperature threshold set by cam_awb_tints_ctemp_threshold). This value is unsigned fixed-point with 7 fractional bits. Changes take effect during Vertical Blanking.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xC988	15:0	0x0017	CAM_ALTM_MODE (R/W)
	15:12	X	Reserved
	11	0x0000	CAM_ALTM_APF_SIGNED_POWER_GAIN_MASK Enable signed power gain in Adaptive Power Function. 0: Disabled 1: Enabled This value is unsigned. Changes take effect after a Change-Config command.
	10	0x0000	CAM_ALTM_APF_USE_LBAR_MASK Enable use of Lbar as control in Adpative Power Function. 0: Use L(x, y)/Min as control 1: Use $\operatorname{Lbar}(\mathrm{x}, \mathrm{y})$ as control This value is unsigned. Changes take effect after a Change-Config command.
	9	0x0000	CAM_ALTM_INTERP_GAMMA_ENABLE Enable dynamic interpolation of low and high gamma. This value is unsigned. Changes take effect after a Change-Config command.
	8	0x0000	CAM_ALTM_BRIGHTNESS_CONTROL Enable the Lr brightnes control. 0: Disabled 1: Enabled This value is unsigned. Changes take effect during Vertical Blanking.
	7	0x00	CAM_ALTM_B2YCOEF_DIV16_ENABLE Enable ALTM Bayer to luminance filter divisor divided by 16. 0: Disabled 1: Enabled This value is unsigned. Changes take effect during Vertical Blanking.
	6	0x00	CAM_ALTM_B2Y_BYPASS_ENABLE Enable bypass of the Bayer to luminance filter. 0: Disabled 1: Enabled This value is unsigned. Changes take effect during Vertical Blanking.
	5	0x00	Reserved
	4	0x01	CAM_ALTM_FW_CONTROL_ENABLE Enable firmware control of all frame-based ALTM parameters. 0: Disabled (most controls done in hardware) 1: Enabled This value is unsigned. Changes take effect after a Change-Config command.
	3	X	Reserved
	2	0x01	CAM_ALTM_DYNAMIC_DAMPING_ENABLE Enable dynamic damping for ALTM adaptation. 0: Disabled 1: Enabled This value is unsigned.
	1	0x01	CAM_ALTM_SHARPNESS_ENABLE Enable interpolation of the ALTM reflectance sharpening strength based on the cam_ll_brightness_metric. Reflectance sharpening enhances the texture and edge details during the dynamic range compression. 0: Disabled 1: Enabled This value is unsigned. Changes take effect during Vertical Blanking.
	0	0x01	CAM_ALTM_MODE_ENABLE Enable adaptive ALTM mode. When enabled, the dynamic brightness control cam_altm_key_k1 is coupled to ae_rule_avg_log_y_from_stats. 0: Disabled 1: Enabled This value is unsigned. Changes take effect during Vertical Blanking.
	Controls ALTM mode (controls adaptive ALTM brightness and adaptive reflectance sharpening strength). This value is unsigned. Changes take effect during Vertical Blanking.		
0xC98A	15:0	0x0080	CAM_ALTM_KEY_K0 (R/W)
	Noise floor used to calculate the key that controls the brightness of the tone mapped image. This value is unsigned. Changes take effect during Vertical Blanking.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xC98C	31:0	0x00000000	CAM_ALTM_KEY_K1 (RO)
	This value divided by cam_altm_key_k0 is used to calculate the key that controls the brightness of the tone mapped image. This parameter controls the brightness and is calculated by the firmware. This value is unsigned. Updates during Vertical Blanking.		
0xC990	15:0	0x0012	CAM_ALTM_LO_GAMMA (R/W)
	Contrast control parameter for the dark regions of an image. This value is unsigned. Changes take effect during Vertical Blanking.		
0xC992	15:0	0x0020	CAM_ALTM_HI_GAMMA (R/W)
	Contrast control parameter for bright regions of the image. This value is unsigned. Changes take effect during Vertical Blanking.		
	15:0	0x00AF	CAM_ALTM_K1_SLOPE (R/W)
0xC994	K1_slope controls how the ALTM K1 parameter increases in lowlight. If the cam_altm_k1_slope is increased it will decrease the noise and detail in lowlight conditions. If cam_altm_k1_slope is decreased it will increase the noise and detail in lowlight conditions and increase the apparent brightness. This value is signed 2\'s complement. Changes take effect during Vertical Blanking.		
0xC996	15:0	0x0100	CAM_ALTM_K1_MIN (R/W)
	The minimum allowable k1 value. This value is unsigned. Changes take effect during Vertical Blanking.		
0xC998	15:0	0xFFFF	CAM_ALTM_K1_MAX (R/W)
	The maximum allowable k1 value. This value is unsigned. Changes take effect during Vertical Blanking.		
0xC99A	15:0	0x0600	CAM_ALTM_DARK_BM (R/W)
	Programmable dark starting brightness value below which weight is 1 . This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xC99C	15:0	0x0800	CAM_ALTM_BRIGHT_BM (R/W)
	Programmable bright ending brightness value above which weight is 0 . This value is signed $2 \&$ apos;s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xC99E	15:0	0x0002	CAM_ALTM_K1_DAMPING_SPEED (R/W)
	Programmable damping value for ALTM dynamic adaptation. A lower value means slower adaptation ($\mathrm{min}=1$) , a higher value means faster adaptation $(\max =32)($ unity $=1)$. This value is unsigned. Changes take effect during Vertical Blanking.		
0xC9A0	15:0	0x00C8	CAM_ALTM_SHARPNESS_DARK_BM (R/W)
	This is the low brightness metric threshold for the ALTM reflectance sharpening strength. If the brightness metric is less than cam_altm_sharpness_dark_bm, the ALTM reflectance sharpening strength is cam_altm_sharpness_strength_dark. If the brightness metric is greater than cam_altm_sharpness_bright_bm, the ALTM reflectance sharpening strength is cam_altm_sharpness_strength_bright. When the brightness metric is between these limits the ALTM reflectance sharpening strength will be interpolated between the bright and dark values. This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xC9A2	15:0	0x0B54	CAM_ALTM_SHARPNESS_BRIGHT_BM (R/W)
	This is the high brightness metric threshold for the ALTM reflectance sharpening strength. If the brightness metric is greater than cam_altm_sharpness_bright_bm, the ALTM reflectance sharpening strength is cam_altm_sharpness_strength_bright. If the brightness metric is less than cam_altm_sharpness_dark_bm, the ALTM reflectance sharpening strength is cam_altm_sharpness_strength_dark. When the brightness metric is between these limits the ALTM reflectance sharpening strength will be interpolated between the bright and dark values. This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
	15:0	0x0000	CAM_ALTM_SHARPNESS_STRENGTH_DARK (R/W)
0xC9A4	This is the ALTM reflectance sharpening strength used when the brightness metric is below cam_altm_sharpness_dark_bm. When the brightness metric is between the cam_altm_sharpness_bright_bm threshold and the cam_altm_sharpness_dark_bm threshold the ALTM reflectance sharpening strength will be interpolated between the cam_altm_sharpness_strength_bright and cam_altm_sharpness_strength_dark values. Reflectance sharpening enhances the texture and edge details during the dynamic range compression. This value is unsigned. Changes take effect during Vertical Blanking.		
	15:0	0x0000	AM_ALTM_SHARPNESS_STRENGTH_BRIGHT (R/W)
0xC9A6	This is the ALTM reflectance sharpening strength used when the brightness metric is greater than cam_altm_sharpness_bright_bm. When the brightness metric is between the cam_altm_sharpness_bright_bm threshold and the cam_altm_sharpness_dark_bm threshold the ALTM reflectance sharpening strength will be interpolated between the cam_altm_sharpness_strength_bright and cam_altm_sharpness_strength_dark values. Reflectance sharpening enhances the texture and edge details during the dynamic range compression. This value is unsigned. Changes take effect during Vertical Blanking.		
0xC9A8	31:0	0x00000000	CAM_ALTM_MIN_IMAGE_DYNAMIC_RANGE (R/W)
	Contrast domain brightness control parameter to make minimum dynamic range >> image noise (to avoid amplifying noise). This value is unsigned. Changes take effect during Vertical Blanking.		
0xC9B4	31:0	0x00000000	CAM_ALTM_LOG_CONTROL_LA (RO)
	Damped value of STAT_AVERAGE_LOGY used for control of lr. This value is unsigned. Updates during Vertical Blanking.		
0xC9BC	15:0	0x0000	CAM_ALTM_DARK_LO_GAMMA (R/W)
	ALTM low gamma control dark brightness control parameter. This value is unsigned. Changes take effect after a Change-Config command.		
0xC9BE	15:0	0x0000	CAM_ALTM_BRIGHT_LO_GAMMA (R/W)
	ALTM low gamma control bright brightness control parameter. This value is unsigned. Changes take effect after a Change-Config command.		
0xC9C0	15:0	0x0000	CAM_ALTM_DARK_LO_GAMMA_BM (R/W)
	ALTM low gamma control dark brightness metric control parameter. This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect after a Change-Config command.		
0xC9C2	15:0	0x0000	CAM_ALTM_BRIGHT_LO_GAMMA_BM (R/W)
	ALTM low gamma control bright brightness metric control parameter. This value is signed $2 \&$ apos;s complement fixed-point with 8 fractional bits. Changes take effect after a Change-Config command.		
0xC9C4	15:0	0x0000	CAM_ALTM_DARK_HI_GAMMA (R/W)
	ALTM high gamma control dark brightness control parameter. This value is unsigned. Changes take effect after a Change-Config command.		
0xC9C6	15:0	0x0000	CAM_ALTM_BRIGHT_HI_GAMMA (R/W)
	ALTM high gamma control bright brightness control parameter. This value is unsigned. Changes take effect after a Change-Config command.		
0xC9C8	15:0	0x0000	CAM_ALTM_DARK_HI_GAMMA_BM (R/W)
	ALTM high gamma control dark brightness metric control parameter. This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect after a Change-Config command.		
0xC9CA	15:0	0x0000	CAM_ALTM_BRIGHT_HI_GAMMA_BM (R/W)
	ALTM high gamma control bright brightness metric control parameter. This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect after a Change-Config command.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xC9CC	15:0	0xFD00	CAM_ALTM_LOWLIGHT_DARK_BM (R/W)
	Programmable dark starting brightness value below which weight is 1 (unity=256). This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect after a Change-Config command.		
0xC9CE	15:0	0x0500	CAM_ALTM_LOWLIGHT_BRIGHT_BM (R/W)
	Programmable bright ending brightness value above which weight is 0 (unity $=256$). This value is signed $2 \&$ apos;s complement fixed-point with 8 fractional bits. Changes take effect after a Change-Config command.		
0xC9E6	15:0	0x0004	CAM_ALTM_LA_MIN (R/W)
	Minimum value to clamp CAM_ALTM_LOG_CONTROL_LA (ALTM\'s damped version of STAT_AVERAGE_LOGY) value for ALTM This value is unsigned. Changes take effect during Vertical Blanking.		
0xC9E8	15:0	0x001E	CAM_STAT_MODE (R/W)
	15:5	X	Reserved
	4	0x01	CAM_STAT_MODE_AWB_CLIP_OUTPUT_RELATIVE AWB/CLIP window coordinates are specified relative to: 0 : Sensor window. 1: Output window. This selects the AWB and CLIP \'parent\' window. This value is unsigned. Changes take effect after a Refresh command.
	3	0x01	CAM_STAT_MODE_AWB_CLIP_AUTO Controls AWB/CLIP window. 0: Manual: host sets window co-ordinates 1: Auto: firmware calculates window co-ordinates for full FOV This value is unsigned. Changes take effect after a Refresh command.
	2	0x01	CAM_STAT_MODE_AE_ALTM_FD_OUTPUT_RELATIVE AE/ALTM/FD window coordinates are specified relative to: 0 : Sensor window. 1: Output window. This selects the AE, ALTM, and FD \& apos;parent\' window. This value is unsigned. Changes take effect after a Refresh command.
	1	0x01	CAM_STAT_MODE_AE_ALTM_FD_AUTO Controls AE/ALTM/FD window. 0: Manual: host sets window co-ordinates 1: Auto: firmware calculates window co-ordinates for full FOV This value is unsigned. Changes take effect after a Refresh command.
	0	0x00	CAM_STAT_MODE_ONE_SHOT Controls acquisition mode. 0: Continuous: statistics are acquired every frame 1: One-shot: statistics are only aqcuired after being triggered This value is unsigned. Changes take effect during Vertical Blanking.
	Statistics mode control flags. This register has mixed update effects. This value is unsigned. Changes take effect during Vertical Blanking.		
0xC9EA	15:0	0x0000	CAM_STAT_CONTROL (R/W)
	15:1	X	Reserved
	0	0x00	CAM_STAT_CONTROL_TRIGGER When set, triggers statistics acquisition in one-shot mode. 0: No trigger 1: Trigger. Auto-clears after acquisition, host should poll this bit. This value is unsigned. Changes take effect during Vertical Blanking.
	Acquisition control flags. This value is unsigned. Changes take effect during Vertical Blanking.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xC9EC	7:0	0x00	CAM_STAT_EXCLUDE_CONTROL (R/W)
	7:3	X	Reserved
	2	0x00	CAM_STAT_EXCLUDE_ALTM Exclusion window control for ALTM statistics. 0: Disabled 1: Enabled This value is unsigned. Changes take effect after a Refresh command.
	1	0x00	CAM_STAT_EXCLUDE_AWB Exclusion window control for AWB statistics. 0: Disabled 1: Enabled This value is unsigned. Changes take effect after a Refresh command.
	0	0x00	CAM_STAT_EXCLUDE_AE Exclusion window control for AE statistics. 0: Disabled 1: Enabled This value is unsigned. Changes take effect after a Refresh command.
	Exclusion window control flags. This value is unsigned. Changes take effect after a Refresh command.		
0xC9F0	15:0	0x0000	CAM_STAT_EXCLUDE_WINDOW_X_OFFSET (R/W)
	The horizontal offset of the first pixel to be excluded, relative to the sensor output window. This value is unsigned. Changes take effect after a Refresh command.		
0xC9F2	15:0	0x0000	CAM_STAT_EXCLUDE_WINDOW_Y_OFFSET (R/W)
	The vertical offset of the first pixel to be excluded, relative to the sensor output window. This value is unsigned. Changes take effect after a Refresh command.		
0xC9F4	15:0	0x0000	CAM_STAT_EXCLUDE_WINDOW_WIDTH (R/W)
	The width of the exclusion window, in pixels. This value is unsigned. Changes take effect after a Refresh command.		
0xC9F6	15:0	0x0000	CAM_STAT_EXCLUDE_WINDOW_HEIGHT (R/W)
	The height of the exclusion window, in rows. This value is unsigned. Changes take effect after a Refresh command.		
0xC9F8	15:0	0x0000	CAM_STAT_AE_ALTM_FD_WINDOW_X_OFFSET (R/W)
	The horizontal offset, in pixels, of the first pixel of the AE/ALTM/Flicker Detection statisticss window, specified relative to the selected parent window. The parent window is determined by cam_stat_mode_ae_altm_fd_output_relative. This value is ignored if cam_stat_mode_ae_altm_fd_auto is 1 . This value is unsigned. Changes take effect after a Refresh command.		
0xC9FA	15:0	0x0000	CAM_STAT_AE_ALTM_FD_WINDOW_Y_OFFSET (R/W)
	The vertical offset, in lines, of the first pixel of the AE/ALTM/Flicker Detection statistics window, specified relative to the selected parent window. The parent window is determined by cam_stat_mode_ae_altm_fd_output_relative. This value is ignored if cam_stat_mode_ae_altm_fd_auto is 1 . This value is unsigned. Changes take effect after a Refresh command.		
0xC9FC	15:0	0x0500	CAM_STAT_AE_ALTM_FD_WINDOW_WIDTH (R/W)
	The width of the AE/ALTM/Flicker Detection statistics window, in pixels. This value is ignored if cam_stat_mode_ae_altm_fd_auto is 1 . This value is unsigned. Changes take effect after a Refresh command.		
0xC9FE	15:0	0x03C0	CAM_STAT_AE_ALTM_FD_WINDOW_HEIGHT (R/W)
	The height of the AE/ALTM/Flicker Detection statistics window, in lines. This value is ignored if cam_stat_mode_ae_altm_fd_auto is 1 . This value is unsigned. Changes take effect after a Refresh command.		
0xCA00	15:0	0x0000	CAM_STAT_AWB_CLIP_WINDOW_X_OFFSET (R/W)
	The horizontal offset, in pixels, of the first pixel of the AWB/Clipping statisticss window, specified relative to the selected parent window. The parent window is determined by cam_stat_mode_ae_altm_fd_output_relative. This value is ignored if cam_stat_mode_awb_clip_auto is 1. This value is unsigned. Changes take effect after a Refresh command.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xCA02	15:0	0x0000	CAM_STAT_AWB_CLIP_WINDOW_Y_OFFSET (R/W)
	The vertical offset, in lines, of the first pixel of the AWB/Clipping statisticss window, specified relative to the selected parent window. The parent window is determined by cam_stat_mode_ae_altm_fd_output_relative. This value is ignored if cam_stat_mode_awb_clip_auto is 1 . This value is unsigned. Changes take effect after a Refresh command.		
0xCA04	15:0	0x0500	CAM_STAT_AWB_CLIP_WINDOW_WIDTH (R/W)
	The width of the AWB/Clipping statistics window, in pixels. This value is ignored if cam_stat_mode_awb_clip_auto is 1 . This value is unsigned. Changes take effect after a Refresh command.		
0xCA06	15:0	0x03C0	CAM_STAT_AWB_CLIP_WINDOW_HEIGHT (R/W)
	The height of the AWB/Clipping statistics window, in lines. This value is ignored if cam_stat_mode_awb_clip_auto is 1 . This value is unsigned. Changes take effect after a Refresh command.		
0xCA08	15:0	0x0003	CAM_LL_MODE (R/W)
	15:5	X	Reserved
	4	0x00	CAM_LL_ENABLE_RESET_NOISE_PEDESTAL_ON_LL_BM Enable noise pedestal to be set to 0 when brightness metric falls below brightness metric threshold for noise pedestal. This value is unsigned. Changes take effect during Vertical Blanking.
	3	0x00	CAM_LL_ENABLE_SWITCH_TO_LL_LDR_EXT_NR_LUT Enable switch to extended Noise floor and K LUT under low light and low dynamic range This value is unsigned. Changes take effect during Vertical Blanking.
	2	0x00	CAM_LL_ENABLE_AUTO_HDR_SDR Enable auto switching between HDR and SDR exposure modes based on the cam_ll_brightness_metric value, if the sensor supports it. 0: Disable auto switching 1: Enable auto switching This value is unsigned. Changes take effect during Vertical Blanking.
	1	0x01	CAM_LL_EXEC_CONTRAST_GAMMA_BRIGHT_CURVE Enable firmware calculation of the gamma contrast curves for bright conditions. 0: Disabled 1: Enabled This value is unsigned. Changes take effect after a Change-Config command.
	0	0x01	CAM_LL_EXEC_CONTRAST_GAMMA_DARK_CURVE Controls whether the firmware calculates the dark conditions (noise-reduction) gamma contrast curve: 0 : Noise-reduction gamma contrast curve is not calculated. 1: Noise-reduction gamma contrast curve is auto-calculated from cam_11_gamma, cam_11_stop_contrast_gradient and cam_ll_stop_contrast_luma_percentage. This value is unsigned. Changes take effect after a Change-Config command.
	Lowlight execution mode control. This value is unsigned. Changes take effect after a Change-Config command.		
0xCA0A	15:0	0x0000	CAM_LL_BRIGHTNESS_METRIC (RO)
	Brightness Metric in $\log 2$ space (the greater the value, the brighter the scene). This value is signed 2\'s complement fixedpoint with 8 fractional bits. Updates during Vertical Blanking.		
0xCA0C	15:0	0xF900	CAM_LL_BM_OFFSET (R/W)
	Scene brightness calculation offset for the brightness metric log. This value is signed $2 \&$ apos;s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xCA0E	15:0	0x03E8	CAM_LL_AUTO_SDR_TH_BM (R/W)
	The cam_11_brightness_metric value threshold below which the sensor will be switched to SDR. This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xCA10	15:0	0x0032	CAM_LL_AUTO_SDR_GATE_BM (R/W)
	The HDR/SDR auto switching gate. When cam_ll_brightness_metric is greater than the cam_ll_auto_sdr_th_bm + gate, the sensor will be switched back to HDR. This value must be positive. This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xCA12	15:0	0x0000	CAM_LL_SENSOR_RED_GAIN_METRIC (RO)
	Gain metric for the sensor\'s red pixels. This is the product of all analog and digital gains applied to the red pixels within the external sensor. This value is unsigned fixed-point with 5 fractional bits. Updates during Vertical Blanking.		
0xCA14	15:0	0x0000	CAM_LL_SENSOR_GREEN_GAIN_METRIC (RO)
	Gain metric for the sensor\'s green pixels. This is the product of all analog and digital gains applied to the green pixels within the external sensor. This value is unsigned fixed-point with 5 fractional bits. Updates during Vertical Blanking.		
0xCA16	15:0	0x0000	CAM_LL_SENSOR_BLUE_GAIN_METRIC (RO)
	Gain metric for the sensor\'s blue pixels. This is the product of all analog and digital gains applied to the blue pixels within the external sensor. This value is unsigned fixed-point with 5 fractional bits. Updates during Vertical Blanking.		
0xCA18	15:0	0x0000	CAM_LL_RED_GAIN_METRIC (RO)
	This is the red channel total gain metric. It is the product of all analog and digital gains applied to the red pixels. This value is unsigned fixed-point with 5 fractional bits. Updates during Vertical Blanking.		
0xCA1A	15:0	0x0000	CAM_LL_GREEN_GAIN_METRIC (RO)
	This is the green channel total gain metric. It is the product of all analog and digital gains applied to the green pixels. This value is unsigned fixed-point with 5 fractional bits. Updates during Vertical Blanking.		
0xCA1C	15:0	0x0000	CAM_LL_BLUE_GAIN_METRIC (RO)
	This is the blue channel total gain metric. It is the product of all analog and digital gains applied to the blue pixels. This value is unsigned fixed-point with 5 fractional bits. Updates during Vertical Blanking.		
0xCA1E	15:0	0x0000	CAM_LL_SNR_METRIC (RO)
	Signal to noise ratio metric. This is a metric used when interpolating the adaptive noise reduction strength. It is the average of the logarithm of the image luma divided by the gain metric. This value is signed $2 \&$ apos;s complement fixed-point with 8 fractional bits. Updates during Vertical Blanking.		
0xCA20	15:0	0x01F4	CAM_LL_DARK_BM (R/W)
	The cam_ll_dark_bm threshold is the low limit for interpolation based on the brightness metric (cam_l_brightness_metric). For brightness metric values below the cam_ll_dark_bm threshold the low value is used and for brightness metric values above the cam_ll_bright_bm threshold the high value is used. For brightness metric values between these two thresholds the value is interpolated from the high and low values. This value is signed $2 \&$ apos;s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xCA22	15:0	0x0BB8	CAM_LL_BRIGHT_BM (R/W)
	The cam_ll_bright_bm high threshold is the high limit for interpolation based on the brightness metric (cam_ll_brightness_metric). For brightness metric values above the cam_ll_bright_bm threshold the high value is used and for brightness metric values below the cam_ll_dark_bm threshold the low value is used. For brightness metric values between these two thresholds the value is interpolated from the high and low values. This value is signed 2\' s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
	15:0	0x0DC0	CAM_LL_HIGH_GM (R/W)
0xCA24	The internal gain metric is the largest of the three color channel gain metrics: cam_ll_red_gain_metric, cam_ll_green_gain_metric, and cam_ll_blue_gain_metric. The cam_ll_high_gm high threshold is the high limit for interpolation based on the internal gain metric. For gain metric values above the cam_ll_high_gm threshold the high value is used and for gain metric values below the cam_ll_low_gm threshold the low value is used. For gain metric values between these two thresholds the value is interpolated from the high and low values. This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
	15:0	0x0020	CAM_LL_LOW_GM (R/W)
0xCA26	The internal gain metric is the largest of the three color channel gain metrics: cam_ll_red_gain_metric, cam_ll_green_gain_metric, and cam_ll_blue_gain_metric. The cam_ll_high_gm high threshold is the high limit for interpolation based on the internal gain metric. For gain metric values above the cam_ll_high_gm threshold the high value is used and for gain metric values below the cam_ll_low_gm threshold the low value is used. For gain metric values between these two thresholds the value is interpolated from the high and low values. This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
	7:0	0x80	CAM_LL_DARK_SATURATION (R/W)
0xCA28	CCM saturation value when cam_ll_brightness_metric is less than or equal to cam_ll_dark_bm. For cam_ll_brightness_metric values between cam_ll_dark_bm and cam_ll_bright_bm the CCM saturation value is interpolated between cam_ll_dark_saturation and cam_ll_bright_saturation. This value is unsigned. Changes take effect during Vertical Blanking.		
	7:0	0x80	CAM_LL_BRIGHT_SATURATION (R/W)
0xCA29	CCM saturation value when cam_ll_brightness_metric is greater than or equal to cam_ll_bright_bm. For cam_ll_brightness_metric values between cam_ll_dark_bm and cam_ll_bright_bm the CCM saturation value is interpolated between cam_ll_dark_saturation and cam_ll_bright_saturation. This value is unsigned. Changes take effect during Vertical Blanking.		
	7:0	0x4D	CAM_LL_DEMOSAIC_HIGH (R/W)
0xCA2A	The demosaic edge threshold is used to decide if the current pixel is on an edge in the demosaic transform engine. The edge threshold is interpolated from cam page variables based on the internal gain metric. The internal gain metric is the largest of the three color channel gain metrics: cam_ll_red_gain_metric, cam_ll_green_gain_metric, and cam_ll_blue_gain_metric. When the internal gain metric is above the cam_ll_high_gm threshold, the demosaic edge threshold is set to cam_ll_demosaic_high. Between the cam_ll_high_gm threshold and the cam_ll_low_gm, the demosaic edge threshold is interpolated between cam_ll_demosaic_high and cam_ll_demosaic_low. When the internal gain metric is below the cam_ll_low_gm threshold, the the demosaic edge threshold is set to cam_ll_demosaic_low. This value is unsigned. Changes take effect during Vertical Blanking.		
	7:0	0x08	CAM_LL_DEMOSAIC_LOW (R/W)
0xCA2B	The demosaic edge threshold is used to decide if the current pixel is on an edge in the demosaic transform engine. The edge threshold is interpolated from cam page variables based on the internal gain metric. The internal gain metric is the largest of the three color channel gain metrics: cam_ll_red_gain_metric, cam_ll_green_gain_metric, and cam_ll_blue_gain_metric. When the internal gain metric is above the cam_ll_high_gm threshold, the demosaic edge threshold is set to cam_l_demosaic_high. Between the cam_ll_high_gm threshold and the cam_ll_low_gm, the demosaic edge threshold is interpolated between cam_ll_demosaic_high and cam_ll_demosaic_low. When the internal gain metric is below the cam_ll_low_gm threshold, the the demosaic edge threshold is set to cam_ll_demosaic_low. This value is unsigned. Changes take effect during Vertical Blanking.		
	7:0	0x01	CAM_LL_AP_GAIN_DARK (R/W)
0xCA2C	Aperture gain for dark images below the cam_l_dark_bm threshold. Between the cam_ll_dark_bm threshold and the cam_ll_bright_bm threshold, the aperture gain is interpolated from cam_ll_ap_gain_dark and cam_ll_ap_gain_bright. This value is unsigned. Changes take effect during Vertical Blanking.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
	7:0	0x03	CAM_LL_AP_GAIN_BRIGHT (R/W)
0xCA2D	Aperture gain for bright images above the cam_ll_bright_bm threshold. Between the cam_ll_dark_bm threshold and the cam_ll_bright_bm threshold, the aperture gain is interpolated from cam_ll_ap_gain_dark and cam_11_ap_gain_bright. This value is unsigned. Changes take effect during Vertical Blanking.		
	7:0	0x4D	CAM_LL_AP_THRESH_HIGH (R/W)
0xCA2E	Aperture knee value for images with a gain metric above the cam_ll_high_gm threshold. Between the cam_ll_low_gm threshold and the cam_ll_high_gm threshold, the aperture knee value is interpolated from between cam_ll_ap_thresh_low and cam_l_ap_thresh_high based on the gain metric. The gain metric is the largest of the three color channel gain metrics; cam_ll_blue_gain_metric, cam_ll_green_gain_metric, and cam_ll_red_gain_metric. This value is unsigned. Changes take effect during Vertical Blanking.		
	7:0	0x08	CAM_LL_AP_THRESH_LOW (R/W)
0xCA2F	Aperture knee value for images with a gain metric below the cam_ll_low_gm threshold. Between the cam_ll_low_gm threshold and the cam_ll_high_gm threshold, the aperture knee value is interpolated from between cam_ll_ap_thresh_low and cam_ll_ap_thresh_high based on the gain metric. The gain metric is the largest of the three color channel gain metrics; cam_ll_blue_gain_metric, cam_l_green_gain_metric, and cam_ll_red_gain_metric. This value is unsigned. Changes take effect during Vertical Blanking.		
	15:0	0x0500	AM_LL_CONTRAST_BRIGHT_BM (R/W
0xCA30	Bright endpoint value of cam_l_brightness_metric for the brightness-dependent gamma/contrast adaptation. This value is signed $2 \&$ apos;s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
	15:0	0x0400	CAM_LL_CONTRAST_DARK_BM (R/W)
0xCA32	Dark endpoint value of cam_ll_brightness_metric for the brightness-dependent gamma/contrast adaptation. This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xCA34	15:0	0x0064	CAM_LL_GAMMA (R/W)
	This is the exponent of the function mapping display output intensity. For example, sRGB gamma is equal to 2.2 - this would be expressed as 220 . This value is unsigned. Changes take effect during Vertical Blanking.		
0xCA36	7:0	0x27	CAM_LL_CONTRAST_GRADIENT_BRIGHT (R/W)
	The value of the contrast slope (at the inflection point) for bright conditions. This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
0xCA37	7:0	0x20	CAM_LL_CONTRAST_GRADIENT_DARK (R/W)
	The value of the contrast slope (at the inflection point) for dark conditions. This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
0xCA38	7:0	0xFF	CAM_LL_CONTRAST_INTERCEPT_POINT_BRIGHT (R/W)
	Pixel value for the inflection point in the contrast curve in bright conditions. This value is unsigned. Changes take effect during Vertical Blanking.		
0xCA39	7:0	0x28	CAM_LL_CONTRAST_INTERCEPT_POINT_DARK (R/W)
	Pixel value for the inflection point in the contrast curve in dark conditions. This value is unsigned. Changes take effect during Vertical Blanking.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xCA3A	15:0	0x0320	CAM_LL_BRIGHT_FADE_TO_BLACK_LUMA (R/W)
	This is the upper threshold luma value for the fade to black feature. This controls when the fade-to-black starts. That is, when ll_average_luma_fade_to_black is above this value, no fade occurs. When ll_average_luma_fade_to_black is between the cam_ll_bright_fade_to_black_luma upper threshold and the cam_ll_dark_fade_to_black_luma lower threshold the gamma curve is interpolated between the normal gamma curve and a curve that forces all pixels to black. When ll_average_luma_fade_to_black is below the cam_ll_dark_fade_to_black_luma lower threshold the black gamma curve is selected and all pixels are forced to black. This value is unsigned. Changes take effect during Vertical Blanking.		
	15:0	0x005A	M LL DARK
0xCA3C	This is the lower threshold luma value for the fade to black feature. This controls when the fade-to-black stops. That is, when ll_average_luma_fade_to_black is below this value, the image is fully black. When ll_average_luma_fade_to_black is between the cam_ll_bright_fade_to_black_luma upper threshold and the cam_ll_dark_fade_to_black_luma lower threshold the gamma curve is interpolated between the normal gamma curve and a curve that forces all pixels to black. When ll_average_luma_fade_to_black is above cam_ll_bright_fade_to_black_luma then the normal gamma curve is selected and no fading occurs. This value is unsigned. Changes take effect during Vertical Blanking.		
	15:0	0x00C8	CAM_LL_SDC_DP_DARK_BM (R/W)
0xCA3E	Dark threshold for single dark pixel defect correction. When the brightness metric is below this value, the cam_ll_sdc_dp_strength_dark value is used for the single dark pixel strength parameter. When the brightness metric is between the cam_ll_sdc_dp_dark_bm threshold and the cam_ll_sdc_dp_bright_bm threshold, the single dark pixel strength parameter value is interpolated from between cam_ll_sdc_dp_strength_dark and cam_ll_sdc_dp_strength_bright. Single dark pixel defect correction is only enabled when the brightness metric is less than cam_ll_sdc_th_bm threshold with hysteresis of cam_ll_sdc_gate_bm. This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
	15:0	0x0B54	AM_LL_SDC_DP_BRIGHT_BM (R/W)
0xCA40	Bright threshold for single dark pixel defect correction. When the brightness metric is above this value, the cam_ll_sdc_dp_strength_bright value is used for the single dark pixel strength parameter. When the brightness metric is between the cam_ll_sdc_dp_dark_bm threshold and the cam_ll_sdc_dp_bright_bm threshold, the single dark pixel strength parameter value is interpolated from between cam_ll_sdc_dp_strength_dark and cam_ll_sdc_dp_strength_bright. Single dark pixel defect correction is only enabled when the brightness metric is less than cam_l_sdc_th_bm threshold with hysteresis of cam_ll_sdc_gate_bm. This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
	7:0	0x08	CAM_LL_SDC_DP_STRENGTH_DARK (R/W)
0xCA42	Single dark pixel defect correction strength parameter for dark images. This controls how aggressively the defect correction hardware corrects potential single dark pixel defects. When the brightness metric is below cam_ll_sdc_dp_dark_bm this value is used for the single dark pixel strength parameter. When the brightness metric is between the cam_ll_sdc_dp_dark_bm threshold and the cam_ll_sdc_dp_bright_bm threshold, the single dark pixel strength parameter value is interpolated from between cam_ll_sdc_dp_strength_dark and cam_ll_sdc_dp_strength_bright. The lower the value the more aggressive the single dark pixel detection. Single dark pixel defect correction is only enabled when the brightness metric is less than cam_ll_sdc_th_bm threshold with hysteresis of cam_ll_sdc_gate_bm. This value is unsigned. Changes take effect during Vertical Blanking.		
	7:0	0x0F	CAM_LL_SDC_DP_STRENGTH_BRIGHT (R/W)
0xCA43	Single dark pixel defect correction strength parameter for bright images. This controls how aggressively the defect correction hardware corrects potential single dark pixel defects. When the brightness metric is above cam_ll_sdc_dp_bright_bm this value is used for the single dark pixel strength parameter. When the brightness metric is between the cam_ll_sdc_dp_dark_bm threshold and the cam_ll_sdc_dp_bright_bm threshold, the single dark pixel strength parameter value is interpolated from between cam_l_sdc_dp_strength_dark and cam_ll_sdc_dp_strength_bright. The lower the value the more aggressive the single dark pixel detection. Single dark pixel defect correction is only enabled when the brightness metric is less than cam_ll_sdc_th_bm threshold with hysteresis of cam_ll_sdc_gate_bm. This value is unsigned. Changes take effect during Vertical Blanking.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
	15:0	0x00C8	CAM_LL_SDC_HP_DARK_BM (R/W)
0xCA44	Dark threshold for single hot pixel defect correction. When the brightness metric is below this value, the cam_ll_sdc_hp_strength_dark value is used for the single hot pixel strength parameter. When the brightness metric is between the cam_ll_sdc_hp_dark_bm threshold and the cam_ll_sdc_hp_bright_bm threshold, the single hot pixel strength parameter value is interpolated from between cam_l_sdc_hp_strength_dark and cam_ll_sdc_hp_strength_bright. Single hot pixel defect correction is only enabled when the brightness metric is less than cam_ll_sdc_th_bm threshold with hysteresis of cam_ll_sdc_gate_bm. This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
	15:0	0x0B54	CAM_LL_SDC_HP_BRIGHT_BM (R/W)
0xCA46	Bright threshold for single hot pixel defect correction. When the brightness metric is above this value, the cam_ll_sdc_hp_strength_bright value is used for the single hot pixel strength parameter. When the brightness metric is between the cam_ll_sdc_hp_dark_bm threshold and the cam_ll_sdc_hp_bright_bm threshold, the single hot pixel strength parameter value is interpolated from between cam_ll_sdc_hp_strength_dark and cam_ll_sdc_hp_strength_bright. Single hot pixel defect correction is only enabled when the brightness metric is less than cam_ll_sdc_th_bm threshold with hysteresis of cam_ll_sdc_gate_bm. This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
	7:0	0x08	AM_LL_SDC_HP_STRENGTH_DARK (R/W)
0xCA48	Single hot or warm pixel defect correction strength parameter for dark images. This controls how aggressively the defect correction hardware corrects potential single hot pixel defects. When the brightness metric is below cam_ll_sdc_hp_dark_bm this value is used for the single hot pixel strength parameter. When the brightness metric is between the cam_ll_sdc_hp_dark_bm threshold and the cam_ll_sdc_hp_bright_bm threshold, the single hot pixel strength parameter value is interpolated from between cam_ll_sdc_hp_strength_dark and cam_ll_sdc_hp_strength_bright. The lower the value the more aggressive the single hot pixel defect detection. Single hot pixel defect correction is only enabled when the brightness metric is less than cam_ll_sdc_th_bm threshold with hysteresis of cam_ll_sdc_gate_bm. This value is unsigned. Changes take effect during Vertical Blanking.		
	7:0	0x0F	AM_LL_SDC_HP_STRENGTH_BRIGHT (R/W)
0xCA49	Single hot or warm pixel defect correction strength parameter for bright images. This controls how aggressively the defect correction hardware corrects potential single hot pixel defects. When the brightness metric is above cam_ll_sdc_hp_bright_bm this value is used for the single hot pixel strength parameter. When the brightness metric is between the cam_ll_sdc_hp_dark_bm threshold and the cam_ll_sdc_hp_bright_bm threshold, the single hot pixel strength parameter value is interpolated from between cam_ll_sdc_hp_strength_dark and cam_ll_sdc_hp_strength_bright. The lower the value the more aggressive the single hot pixel defect detection. Single hot pixel defect correction is only enabled when the brightness metric is less than cam_ll_sdc_th_bm threshold with hysteresis of cam_ll_sdc_gate_bm. This value is unsigned. Changes take effect during Vertical Blanking.		
	15:0	0x00C8	CAM_LL_SDC_CROSSFACTOR_DARK_BM (R/W)
0xCA4A	Dark threshold for fine detail single defect correction. When the brightness metric is below this value, the cam_ll_sdc_crossfactor_strength_dark value is used for the fine detail single defect correction threshold. When the brightness metric is between the cam_ll_sdc_crossfactor_dark_bm threshold and the cam_ll_sdc_crossfactor_bright_bm threshold, the fine detail single defect correction threshold value is interpolated from between cam_ll_sdc_crossfactor_strength_dark and cam_ll_sdc_crossfactor_strength_bright. Single defect correction is only enabled when the brightness metric is less than cam_ll_sdc_th_bm threshold with hysteresis of cam_ll_sdc_gate_bm. This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xCA4C	15:0	0x0B54	CAM_LL_SDC_CROSSFACTOR_BRIGHT_BM
	Bright threshold for fine detail single defect correction. When the brightness metric is above this value, the cam_ll_sdc_crossfactor_strength_bright value is used for the fine detail single defect correction threshold. When the brightness metric is between the cam_ll_sdc_crossfactor_dark_bm threshold and the cam_ll_sdc_crossfactor_bright_bm threshold, the fine detail single defect correction threshold value is interpolated from between cam_l_sdc_crossfactor_strength_dark and cam_l_ssdc_crossfactor_strength_bright. Single defect correction is only enabled when the brightness metric is less than cam_ll_sdc_th_bm threshold with hysteresis of cam_ll_sdc_gate_bm. This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
	7:0	0x0C	CAM_LL_SDC_CROSSFACTOR_STRENGTH_DARK (R/W)
0xCA4E	Fine detail single defect correction threshold for dark images. This controls how aggressively the defect correction hardware corrects potential single dark and hot pixel defects in fine details of the image. When the brightness metric is below cam_ll_sdc_crossfactor_dark_bm this value is used for the fine detail single defect correction threshold. When the brightness metric is between the cam_ll_sdc_crossfactor_dark_bm threshold and the cam_ll_sdc_crossfactor_bright_bm threshold, the fine detail single defect correction threshold value is interpolated from between cam_ll_sdc_crossfactor_strength_dark and cam_ll_sdc_crossfactor_strength_bright. The lower the value the less aggressive the single pixel defect detection is in fine details. Single defect correction is only enabled when the brightness metric is less than cam_ll_sdc_th_bm threshold with hysteresis of cam_ll_sdc_gate_bm. This value is unsigned. Changes take effect during Vertical Blanking.		
	7:0	0x04	AM_LL_SDC_CROSSFACTOR_STRENGTH_BRIGHT (R/W)
0xCA4F	Fine detail single defect correction threshold for bright images. This controls how aggressively the defect correction hardware corrects potential single dark and hot pixel defects in fine details of the image. When the brightness metric is above cam_ll_sdc_crossfactor_bright_bm, then this value is used for the fine detail single defect correction threshold. When the brightness metric is between the cam_ll_sdc_crossfactor_dark_bm threshold and the cam_ll_sdc_crossfactor_bright_bm threshold, the fine detail single defect correction threshold value is interpolated from between cam_ll_sdc_crossfactor_strength_dark and cam_ll_sdc_crossfactor_strength_bright. The lower the value the less aggressive the single pixel defect detection is in fine details. Single defect correction is only enabled when the brightness metric is less than cam_ll_sdc_th_bm threshold with hysteresis of cam_ll_sdc_gate_bm. This value is unsigned. Changes take effect during Vertical Blanking.		
	15:0	0x00C8	AM_LL_SDC_MAXFACTOR_DARK_BM (R/W)
0xCA50	Dark threshold for single defect correction limiting. When the brightness metric is below this value, the cam_ll_sdc_maxfactor_strength_dark value is used for the single pixel defect maxfactor limiting. When the brightness metric is between the cam_ll_sdc_maxfactor_dark_bm threshold and the cam_l_sdc_maxfactor_bright_bm threshold, the single pixel defect maxfactor limiting value is interpolated from between cam_ll_sdc_maxfactor_strength_dark and cam_ll_sdc_maxfactor_strength_bright. Single pixel defect correction is only enabled when the brightness metric is less than cam_ll_sdc_th_bm threshold with hysteresis of cam_ll_sdc_gate_bm. This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xCA52	15:0	0x0B54	CAM_LL_SDC_MAXFACTOR_BRIGHT_BM (R/W)
	Bright threshold for single defect correction limiting. When the brightness metric is above this value, the cam_ll_sdc_maxfactor_strength_bright value is used for the single pixel defect maxfactor limiting. When the brightness metric is between the cam_ll_sdc_maxfactor_dark_bm threshold and the cam_ll_sdc_maxfactor_bright_bm threshold, the single pixel defect maxfactor limiting value is interpolated from between cam_ll_sdc_maxfactor_strength_dark and cam_ll_sdc_maxfactor_strength_bright. Single pixel defect correction is only enabled when the brightness metric is less than cam_ll_sdc_th_bm threshold with hysteresis of cam_ll_sdc_gate_bm. This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xCA54	7:0	0x01	CAM_LL_SDC_MAXFACTOR_STRENGTH_DARK
	Single pixel defect correction limiting strength parameter for dark images. The single pixel defect maxfactor limits the fine detail defect correction hold-off. This prevents missing the detection of defects with high luma value excursions within fine detail areas of the image. When the brightness metric is below cam_ll_sdc_maxfactor_dark_bm this value is used for the single pixel defect crossfactor limiting. When the brightness metric is between the cam_ll_sdc_maxfactor_dark_bm threshold and the cam_ll_sdc_maxfactor_bright_bm, the single pixel defect crossfactor limiting value is interpolated from between cam_ll_sdc_maxfactor_strength_dark and cam_ll_sdc_maxfactor_strength_bright. The lower the value the more aggressive the single pixel defect detection is in detection of defects with high luma value excursions. Single pixel defect correction is only enabled when the brightness metric is less than cam_ll_sdc_th_bm threshold with hysteresis of cam_ll_sdc_gate_bm. This value is unsigned. Changes take effect during Vertical Blanking.		
	7:0	0x01	AM_LL_SDC_MAXFACTOR_STRENGTH_BRIGHT (R/W)
0xCA55	Single pixel defect correction limiting strength parameter for bright images. The single pixel defect maxfactor limits the fine detail defect correction hold-off. This prevents missing the detection of defects with high luma value excursions within fine detail areas of the image. When the brightness metric is above cam_ll_sdc_maxfactor_bright_bm this value is used for the single pixel defect crossfactor limiting. When the brightness metric is between the cam_ll_sdc_maxfactor_dark_bm threshold and the cam_ll_sdc_maxfactor_bright_bm, the single pixel defect crossfactor limiting value is interpolated from between cam_ll_sdc_maxfactor_strength_dark and cam_l_ssdc_maxfactor_strength_bright. The lower the value the more aggressive the single pixel defect detection is in detection of defects with high luma value excursions. Single pixel defect correction is only enabled when the brightness metric is less than cam_ll_sdc_th_bm threshold with hysteresis of cam_ll_sdc_gate_bm. This value is unsigned. Changes take effect during Vertical Blanking.		
	15:0	0x1000	CAM_LL_SDC_TH_BM (R/W)
0xCA56	Brightness metric threshold for enabling single defect correction. Single defect correction is enabled when the brightness metric is less than cam_ll_sdc_th_bm threshold with hysteresis of cam_ll_sdc_gate_bm. This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
	15:0	0x00C8	CAM_LL_CDC_DP_DARK_BM (R/W)
0xCA5A	Dark threshold for dark pixel cluster defect correction. When the brightness metric is below this value, the cam_ll_cdc_dp_strength_dark value is used for the dark cluster strength parameter. When the brightness metric is between the cam_ll_cdc_dp_dark_bm threshold and the cam_ll_cdc_dp_bright_bm threshold, the dark cluster strength parameter value is interpolated from between cam_ll_cdc_dp_strength_dark and cam_ll_cdc_dp_strength_bright. Dark cluster defect correction is only enabled when the brightness metric is less than cam_ll_cdc_th_bm threshold with hysteresis of cam_ll_cdc_gate_bm. This value is signed $2 \&$ apos;s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
	15:0	0x0B54	CAM_LL_CDC_DP_BRIGHT_BM (R/W)
0xCA5C	Bright threshold for dark pixel cluster defect correction. When the brightness metric is above this value, the cam_ll_cdc_dp_strength_bright value is used for the dark cluster strength parameter. When the brightness metric is between the cam_ll_cdc_dp_dark_bm threshold and the cam_ll_cdc_dp_bright_bm threshold, the dark cluster strength parameter value is interpolated from between cam_ll_cdc_dp_strength_dark and cam_ll_cdc_dp_strength_bright. Dark cluster defect correction is only enabled when the brightness metric is less than cam_ll_cdc_th_bm threshold with hysteresis of cam_ll_cdc_gate_bm. This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
	7:0	0x08	CAM_LL_CDC_DP_STRENGTH_DARK (R/W)
0xCA5E	Dark cluster defect correction strength parameter for dark images. This controls how aggressively the defect correction hardware corrects potential dark cluster defects. When the brightness metric is below cam_ll_cdc_dp_dark_bm this value is used for the dark cluster strength parameter. When the brightness metric is between the cam_ll_cdc_dp_dark_bm threshold and the cam_ll_cdc_dp_bright_bm threshold, the dark cluster strength parameter value is interpolated from between cam_ll_cdc_dp_strength_dark and cam_ll_cdc_dp_strength_bright. The lower the value the more aggressive the dark cluster detection. Dark cluster defect correction is only enabled when the brightness metric is less than cam_ll_cdc_th_bm threshold with hysteresis of cam_ll_cdc_gate_bm. This value is unsigned. Changes take effect during Vertical Blanking.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xCA5F	7:0	0x0F	CAM_LL_CDC_DP_S
	Dark cluster defect correction strength parameter for bright images. This controls how aggressively the defect correction hardware corrects potential dark cluster defects. When the brightness metric is above cam_ll_cdc_dp_bright_bm this value is used for the dark cluster strength parameter. When the brightness metric is between the cam_ll_cdc_dp_dark_bm threshold and the cam_ll_cdc_dp_bright_bm threshold, the dark cluster strength parameter value is interpolated from between cam_ll_cdc_dp_strength_dark and cam_ll_cdc_dp_strength_bright. The lower the value the more aggressive the dark cluster detection. Dark cluster defect correction is only enabled when the brightness metric is less than cam_ll_cdc_th_bm threshold with hysteresis of cam_ll_cdc_gate_bm. This value is unsigned. Changes take effect during Vertical Blanking.		
	15:0	0x00C8	M_LL_CDC_HP_DARK_BM (R/W
0xCA60	Dark threshold for cluster hot pixel defect correction. When the brightness metric is below this value, the cam_ll_cdc_hp_strength_dark value is used for the cluster hot pixel strength parameter. When the brightness metric is between the cam_ll_cdc_hp_dark_bm threshold and the cam_ll_cdc_hp_bright_bm threshold, the cluster hot pixel strength parameter value is interpolated from between cam_ll_cdc_hp_strength_dark and cam_ll_cdc_hp_strength_bright. Cluster defect correction is only enabled when the brightness metric is less than cam_ll_cdc_th_bm threshold with hysteresis of cam_ll_cdc_gate_bm. This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
	15:0	0x0B54	AM_LL_CDC_HP_BRIGHT_BM (R/W)
0xCA62	Bright threshold for cluster hot pixel defect correction. When the brightness metric is above this value, the cam_ll_cdc_hp_strength_bright value is used for the cluster hot pixel strength parameter. When the brightness metric is between the cam_ll_cdc_hp_dark_bm threshold and the cam_l_cdc_hp_bright_bm threshold, the cluster hot pixel strength parameter value is interpolated from between cam_ll_cdc_hp_strength_dark and cam_ll_cdc_hp_strength_bright. Cluster defect correction is only enabled when the brightness metric is less than cam_ll_cdc_th_bm threshold with hysteresis of cam_ll_cdc_gate_bm. This value is signed $2 \&$ apos;s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
	7:0	0x08	AM_LL_CDC_HP_STRENGTH_DARK (R/W)
0xCA64	Cluster hot or warm pixel defect correction strength parameter for dark images. This controls how aggressively the defect correction hardware corrects potential cluster hot pixel defects. When the brightness metric is below cam_l_cdc_hp_dark_bm this value is used for the cluster hot pixel strength parameter. When the brightness metric is between the cam_l_cdc_hp_dark_bm threshold and the cam_ll_cdc_hp_bright_bm threshold, the cluster hot pixel strength parameter value is interpolated from between cam_ll_cdc_hp_strength_dark and cam_l__cdc_hp_strength_bright. The lower the value the more aggressive the single hot pixel defect detection. Cluster defect correction is only enabled when the brightness metric is less than cam_l_cdc_th_bm threshold with hysteresis of cam_ll_cdc_gate_bm. This value is unsigned. Changes take effect during Vertical Blanking.		
	7:0	0x0F	CAM_LL_CDC_HP_STRENGTH_BRIGHT (R/W)
0xCA65	Cluster hot or warm pixel defect correction strength parameter for bright images. This controls how aggressively the defect correction hardware corrects potential cluster hot pixel defects. When the brightness metric is above cam_ll_cdc_hp_bright_bm this value is used for the cluster hot pixel strength parameter. When the brightness metric is between the cam_ll_cdc_hp_dark_bm threshold and the cam_ll_cdc_hp_bright_bm threshold, the cluster hot pixel strength parameter value is interpolated from between cam_ll_cdc_hp_strength_dark and cam_ll_cdc_hp_strength_bright. The lower the value the more aggressive the cluster hot pixel defect detection. Cluster defect correction is only enabled when the brightness metric is less than cam_l_cdc_th_bm threshold with hysteresis of cam_ll_cdc_gate_bm. This value is unsigned. Changes take effect during Vertical Blanking.		
	15:0	0x00C8	CAM_LL_CDC_CROSSFACTOR_DARK_BM (R/W)
0xCA66	Dark threshold for fine detail cluster defect correction. When the brightness metric is above this value, the cam_ll_cdc_crossfactor_strength_bright value is used for the fine detail cluster defect correction threshold. When the brightness metric is between the cam_ll_cdc_crossfactor_dark_bm threshold and the cam_ll_cdc_crossfactor_bright_bm threshold, the fine detail cluster defect correction threshold value is interpolated from between cam_l_cdc_crossfactor_strength_dark and cam_ll_cdc_crossfactor_strength_bright. Cluster defect correction is only enabled when the brightness metric is less than cam_ll_cdc_th_bm threshold with hysteresis of cam_ll_cdc_gate_bm. This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xCA68	15:0	0x0B54	CAM_LL_CDC_CROSSFACTOR_BRIGHT_BM (R/W
	Bright threshold for fine detail cluster defect correction. When the brightness metric is above this value, the cam_ll_cdc_crossfactor_strength_bright value is used for the fine detail cluster defect correction threshold. When the brightness metric is between the cam_l_cdc_crossfactor_dark_bm threshold and the cam_ll_cdc_crossfactor_bright_bm threshold, the fine detail cluster defect correction threshold value is interpolated from between cam_ll_cdc_crossfactor_strength_dark and cam_ll_cdc_crossfactor_strength_bright. Cluster defect correction is only enabled when the brightness metric is less than cam_ll_cdc_th_bm threshold with hysteresis of cam_ll_cdc_gate_bm. This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xCA6A	7:0	0x0C	AM_LL_CDC_CROSSFACTOR_STRENGTH_DARK (R/W)
	Fine detail cluster defect correction strength for dark images. This controls how aggressively the defect correction hardware corrects potential cluster defects within fine details of the image. When the brightness metric is below cam_ll_cdc_crossfactor_dark_bm, then this value is used for the fine detail cluster defect correction strength parameter. When the brightness metric is between the cam_ll_cdc_crossfactor_dark_bm threshold and the cam_ll_cdc_crossfactor_bright_bm threshold, the fine detail cluster defect correction strength parameter value is interpolated from between cam_ll_cdc_crossfactor_strength_dark and cam_ll_cdc_crossfactor_strength_bright. The lower the value the less aggressive the defect detection. Cluster defect correction is only enabled when the brightness metric is less than cam_l_cdc_th_bm threshold with hysteresis of cam_ll_cdc_gate_bm. This value is unsigned. Changes take effect during Vertical Blanking.		
	7:0	0x04	CAM_LL_CDC_CROSSFACTOR_STRENGTH_BRIGHT (R/W)
0xCA6B	Fine detail cluster defect correction strength for bright images. This controls how aggressively the defect correction hardware corrects potential cluster defects within fine details of the image. When the brightness metric is above cam_ll_cdc_crossfactor_bright_bm this value is used for the fine detail cluster defect correction strength parameter. When the brightness metric is between the cam_ll_cdc_crossfactor_dark_bm threshold and the cam_ll_cdc_crossfactor_bright_bm threshold, the fine detail cluster defect correction strength parameter value is interpolated from between cam_ll_cdc_crossfactor_strength_dark and cam_ll_cdc_crossfactor_strength_bright. The lower the value the less aggressive the defect detection. Cluster defect correction is only enabled when the brightness metric is less than cam_ll_cdc_th_bm threshold with hysteresis of cam_ll_cdc_gate_bm. This value is unsigned. Changes take effect during Vertical Blanking.		
0xCA6C	15:0	0x1000	CAM_LL_CDC_TH_BM (R/W)
	Brightness metric threshold for enabling cluster defect correction. Cluster defect correction is enabled when the brightness metric is less than cam_ll_sdc_th_bm threshold with hysteresis of cam_ll_sdc_gate_bm. This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xCA70	15:0	0x0006	CAM_LL_ADACD_GR_WEIGHTS_STRENGTH_LOW (R/W)
	Lower limit of AdaCD filtering strength. For scenes with a SNR value below cam_ll_adacd_gr_weights_low_snr, this is the filter strength that will be used. For scenes with a SNR value between cam_ll_adacd_gr_weights_low_snr and cam_ll_adacd_gr_weights_high_snr the filter strength will be a linear interpolation between cam_ll_adacd_gr_weights_strength_low and cam_ll_adacd_gr_weights_strength_high based on the value of cam_ll_snr_metric. Higher values will increase the filtering and trade sharpness for more noise reduction. This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
0xCA72	15:0	0x0003	CAM_LL_ADACD_GR_WEIGHTS_STRENGTH_HIGH (R/W)
	Upper limit of AdaCD filtering strength. For scenes with a SNR value above cam_ll_adacd_gr_weights_high_snr, this is the filter strength that will be used. For scenes with a SNR value between cam_ll_adacd_gr_weights_low_snr and cam_ll_adacd_gr_weights_high_snr the filter strength will be a linear interpolation between cam_ll_adacd_gr_weights_strength_low and cam_ll_adacd_gr_weights_strength_high based on the value of cam_ll_snr_metric. Higher values will increase the filtering and trade sharpness for more noise reduction. This value is unsigned fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xCA74	15:0	0x03E8	CAM_LL_ADACD_GR_WEIGHTS_LOW_SNR (R/W)
	Lower SNR threshold for AdaCD filtering strength. For scenes with a SNR value below this threshold the cam_ll_adacd_gr_weights_strength_low filtering strength will be used. For scenes with a SNR value between cam_ll_adacd_gr_weights_low_snr and cam_ll_adacd_gr_weights_high_snr the filter strength will be a linear interpolation between cam_ll_adacd_gr_weights_strength_low and cam_ll_adacd_gr_weights_strength_high based on the value of cam_ll_snr_metric. This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
	15:0	0x0D00	CAM_LL_ADACD_GR_WEIGHTS_HIGH_SNR (R/W)
0xCA76	Upper SNR threshold for AdaCD filtering strength. For scenes with a SNR value above this threshold the cam_11_adacd_gr_weights_strength_high filtering strength will be used. For scenes with a SNR value between cam_ll_adacd_gr_weights_low_snr and cam_ll_adacd_gr_weights_high_snr the filter strength will be a linear interpolation between cam_ll_adacd_gr_weights_strength_low and cam_ll_adacd_gr_weights_strength_high based on the value of cam_ll_snr_metric. This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
	15:0	0x0020	CAM_LL_NR_LUT_0_GAIN (R/W)
0xCA78	Sensor analog gain for look up table entry 0 . This is a tuning parameter for the noise model used in the AdaCD adaptive noise reduction calculation. This is paired with cam_ll_nr_lut_0_sigma and cam_11_nr_lut_0_k0. This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
	15:0	0x0034	AM_LL_NR_LUT_0_SIGMA (R/W)
0xCA7A	AdaCD noise floor parameter for a sensor gain of cam_1l_nr_lut_0_gain. This is a tuning parameter for the noise model used in the AdaCD adaptive noise reduction calculation. This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
	15:0	0x0093	CAM_LL_NR_LUT_0_K0 (R/W)
0xCA7C	AdaCD noise model parameter for a sensor gain of cam_11_nr_lut_0_gain. This is a tuning parameter for the noise model used in the AdaCD adaptive noise reduction calculation. This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xCA80	15:0	0x0058	CAM_LL_NR_LUT_1_GAIN (R/W)
	Sensor analog gain for look up table entry 1 . This is a tuning parameter for the noise model used in the AdaCD adaptive noise reduction calculation. This is paired with cam_ll_nr_lut_1_sigma and cam_ll_nr_lut_1_k0. This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
0xCA82	15:0	0x0037	CAM_LL_NR_LUT_1_SIGMA (R/W)
	AdaCD noise floor parameter for a sensor gain of cam_ll_nr_lut_1_gain. This is a tuning parameter for the noise model used in the AdaCD adaptive noise reduction calculation. This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
0xCA84	15:0	0x0093	CAM_LL_NR_LUT_1_K0 (R/W)
	AdaCD noise model parameter for a sensor gain of cam_1l_nr_lut_1_gain. This is a tuning parameter for the noise model used in the AdaCD adaptive noise reduction calculation. This value is unsigned fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xCA88	15:0	0x0160	CAM_LL_NR_LUT_2_GAIN (R/W)
	Sensor analog gain for look up table entry 2. This is a tuning parameter for the noise model used in the AdaCD adaptive noise reduction calculation. This is paired with cam_llnr_lut_2_sigma and cam_llnr_lut_2_k0. This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
	15:0	0x0107	CAM_LL_NR_LUT_2_SIGMA (R/W)
0xCA8A	AdaCD noise floor parameter for a sensor gain of cam_11_nr_lut_2_gain. This is a tuning parameter for the noise model used in the AdaCD adaptive noise reduction calculation. This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
	15:0	0x0093	CAM_LL_NR_LUT_2_K0 (R/W)
0xCA8C	AdaCD noise model parameter for a sensor gain of cam_ll_nr_lut_2_gain. This is a tuning parameter for the noise model used in the AdaCD adaptive noise reduction calculation. This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
	15:0	0x02C0	CAM_LL_NR_LUT_3_GAIN (R/W)
0xCA90	Sensor analog gain for look up table entry 3 . This is a tuning parameter for the noise model used in the AdaCD adaptive noise reduction calculation. This is paired with cam_11_nr_lut_3_sigma and cam_11_nr_lut_3_k0. This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
	15:0	0x0105	CAM_LL_NR_LUT_3_SIGMA (R/W)
0xCA92	AdaCD noise floor parameter for a sensor gain of cam_ll_nr_lut_3_gain. This is a tuning parameter for the noise model used in the AdaCD adaptive noise reduction calculation. This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
	15:0	0x0093	CAM_LL_NR_LUT_3_K0 (R/W)
0xCA94	AdaCD noise model parameter for a sensor gain of cam_ll_nr_lut_3_gain. This is a tuning parameter for the noise model used in the AdaCD adaptive noise reduction calculation. This value is unsigned fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
	15:0	0x0900	CAM_LL_CK_0_SNR (R/W)
0xCA9C	Low SNR colorkill solution. This is the SNR metric (cam_ll_snr_metric) value used to generate the current colorkill solution (${ }^{1 l _c k}{ }_{-}$). The current colorkill solution is interpolated from the table of colorkill solutions (cam_11_ck_N*) in the CAM page. This value is signed $2 \&$ apos;s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xCAA4	15:0	0x01C0	CAM_LL_CK_0_CHROMA_GAIN_HIGH (R/W)
	Low SNR colorkill solution. This is the high gain. The chroma gain applied to a pixel is determined from that pixels colorkill metric value. This value is unsigned fixed-point with 9 fractional bits. Changes take effect during Vertical Blanking.		
0xCAA8	15:0	0x07CD	CAM_LL_CK_1_SNR (R/W)
	Mid SNR colorkill solution. This is the SNR metric (cam_ll_snr_metric) value used to generate the current colorkill solution (ll_ck_*) $^{\prime}$). The current colorkill solution is interpolated from the table of colorkill solutions (cam_11_ck_N*) in the CAM page. This value is signed $2 \&$ apos;s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xCAB0	15:0	0x0166	CAM_LL_CK_1_CHROMA_GAIN_HIGH (R/W)
	Mid SNR colorkill solution. This is the high gain. This value is unsigned fixed-point with 9 fractional bits. Changes take effect during Vertical Blanking.		
0xCAB4	15:0	0x0066	CAM_LL_CK_2_SNR (R/W)
	High SNR colorkill solution. This is the SNR metric (cam_ll_snr_metric) value used to generate the current colorkill solution (ll_ck_*). The current colorkill solution is interpolated from the table of colorkill solutions (cam_ll_ck_N*) in the CAM page. This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xCABC	15:0	0x0000	CAM_LL_CK_2_CHROMA_GAIN_HIGH (R/W)
	High SNR colorkill solution. This is the high gain. This value is unsigned fixed-point with 9 fractional bits. Changes take effect during Vertical Blanking.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xCAC4	15:0	0x0000	CAM_PGA_PGA_CONTROL (R/W)
	15:2	X	Reserved
	1	0x00	CAM_PGA_PGA_ADJUST_CENTER 0: Disable center adjustment. 1: Enable center adjustment. The firmware will adjust X / Y offset register settings (during a Change-Config) based on the cam_fov_calib_x_offset and cam_fov_calib_y_offset variable values. This value is unsigned. Changes take effect after a Change-Config command.
	0	0x00	CAM_PGA_PGA_ENABLE 0: Disable PGA. 1: Enable PGA (assume coefficients pre-loaded). This value is unsigned. Changes take effect during Vertical Blanking.
	PGA control. This value is unsigned. Changes take effect after a Change-Config command.		
0xCAC8	7:0	0x4D	CAM_SYSCTL_PLL_CONTROL (R/W)
	7	X	Reserved
	6	0x01	CAM_SYSCTL_PLL_NET_FRACTIONAL_ENABLE When set, the Ethernet PLL will use the fractional mode on the next Change-Config; when clear, it will be in integer mode. This value is unsigned. Changes take effect after a Change-Config command.
	5	X	Reserved
	4	0x00	CAM_SYSCTL_PLL_FRACTIONAL_ENABLE_1_CLK When set, PLL will use the fractional mode on the next Change-Config; when clear, it will be in integer mode. This value is unsigned. Changes take effect after a Change-Config command.
	3	0x01	CAM_SYSCTL_PLL_NET_VALID When set, indicates the Ethernet PLL divider settings are valid. This value is unsigned. Changes take effect after a Change-Config command.
	2	0x01	CAM_SYSCTL_PLL_TWO_CLK_PER_PIX_VALID When set, indicates the post-divider settings are valid for two-clock per pixel mode. This value is unsigned. Changes take effect after a Change-Config command.
	1	X	Reserved
	0	0x01	CAM_SYSCTL_PLL_ENABLE 0: Disable and bypass the PLL 1: PLL will be enabled on next Change-Config. This value is unsigned. Changes take effect after a Change-Config command.
	PLL control. This value is unsigned. Changes take effect after a Change-Config command.		
0xCAC9	7:0	0x00	CAM_SYSCTL_CLOCK_CONTROL (R/W)
	7:2	X	Reserved
	1	0x00	CAM_SYSCTL_EXTCLK_OUT_SOURCE Select EXTCLK_OUT source. 0: EXTCLK, 1: PLL P2 output This value is unsigned. Changes take effect after a Change-Config command.
	0	0x00	CAM_SYSCTL_TX_SOURCE Select TX_SS clock source. 0: PLL P2 output, 1: Net PLL P1 output This value is unsigned. Changes take effect after a Change-Config command.
	Clock source selections for TX_SS and EXTCLK_OUT. This value is unsigned. Changes take effect after a Change-Config command.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xCACA	15:0	0x0110	CAM_SYSCTL_PLL_DIVIDER_M_N_1_CLK (R/W)
	15:14	X	Reserved
	13:8	0x0001	CAM_PLL_DIVIDER_M_N_1_CLK_PLL_N The PLL\'s prescale N (reference) divider. This value is unsigned. Changes take effect after a Change-Config command.
	7:0	0x10	CAM_PLL_DIVIDER_M_N_1_CLK_PLL_M The PLL\'s VCO M (feedback) divider. This value is unsigned. Changes take effect after a Change-Config command.
	PLL multiplier/pre-divider settings. This value is unsigned. Changes take effect after a Change-Config command.		
0xCACE	15:0	0x010E	CAM_SYSCTL_PLL_DIVIDER_M_N_NET (R/W)
	15:14	X	Reserved
	13:8	0x0001	CAM_PLL_DIVIDER_M_N_NET_PLL_N The PLL\'s prescale N (reference) divider. This value is unsigned. Changes take effect after a Change-Config command.
	7:0	0x0E	CAM_PLL_DIVIDER_M_N_NET_PLL_M The PLL\'s VCO M (feedback) divider. This value is unsigned. Changes take effect after a Change-Config command.
	Ethernet PLL multiplier/pre-divider settings. This value is unsigned. Changes take effect after a Change-Config command.		
0xCAD0	15:0	0×0033	CAM_SYSCTL_PLL_DIVIDER_P_1_CLK (R/W)
	15:8	X	Reserved
	7:4	0x03	CAM_PLL_DIVIDER_P_1_CLK_PLL_P2 The PLL\'s VCO P2 output divider, minus 1. The pixel clock is divided down from the VCO clock by the P2 divider. This value should be obtained from Register Wizard. Pixel clock frequency $=$ VCO_freq / P2 / 2 in 1 clock per pixel mode. Pixel clock frequency $=$ VCO_freq / P2 in 2 clock per pixel mode. This value is unsigned. Changes take effect after a Change-Config command.
	3:0	0x03	CAM_PLL_DIVIDER_P_1_CLK_PLL_P1 The PLL\'s VCO P1 output divider, minus 1. The color pipe clock is divided down from the VCO clock by the P1 divider and a fixed /2. This value should be obtained from Register Wizard. Color pipe clock frequency $=$ VCO_freq $/$ P1 $/ 2$. This value is unsigned. Changes take effect after a Change-Config command.
	PLL post-dividers. This value is unsigned. Changes take effect after a Change-Config command.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xCAD4	15:0	0x001F	CAM_SYSCTL_PLL_DIVIDER_P_NET (R/W)
	15:8	X	Reserved
	7:4	0x01	CAM_PLL_DIVIDER_P_NET_PLL_P2 The PLL\'s VCO P2 output divider, minus 1. The H. 264 clock is divided down from the VCO clock by the P2 divider. This value should be obtained from Register Wizard. H. 264 clock frequency $=$ VCO_freq $/$ P2. This value is unsigned. Changes take effect after a Change-Config command.
	3:0	0x0F	CAM_PLL_DIVIDER_P_NET_PLL_P1 The Ethernet PLL\'s VCO P1 output divider, minus 1. The Ethernet clock is divided down from the VCO clock by the P1 divider. This value should be obtained from Register Wizard. Ethernet clock frequency $=$ VCO_freq / P1. This value is unsigned. Changes take effect after a Change-Config command.
	The Ethernet PLL\'s post-dividers. This value is unsigned. Changes take effect after a Change-Config command.		
0xCAD8	31:0	0x00000000	CAM_SYSCTL_PLL_FRACTION_1_CLK (R/W)
	PLL fractional divider, 24 bits MSB aligned. This value is unsigned. Changes take effect after a Change-Config command.		
0xCAE0	31:0	0xD097B400	CAM_SYSCTL_PLL_FRACTION_NET (R/W)
	PLL fractional divider for the Ethernet PLL, 24 bits MSB aligned. This value is unsigned. Changes take effect after a ChangeConfig command.		
0xCAE4	15:0	0x0500	CAM_OUTPUT_WIDTH (R/W)
	The horizontal width (pixels) of the output window. This value is unsigned. Changes take effect after a Change-Config command.		
0xCAE6	15:0	0x03C0	CAM_OUTPUT_HEIGHT (R/W)
	The vertical height (lines) of the output window. This value is unsigned. Changes take effect after a Change-Config command.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xCAE8	15:0	0x0010	CAM_OUTPUT_FORMAT_YUV (R/W)
	15:9	X	Reserved
	8	0x0000	CAM_OUTPUT_FORMAT_YUV_MONO_ENABLE Enable monochrome output. This value is unsigned. Changes take effect after a Change-Config command.
	7	0x00	CAM_OUTPUT_FORMAT_YUV_SWAP_RED_BLUE Swap $\mathrm{Cr} / \mathrm{Cb}$ channels. This value is unsigned. Changes take effect after a Change-Config command.
	6:5	0x00	CAM_OUTPUT_FORMAT_YUV_CLIP 0 : No clipping; 1: Clip Y in $16-235, \mathrm{U}$ and V in 16-240; 2: Clip to $1-254 ; 3$: reserved. This value is unsigned. Changes take effect after a Change-Config command.
	4	0x01	CAM_OUTPUT_FORMAT_YUV_AUV_OFFSET Controls the U and V offset: 0 : No offset. 1: Add 128 to U and V . This value is unsigned. Changes take effect after a Change-Config command.
	3	0x00	CAM_OUTPUT_FORMAT_YUV_SELECT_601 YUV coefficients control: 0: YUV (BT-709). 1: YCbCr (BT-601). This value is unsigned. Changes take effect after a Change-Config command.
	2	0x00	CAM_OUTPUT_FORMAT_YUV_NORMALISE Controls luma normalization: 0 : No normalization. 1: Normalize Y to $16-235, \mathrm{U}$ and V to $16-240$. Note: cam_output_y_offset should be set to 16 . This value is unsigned. Changes take effect after a Change-Config command.
	1:0	0x00	CAM_OUTPUT_FORMAT_YUV_SAMPLING Select 4:4:4 to 4:2:2 down-sampling mode for Cb and Cr : 0 : Co -Sited 1-tap filter 1: Co -Sited 3-tap filter 2: Center-Sited 2-tap filter 3: reserved This value is unsigned. Changes take effect after a Change-Config command.
	Controls the YUV output format. This value is unsigned. Changes take effect after a Change-Config command.		
0xCAEA	7:0	0x00	CAM_OUTPUT_FORMAT (R/W)
	Output format 0: YUV 1: RGB 2: Bayer 3: JPEG 4: H. 264 This value is unsigned. Changes take effect after a Change-Config command.		
0xCAEB	7:0	0x00	CAM_OUTPUT_FORMAT_BAYER_PATH (R/W)
	Bayer format data path 0: Raw from sensor RX 1: DCNR output 2: Reconstruct output 3: ALTM output 4: Raw from sensor, no decompanding This value is unsigned. Changes take effect after a Change-Config command.		
0xCAEC	7:0	0x0C	CAM_OUTPUT_FORMAT_BAYER_WIDTH (RO)
	Read-only Bayer output bit width: 10,12 , or 20 . This is determined by the camera mode and sensor configuration. This value is unsigned. Updates after a Change-Config command.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xCAED	7:0	0x16	CAM_OUTPUT_FORMAT_JPEG (R/W)
	7	X	Reserved
	6:5	0x00	CAM_OUTPUT_FORMAT_JPEG_EOL_ON_RESTART End of line signalling on encoder restart. 0: No EOL on restart 1: EOL with restart marker 2: SOL with restart marker 3: Reserved This value is unsigned. Changes take effect after a ChangeConfig command.
	4	0x01	CAM_OUTPUT_FORMAT_JPEG_WORD_ALIGN 16-bit word align restart and EOI markers for 8-bit output bus. This value is unsigned. Changes take effect after a Change-Config command.
	3:2	0x01	CAM_OUTPUT_FORMAT_JPEG_HEADER JPEG header style selection. 0: RFC 2435 1: JFIF 2: No JFIF 3: No JFIF and no DHT This value is unsigned. Changes take effect after a Change-Config command.
	1	0x01	CAM_OUTPUT_FORMAT_JPEG_JPOP_OVERFLOW Enable JPOP overflow prevention. This value is unsigned. Changes take effect after a ChangeConfig command.
	0	0x00	CAM_OUTPUT_FORMAT_JPEG_JPOP_CR Enable JPOP compression ratio limit. This value is unsigned. Changes take effect after a Change-Config command.
	JPEG format control flags. This value is unsigned. Changes take effect after a Change-Config command.		
0xCAEE	15:0	0x0000	CAM_OUTPUT_JPEG_RESTART_MCU (R/W)
	JPEG restart interval in MCU\'s, $0=$ no restart markers This value is unsigned. Changes take effect after a Change-Config command.		
0xCAF0	7:0	0x32	CAM_OUTPUT_JPEG_Q (R/W)
	JPEG quality value in fixed Q mode [1-99]. This value is unsigned. Changes take effect during Vertical Blanking.		
0xCAF1	7:0	0x40	CAM_OUTPUT_JPEG_AUTO_Q_MAX (R/W)
	Maximum JPEG quality value in auto-q mode [1-99]. This value is unsigned. Changes take effect during Vertical Blanking.		
0xCAF2	7:0	0x18	CAM_OUTPUT_JPEG_MAX_BYTES_ADJUST (R/W)
	Increase JPEG jpop max bytes by this percentage [0-100]. This value is unsigned. Changes take effect during Vertical Blanking.		
0xCAF4	15:0	0x249F	CAM_OUTPUT_COMPRESSED_BIT_RATE_8K (R/W)
	Compressed data bit rate, in units of $8000 \mathrm{bits} / \mathrm{sec} .0=\mathrm{H} .264$ CQP-VBR encoding mode or JPEG fixed Q mode. This value is unsigned. Changes take effect after a Change-Config command.		
0xCAF6	15:0	0x0000	CAM_OUTPUT_H264_SLICE_MBROWS (R/W)
	H. 264 macro block rows per slice. $0=$ no slices. [0-256] This value is unsigned. Changes take effect after a Change-Config command.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xCAF8	7:0	0x0E	CAM_OUTPUT_H264_CONTROL (R/W)
	7	X	Reserved
	6	0x00	CAM_OUTPUT_H264_CONTROL_RFC6184_HDR_ENABLE H. 264 header style. 0: Annex B 1: RFC 6184 This value is unsigned. Changes take effect after a Change-Config command.
	5	0x00	CAM_OUTPUT_H264_CONTROL_ENCODE_WIDTH Sets the encoder sample bit width for the encoded stream. 0: 8 bits 1: 10 bits This value is unsigned. Changes take effect after a Change-Config command.
	4:0	$0 \times 0 \mathrm{E}$	CAM_OUTPUT_H264_CONTROL_LEVEL H. 264 level selection [0-16]. see H264_LEVEL register description This value is unsigned. Changes take effect after a Change-Config command.
	H. 264 controls for level and encoded sample bit width. This value is unsigned. Changes take effect after a Change-Config com-mand.		
0xCAF9	7:0	0x2C	CAM_OUTPUT_H264_QP_LUMA (R/W)
	The H. 264 Luma quantization parameter to use in variable bit rate mode. The maximum is 51 when 8 bit encoding is used, 63 when 10 bit encoding is used (as selected in cam_output_h264_control_encode_width). This value is unsigned. Changes take effect after a Change-Config command.		
0xCAFA	7:0	0x00	CAM_OUTPUT_Y_OFFSET (R/W)
	Y pedestal. This is not intended as a brightness control. This value is unsigned. Changes take effect after a Change-Config command.		
	15:0	0x4201	CAM_PORT_PARALLEL_CONTROL (R/W)
	15	0x0000	CAM_PORT_PARALLEL_CONST_HBLANK Enable constant HBLANK output mode. This value is unsigned. Changes take effect after a Change-Config command.
	14	0x0001	CAM_PORT_PARALLEL_META_LV_ON_LV Output Meta LV signal on LV as well as META_LV (logical OR of the two signals). This value is unsigned. Changes take effect after a Change-Config command.
	13	0x0000	CAM_PORT_PARALLEL_META_CRC Enable output of image data CRC in meta data. This value is unsigned. Changes take effect after a Change-Config command.
	12	0x0000	CAM_PORT_PARALLEL_META_FRAME_ID Enable output of frame number in meta data. This value is unsigned. Changes take effect after a Change-Config command.
	11	0x0000	CAM_PORT_PARALLEL_RGB_OUT_MODE RGB output mode. 0: RGB565 1: RGB888 This value is unsigned. Changes take effect after a Change-Config command.
	10	0x0000	CAM_PORT_PARALLEL_YUV_OUT_MODE YUV output mode. 0: YUV8 1: YUV10 This value is unsigned. Changes take effect after a Change-Config command.
	9	0x0001	CAM_PORT_PARALLEL_SWAP_BYTES Swap output pixel high byte with low byte. This value is unsigned. Changes take effect after a Change-Config command.

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xCAFC	8	0x0000	CAM_PORT_PARALLEL_MSB_ALIGN Align MSB of output to DOUT23. This value is unsigned. Changes take effect after a ChangeConfig command.
	7	0x00	CAM_PORT_PARALLEL_FV_INVERT Invert output frame valid signal. This value is unsigned. Changes take effect after a Change-Config command.
	6	0x00	CAM_PORT_PARALLEL_LV_INVERT Invert output line valid signal. This value is unsigned. Changes take effect after a Change-Config command.
	5	0x00	CAM_PORT_PARALLEL_PIXCLK_INVERT Invert output pixel clock. This value is unsigned. Changes take effect after a Change-Config command.
	4	0x00	CAM_PORT_PARALLEL_PIXCLK_GATE_ON Controls the pixel clock gating: 0: The pixel clock output (PIXCLK) is continuous. 1: The pixel clock output (PIXCLK) is only generated when FRAME_VALID and LINE_VALID are asserted. This value is unsigned. Changes take effect after a Change-Config command.
	3	0x00	CAM_PORT_PARALLEL_2CPP Output is 2 clocks per pixel, JPEG and H. 2648 bits per pixel clock. This value is unsigned. Changes take effect after a Change-Config command.
	2:1	0x00	CAM_PORT_PARALLEL_SOURCE Select the parallel output source: 0: CPIPE 1: STE 2: Overlay 3: STE and Overlay This value is unsigned. Changes take effect after a Change-Config command.
	0	0x01	CAM_PORT_PARALLEL_ENABLE Enables the parallel port for data output: 0: Port disabled for data output. 1: Port enabled for data output. This value is unsigned. Changes take effect after a Change-Config command.
	Parallel port control flags. This value is unsigned. Changes take effect after a Change-Config command.		
0xCAFE	15:0	0x0000	CAM_PORT_CONST_LINE_LENGTH (R/W)
	Forced minimum output line length, in pixel clocks when constant hblank mode enabled. This value is unsigned. Changes take effect after a Change-Config command.		
0xCB00	15:0	0x0298	CAM_PORT_MAX_PACKET_PAYLOAD (R/W)
	Number of 16-bit words in a line of JPEG or H. 264 data. This value is unsigned. Changes take effect after a Change-Config command.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xCB02	7:0	0x00	CAM_PORT_KEEPSYNC_CONTROL (R/W)
	7	0x00	Reserved
	6	0x00	CAM_PORT_KEEPSYNC_MIN_BLACK_ENABLE Enable fixed (minimum) number of black frames during change-config. This value is unsigned. Changes take effect after a Change-Config command.
	5	0x00	CAM_PORT_KEEPSYNC_DATA_ENABLE_INVERT Invert the output DATA_ENABLE signal. This value is unsigned. Changes take effect after a Change-Config command.
	4	0x00	CAM_PORT_KEEPSYNC_VSYNC_INVERT Invert the output VSYNC signal. This value is unsigned. Changes take effect after a ChangeConfig command.
	3	0x00	CAM_PORT_KEEPSYNC_HSYNC_INVERT Invert the output HSYNC signal. This value is unsigned. Changes take effect after a ChangeConfig command.
	2	0x00	CAM_PORT_KEEPSYNC_FRAME_SYNC_INVERT Invert the FRAME_SYNC input pin, 1: reset Keep Sync on falling edge. This value is unsigned. Changes take effect after a Change-Config command.
	1	0x00	CAM_PORT_KEEPSYNC_FRAME_SYNC_ENABLE Enable the FRAME_SYNC input pin to reset Keep Sync frame timing. This value is unsigned. Changes take effect after a Change-Config command.
	0	0x00	CAM_PORT_KEEPSYNC_ENABLE Enable Keep Sync system timing controls. This value is unsigned. Changes take effect after a Change-Config command.
	Keepsync control flags. This value is unsigned. Changes take effect after a Change-Config command.		
0xCB03	7:0	0x00	CAM_PORT_KEEPSYNC_MIN_BLACK_FRAMES (R/W)
	When cam_port_keepsync_min_black_enable is set, keepsync will output at least this many black frames during a configchange. To get a consistent number of black frames, set this value to greater than or equal to observed system minimum, typically 4. This value is unsigned. Changes take effect after a Change-Config command.		
0 xCB 04	15:0	0x0071	CAM_TEMPMON_TCONTROL (R/W)
	15:7	X	Reserved
	6:4	0x07	Reserved
	3	X	Reserved
	2	0x00	CAM_TEMPMON_TCONTROL_ENABLE_LOW_THRESHOLD Enable low-temperature threshold check: 0: Threshold check disabled. 1: Threshold check enabled. This value is unsigned. Changes take effect after a Change-Config command.
	1	0x00	CAM_TEMPMON_TCONTROL_ENABLE_HIGH_THRESHOLD Enable high-temperature threshold check: 0: Threshold check disabled. 1: Threshold check enabled. This value is unsigned. Changes take effect after a Change-Config command.
	0	0x01	CAM_TEMPMON_TCONTROL_ENABLE Enable Temperature Monitor: 0: Disabled. 1: Enabled. This value is unsigned. Changes take effect after a Change-Config command.
	Temperature Monitor control. This value is unsigned. Changes take effect after a Change-Config command.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xCB06	15:0	0x0000	CAM_TEMPMON_TSTATUS (RO)
	15:11	X	Reserved
	10	RO	CAM_TEMPMON_TSTATUS_NORMAL_TEMP Indicator, normal temperature reached. This value is unsigned. Updates during Vertical Blanking.
	9	RO	CAM_TEMPMON_TSTATUS_LOW_TEMP Low-temperature status: 0: Temperature is above the low threshold (cam_tempmon_low_threshold). 1: Temperature is below the low threshold. Note: There is an internal hysteresis gate; the low-temperature status will be set when the temperature is less than the low threshold minus the gate. The status will be cleared when the temperature is above the low threshold. This value is unsigned. Updates during Vertical Blanking.
	8	RO	CAM_TEMPMON_TSTATUS_HIGH_TEMP High-temperature status: 0 : Temperature is below the high threshold (cam_tempmon_high_threshold). 1: Temperature is above the high threshold. Note: There is an internal hysteresis gate; the high-temperature status will be set when the temperature exceeds the high threshold plus the gate. The status will be cleared when the temperature is less than the high threshold. This value is unsigned. Updates during Vertical Blanking.
	7:3	X	Reserved
	2	RO	CAM_TEMPMON_TSTATUS_ENABLE_LOW_THRESHOLD Low-temperature threshold status: 0: Disabled. 1: Enabled. This value is unsigned. Updates during Vertical Blanking.
	1	RO	CAM_TEMPMON_TSTATUS_ENABLE_HIGH_THRESHOLD High-temperature threshold status: 0: Disabled. 1: Enabled. This value is unsigned. Updates during Vertical Blanking.
	0	RO	CAM_TEMPMON_TSTATUS_ENABLE Enable status: 0: Disabled. 1: Enabled. This value is unsigned. Updates during Vertical Blanking.
	Temperature Monitor status: This value is unsigned. Updates during Vertical Blanking.		
0xCB08	7:0	0x10	CAM_TEMPMON_DAMPING_FACTOR (R/W)
	7:6	X	Reserved
	5:0	0x10	CAM_TEMPMON_DAMP_FACTOR Controls the damping applied to the current temperature: 0: Maximum damping. 32: No damping. This value is unsigned. Changes take effect during Vertical Blanking.
	Damping control. This value is unsigned. Changes take effect during Vertical Blanking.		
0xCB09	7:0	0x46	CAM_TEMPMON_HIGH_THRESHOLD (R/W)
	The high temperature threshold, in degrees Celsius. This value is signed 2\'s complement. Changes take effect during Vertical Blanking.		
0xCB0A	7:0	0x0A	CAM_TEMPMON_LOW_THRESHOLD (R/W)
	The low temperature threshold, in degrees Celsius. This value is signed 2\'s complement. Changes take effect during Vertical Blanking.		
0xCB0B	7:0	0x00	CAM_TEMPMON_TEMPERATURE (RO)
	The current temperature (damped), in degrees Celsius. This value is signed 2\'s complement. Updates during Vertical Blanking.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xCB0C	7:0	0x00	CAM_TEMPMON_TEMPERATURE_MIN (RO)
	The minimum temperature recorded (degrees Celsius) since last enable. This value is signed $2 \&$ apos;s complement. Updates during Vertical Blanking.		
0xCB0D	7:0	0x00	CAM_TEMPMON_TEMPERATURE_MAX (RO)
	The maximum temperature recorded (degrees Celsius) since last enable. This value is signed 2\'s complement. Updates during Vertical Blanking.		
0xCB10	15:0	0x0001	CAM_FLICKER_DETECT_FD_MODE (R/W)
	15:2	X	Reserved
	1	0x00	CAM_FLICKER_DETECT_FD_AUTO_SWITCH Auto-switch flicker avoidance period control: 0 : Automatic switching disabled. 1: Enable automatic switching of the flicker period when a flicker source is detected in the scene. When this option is enabled the following variables cannot be changed: - cam_sen- sor_cfg_frame_length_lines. - cam_aet_flicker_freq_hz. - cam_sensor_cfg_pixclk. - cam_sensor_cfg_line_length_pck. - cam_aet_frame_rate_0. - cam_aet_frame_rate_1. cam_aet_frame_rate_2. This value is unsigned. Changes take effect after a Refresh command.
	0	0x01	CAM_FLICKER_DETECT_FD_ENABLE Enable flicker detection: 0: Disabled. 1: Enabled. This value is unsigned. Changes take effect after a Refresh command.
	Flicker detection mode control. This value is unsigned. Changes take effect after a Refresh command.		
0xCB14	15:0	0x0001	CAM_ADAPTATION_TA_MODE (R/W)
	15:2	X	Reserved
	1	0x00	Reserved
	0	0x01	CAM_ADAPTATION_TEMPADAPT_ENABLE If enabled, AE auto adjusts the maximum sensor gain during high temperatures. This value is unsigned. Changes take effect during Vertical Blanking.
	Camera Adaptation mode control flags. This value is unsigned. Changes take effect during Vertical Blanking.		
0xCB18	15:0	0x0002	CAM_SENSOR_CONTROL2_HISPI (R/W)
	15:2	X	Reserved
	1:0	0x02	CAM_SENSOR_CONTROL2_HISPI_TRANSFER_MODE Provides host selection of a HiSPi transfer mode from those that are supported by the sensor. This value is unsigned. Changes take effect after a Change-Config command.
	Sensor HiSPi control word. This value is unsigned. Changes take effect after a Change-Config command.		
0xCB20	15:0	0x0034	CAM_LL2_NR_LUT_T2_0_SIGMA (R/W)
	Noise floor corresponding to gain. (unity=32). This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
0xCB22	15:0	0x0093	CAM_LL2_NR_LUT_T2_0_K0 (R/W)
	Value of K noise coefficient (unity=256). This value is signed 2 \'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xCB24	15:0	0x0037	CAM_LL2_NR_LUT_T2_1_SIGMA (R/W)
	Noise floor corresponding to gain. (unity=32). This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xCB26	15:0	0x0093	CAM_LL2_NR_LUT_T2_1_K0 (R/W)
	Value of K noise coefficient (unity=256). This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xCB28	15:0	0x0107	CAM_LL2_NR_LUT_T2_2_SIGMA (R/W)
	Noise floor corresponding to gain. (unity=32). This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
0xCB2A	15:0	0x0093	CAM_LL2_NR_LUT_T2_2_K0 (R/W)
	Value of K noise coefficient (unity=256). This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xCB2C	15:0	0x0105	CAM_LL2_NR_LUT_T2_3_SIGMA (R/W)
	Noise floor corresponding to gain. (unity=32). This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
0xCB2E	15:0	0x0093	CAM_LL2_NR_LUT_T2_3_K0 (R/W)
	Value of K noise coefficient (unity=256). This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xCB30	15:0	0x0034	CAM_LL2_NR_LUT_T3_0_SIGMA (R/W)
	Noise floor corresponding to gain. (unity=32). This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
0xCB32	15:0	0x0093	CAM_LL2_NR_LUT_T3_0_K0 (R/W)
	Value of K noise coefficient (unity=256). This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xCB34	15:0	0x0037	CAM_LL2_NR_LUT_T3_1_SIGMA (R/W)
	Noise floor corresponding to gain. (unity=32). This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
0xCB36	15:0	0x0093	CAM_LL2_NR_LUT_T3_1_K0 (R/W)
	Value of K noise coefficient (unity=256). This value is signed $2 \&$ apos;s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xCB38	15:0	0x0107	CAM_LL2_NR_LUT_T3_2_SIGMA (R/W)
	Noise floor corresponding to gain. (unity=32). This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
0xCB3A	15:0	0x0093	CAM_LL2_NR_LUT_T3_2_K0 (R/W)
	Value of K noise coefficient (unity=256). This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xCB3C	15:0	0x0105	CAM_LL2_NR_LUT_T3_3_SIGMA (R/W)
	Noise floor corresponding to gain. (unity=32). This value is unsigned fixed-point with 5 fractional bits. Changes take effect during Vertical Blanking.		
0xCB3E	15:0	0x0093	CAM_LL2_NR_LUT_T3_3_K0 (R/W)
	Value of K noise coefficient (unity=256). This value is signed $2 \&$ apos;s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xCB40	31:0	0x00000BB8	CAM_LL2_NR_TRANS_PT_S1 (R/W)
	Lower transition point between T1/T2 override. This value is unsigned. Changes take effect during Vertical Blanking.		
0xCB44	31:0	0x00000DAC	CAM_LL2_NR_TRANS_PT_S2 (R/W)
	Upper transition point between T1/T2 override. This value is unsigned. Changes take effect during Vertical Blanking.		
0xCB48	31:0	0x0000C350	CAM_LL2_NR_TRANS_PT_S3 (R/W)
	Lower transition point between T2/T3 override. This value is unsigned. Changes take effect during Vertical Blanking.		
0xCB4C	31:0	0x0000F618	CAM_LL2_NR_TRANS_PT_S4 (R/W)
	Upper transition point between T2/T3 override. This value is unsigned. Changes take effect during Vertical Blanking.		
0xCB50	15:0	0x0000	CAM_STE_ROTATE_OPTICAL_CENTER_X (R/W)
	Optical center column. This value is unsigned. Changes take effect after a Change-Config command.		
0xCB52	15:0	0x0000	CAM_STE_ROTATE_OPTICAL_CENTER_Y (R/W)
	Optical center row. This value is unsigned. Changes take effect after a Change-Config command.		
0xCB54	15:0	0x0000	CAM_STE_ROTATE_ANGLE (R/W)
	Rotation relative to the optical center about the z axis. Positive rotates clockwise, causing the image to rotate counterclockwise. Specified in binary radians. This value is unsigned. Changes take effect after a Change-Config command.		
$0 \times \mathrm{CB56}$	15:0	0x0000	CAM_STE_ROTATE_ANGLE_MAX (R/W)
	Maximum rotate angle allowed. The ste_rotate_angle value should always be less than or equal to this value. Specified in binary radians. This value is unsigned. Changes take effect after a Change-Config command.		
0xCB58	7:0	0x00	CAM_CURRENT_CONTEXT (RO)
	Current context if context switching is enabled. This value is unsigned. Updates during Vertical Blanking.		
0xCB59	7:0	0x00	CAM_MODE_SYNC_SOURCE (R/W)
	Selects source of frame sync pulse ($0=$ external pulse pass thru, $1=\mathrm{N}$ pulses generated for each external pulse, $2=$ internal RTCgenerated pulses) This value is unsigned. Changes take effect after a Change-Config command.		
0xCB5A	7:0	0x0A	CAM_MODE_SYNC_N_PULSES (R/W)
	Sets the number of internally generated pulses to create for each external pulse received, when CAM_MODE_SYNC_SOURCE is 1 . This value is unsigned. Changes take effect after a Change-Config command.		
0xCB5B	7:0	0x00	CAM_FORCED_OUTPUT_ENABLE (R/W)
	7:2	X	Reserved
	1	0x00	CAM_FORCE_OUTPUT_HEIGHT Use CAM_FORCED_OUTPUT_HEIGHT for output image height This value is unsigned. Changes take effect after a Change-Config command.
	0	0x00	CAM_FORCE_OUTPUT_WIDTH Use CAM_FORCED_OUTPUT_WIDTH for output image width This value is unsigned. Changes take effect after a Change-Config command.
	Enable output size override This value is unsigned. Changes take effect after a Change-Config command.		
0xCB5C	15:0	0x0000	CAM_FORCED_OUTPUT_WIDTH (R/W)
	Override output width and fill with black pixels. This value is unsigned. Changes take effect after a Change-Config command.		

TABLE 49. 18: CAMCONTROL VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xCB5E	15:0	0x0000	CAM_FORCED_OUTPUT_HEIGHT (R/W)
	Override output height and fill with black pixels. This value is unsigned. Changes take effect after a Change-Config command.		
0xCB60	15:0	0xFE00	CAM_LL3_ADACD_WB_BRIGHT_BM (R/W)
	Bright start value of cam_ll_brightness_metric to control ADACD write-back weights. This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xCB62	15:0	0xFC80	CAM_LL3_ADACD_WB_DARK_BM (R/W)
	Dark end value of cam_ll_brightness_metric to control ADACD write-back weights. This value is signed 2\'s complement fixed-point with 8 fractional bits. Changes take effect during Vertical Blanking.		
0xCB64	7:0	0x00	CAM_LL3_ADACD_WB_BRIGHT (R/W)
	Start value of ADACD write-back weights for bright conditions. This value is unsigned. Changes take effect during Vertical Blanking.		
0xCB65	7:0	0x00	CAM_LL3_ADACD_WB_DARK (R/W)
	End value of ADACD write-back weights for dark conditions. This value is unsigned. Changes take effect during Vertical Blanking.		

TABLE 50. 19: SENSOR MANAGER
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xCC02	15:0	0×0083	SENSOR_MGR_MODE (R/W)
	15:12	X	Reserved
	11	0x0000	Reserved
	10	0x0000	Reserved
	9	0x0000	SENSOR_MGR_SENSOR_AUTO_HDR_ENABLE Enable automatic switch between HDR and SDR, depends on sensor capability This value is unsigned. Changes take effect during Vertical Blanking.
	8	0x0000	SENSOR_MGR_SENSOR_AUTO_ADJUST_HDR_RATIO Enable sensor exposure ratio adjustment, depends on sensor capability This value is unsigned. Changes take effect during Vertical Blanking.
	7	0x01	Reserved
	6	X	Reserved
	5	0x00	Reserved
	4	0x00	SENSOR_MGR_SENSOR_DEFAULT_SEQUENCER_LOAD_INHIBIT Inhibit the loading of the default sensor dynamic sequencer. This value is unsigned. Changes take effect immediately (unsynchronized).
	3:2	X	Reserved
	1	0x01	Reserved
	0	0x01	Reserved
	Sensor Manager mode control flags. This value is unsigned. Changes take effect during Vertical Blanking.		

TABLE 50. 19: SENSOR MANAGER
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xCCBA	15:0	0x0000	SENSOR_MGR_MIN_MANUAL_GAIN (RO)
	Minimum gain when using manual exposure (unity=128). This value is unsigned fixed-point with 7 fractional bits. Updates after a Change-Config command.		
0xCCBC	15:0	0x0000	SENSOR_MGR_MAX_MANUAL_GAIN (RO)
	Maximum gain when using manual exposure (unity=128). This value is unsigned fixed-point with 7 fractional bits. Updates after a Change-Config command.		
0xCCBE	15:0	0x0000	SENSOR_MGR_MIN_MANUAL_IT_MS (RO)
	Minimum integration time when using manual exposure (unity=128). This value is unsigned fixed-point with 7 fractional bits. Updates after a Change-Config command.		
$0 \mathrm{xCCC0}$	15:0	0x0000	SENSOR_MGR_MAX_MANUAL_IT_MS (RO)
	Maximum integration time when using manual exposure (unity=128). This value is unsigned fixed-point with 7 fractional bits. Updates after a Change-Config command.		

TABLE 51. 23: SYSTEM MGR VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xDC00	15:0	0x0000	SYSMGR_STATUS (RO)
	15:13	X	Reserved
	12	RO	SYSMGR_STATUS_SYSTEM_CONFIG_FAILED When set, indicates that the System Configuration phase failed and was aborted. The sysmgr_flash_config_status variable should be used to determine the reason-code. The sysmgr_flash_status_table_id will indicate which table was being processed when the abort occurred. This value is unsigned. Updates immediately (unsynchronized).
	11	RO	SYSMGR_STATUS_CONFIG_CHANGE_ACTIVE When set, indicates that a Change-Configure operation is in-progress. This value is unsigned. Updates after a Change-Config command.
	10	RO	Reserved
	9	RO	SYSMGR_STATUS_HOST_HAS_CCIM_LOCK When set, indicates that the host has obtained the CCIM lock. This value is unsigned. Updates immediately (unsynchronized).
	8:7	X	Reserved
	6	RO	SYSMGR_STATUS_HARD_STANDBY_ENABLED When set, indicates the STANDBY pin can be used to select hard-standby. This value is unsigned. Updates immediately (unsynchronized).
	5	X	Reserved
	4	RO	SYSMGR_STATUS_SYSTEM_CONFIG_COMPLETE When set, indicates that the System Configuration phase has completed. This value is unsigned. Updates immediately (unsynchronized).
	3	X	Reserved
	2	RO	SYSMGR_STATUS_FLASH_CONFIG_ACTIVE When set, indicates that Flash/EEPROM records are being located and processed during the System Configuration phase. This value is unsigned. Updates immediately (unsynchronized).
	1	RO	Reserved
	0	RO	SYSMGR_STATUS_STATE_CHANGE_ACTIVE When set, indicates that a system state change is in progress. This value is unsigned. Updates immediately (unsynchronized).
	System Manager status flags. This value is unsigned. Updates immediately (unsynchronized).		
0xDC02	7:0	0x00	SYSMGR_MODE (R/W)
	7:3	X	Reserved
	2	0x00	SYSMGR_MODE_DISABLE_HARD_STANDBY Enable or disable the STANDBY pin: 0: Hard-standby disabled. 1: Hard-standby enabled. This value is unsigned. Changes take effect immediately (unsynchronized).
	1	X	Reserved
	0	0x00	Reserved
	System Manager mode control. This value is unsigned. Changes take effect immediately (unsynchronized).		

TABLE 51. 23: SYSTEM MGR VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
	7:0	0x01	SYSMGR_CONFIG_MODE (R/W)
0xDC07	Controls the operation of the System Configuration phase. The System Configuration phase is recursive, in that the System Manager may use the value of this variable multiple times during the phase. On the completion of each sub-phase, the System Manager tests this variable again to determine the next action. Valid values are: 0: OTPM: the firmware will detect the presence of virtual flash configuration records in OTPM. If found, the firmware will process the records contained within them. 1: FLASH: the firmware will detect the presence of an SPI Flash or EEPROM device. If a device is present, the firmware will locate and process the records contained within it. 2: AUTO: the firmware will set a default configuration that depends on the attached sensor, and perform a Change-Config operation which will start streaming. 3: HOST: the firmware enters a quiescent state, waiting for the Host to configure the device using the two-wire serial interface. 4: CHANGE-CONFIG: the firmware performs a Change-Config operation which will start streaming. 5: CONFIG-COMPLETE: indicates the completion of the System Configuration phase. The firmware enters a quiescent state, waiting for the Host to configure the device using the two-wire serial interface. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xDC0A	7:0	0x00	SYSMGR_CMD_STATUS (RO)
	Result status code for last SYSMGR_SET_STATE command. The permitted codes (per command) are detailed in the Host Command Interface specification. This value is unsigned. Updates immediately (unsynchronized).		
0xDC0B	7:0	0x00	YSMGR_CMD_COMP_ID (RO)
	Identifies the component that rejected the last state-change. The component identifiers are detailed in the Host Command Interface specification. This value is unsigned. Updates immediately (unsynchronized).		
0xDC0C	15:0	0x0000	SYSMGR_CMD_COMP_FAILURE_ID (RO)
	Component-specific failure reason-code. The component failure reason codes are detailed in the Host Command Interface specification. This value is unsigned. Updates immediately (unsynchronized).		
0xDC1C	7:0	0x00	SYSMGR_CONFIG_OTPM_STATUS_TABLE_ID (RO)
	Indicates which Init Table caused the System Configuration phase to be aborted when processing OTPM records: 0: Init Table. 1: Calib Table. 2: Patch Init Table. 3: STE Init Table. 4: Overlay Init Table. This value is unsigned. Updates immediately (unsynchronized).		
0xDC1D	7:0	0x00	SYSMGR_CONFIG_OTPM_STATUS_RES (RO)
	Indicates the error (or no error) result of virtual flash processing after OTPM configuration. This value is unsigned. Updates immediately (unsynchronized).		
0xDC1E	7:0	0x00	SYSMGR_CONFIG_FLASH_STATUS_TABLE_ID (RO)
	Indicates which Init Table caused the System Configuration phase to be aborted when processing SPI NVM records: 0: Init Table. 1: Calib Table. 2: Patch Init Table. 3: STE Init Table. 4: Overlay Init Table. This value is unsigned. Updates immediately (unsynchronized).		
0xDC1F	7:0	0x00	SYSMGR_CONFIG_FLASH_STATUS_RES (RO)
	Indicates the error (or no error) result of flash or EEPROM processing after flash configuration. This value is unsigned. Updates immediately (unsynchronized).		

TABLE 52. 24: PATCH LOADER VARIABLE
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xE000	15:0	0x0000	PATCHLDR_LOAD_ADDRESS (R/W)
	Indicates the load address (base address) in patch RAM of the patch to be applied. This value is unsigned. Changes take effect immediately (unsynchronized).		

TABLE 52. 24: PATCH LOADER VARIABLE
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xE002	15:0	0x0000	PATCHLDR_SIZE_BYTES (R/W)
	Indicates the size of the patch to be applied. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xE004	15:0	0x0000	PATCHLDR_LOADER_ADDRESS (R/W)
	Indicates the address of the loader function (patch entry point) in patch RAM of the patch to be applied. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xE006	15:0	0x0000	PATCHLDR_PATCH_ID (R/W)
	Unique identifier of the patch to be applied. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xE008	31:0	0x00000000	PATCHLDR_FIRMWARE_ID (R/W)
	Identifies the firmware version for which the patch to be applied was built. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xE00C	7:0	0x00	PATCHLDR_LAST_RES (RO)
	Result of last PATCHLDR_APPLY/LOAD command. This value is unsigned. Updates immediately (unsynchronized).		
0xE00D	7:0	0x00	PATCHLDR_NUM_PATCHES (RO)
	Indicates the number of patches that have been successfully loaded and applied using either the PATCHLDR_APPLY_PATCH command, or the PATCHLDR_LOAD_PATCH command (from NVM). This value is unsigned. Updates immediately (unsynchronized).		
0xE00E	15:0	0x0000	PATCHLDR_PATCH_ID_0 (RO)
	Indicates the first patch that has been applied. Note: If more than eight patches have been applied, this variable will indicate the ninth, or seventeenth, and so on. This value is unsigned. Updates immediately (unsynchronized).		
0xE010	15:0	0x0000	PATCHLDR_PATCH_ID_1 (RO)
	Indicates the second patch that has been applied. Note: If more than eight patches have been applied, this variable will indicate the tenth, or eighteenth, and so on. This value is unsigned. Updates immediately (unsynchronized).		
0xE012	15:0	0x0000	PATCHLDR_PATCH_ID_2 (RO)
	Indicates the third patch that has been applied. Note: If more than eight patches have been applied, this variable will indicate the eleventh, or nineteenth, and so on. This value is unsigned. Updates immediately (unsynchronized).		
0xE014	15:0	0x0000	PATCHLDR_PATCH_ID_3 (RO)
	Indicates the fourth patch that has been applied. Note: If more than eight patches have been applied, this variable will indicate the twelfth, or twentieth, and so on. This value is unsigned. Updates immediately (unsynchronized).		
0xE016	15:0	0x0000	PATCHLDR_PATCH_ID_4 (RO)
	Indicates the fifth patch that has been applied. Note: If more than eight patches have been applied, this variable will indicate the thirteenth, or twenty-first, and so on. This value is unsigned. Updates immediately (unsynchronized).		
0xE018	15:0	0x0000	PATCHLDR_PATCH_ID_5 (RO)
	Indicates the sixth patch that has been applied. Note: If more than eight patches have been applied, this variable will indicate the fourteenth, or twenty-second, and so on. This value is unsigned. Updates immediately (unsynchronized).		
0xE01A	15:0	0x0000	PATCHLDR_PATCH_ID_6 (RO)
	Indicates the seventh patch that has been applied. Note: If more than eight patches have been applied, this variable will indicate the fifteenth, or twenty-third, and so on. This value is unsigned. Updates immediately (unsynchronized).		
0xE01C	15:0	0x0000	PATCHLDR_PATCH_ID_7 (RO)
	Indicates the eighth patch that has been applied. Note: If more than eight patches have been applied, this variable will indicate the sixteenth, or twenty-fourth and so on. This value is unsigned. Updates immediately (unsynchronized).		

TABLE 53. 28: CAMERA ADAPTATION VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xF005	7:0	0x00	CAM_ADAPT_GPR_0_GPR_CONTROL (R/W)
	7:4	X	Reserved
	3	0x00	CAM_ADAPT_GPR_0_GPR_DESTINATION Destination for general purpose register ($0=$ Sensor, $1=\mathrm{ICB}$ register). This value is unsigned. Changes take effect during Vertical Blanking.
	2:0	0x00	CAM_ADAPT_GPR_0_GPR_TYPE Type for general purpose register ($0=\mathrm{gpr}$ off, $1=\mathrm{gpr}$ change-config, $2=$ reserved, $3=\mathrm{gpr} \mathrm{bm}, 4=\mathrm{gpr}$ read, $5=$ gpr write, $6=$ gpr read-always, $7=$ gpr write-always). This value is unsigned. Changes take effect during Vertical Blanking.
	General purpose registers control. This value is unsigned. Changes take effect during Vertical Blanking.		
0xF006	15:0	0x0000	CAM_ADAPT_GPR_0_ADDRESS (R/W)
	Register address. This value is unsigned. Changes take effect during Vertical Blanking.		
0xF008	15:0	0x0000	CAM_ADAPT_GPR_0_VALUE_ABOVE_TH (R/W)
	Register values when the temperature or Brightness Metric are above the thresholds. Used as data value when configured for read, write or Change-Config. This value is unsigned. Changes take effect during Vertical Blanking.		
0xF00D	7:0	0x00	CAM_ADAPT_GPR_1_GPR_CONTROL (R/W)
	7:4	X	Reserved
	3	0x00	CAM_ADAPT_GPR_1_GPR_DESTINATION Destination for general purpose register ($0=$ Sensor, $1=\mathrm{ICB}$ register). This value is unsigned. Changes take effect during Vertical Blanking.
	2:0	0x00	CAM_ADAPT_GPR_1_GPR_TYPE Type for general purpose register ($0=$ gpr off, $1=$ gpr change-config, $2=$ reserved, $3=\mathrm{gpr} \mathrm{bm}, 4=\mathrm{gpr}$ read, $5=$ gpr write, $6=$ gpr read-always, $7=$ gpr write-always). This value is unsigned. Changes take effect during Vertical Blanking.
	General purpose registers control. This value is unsigned. Changes take effect during Vertical Blanking.		
0xF00E	15:0	0x0000	CAM_ADAPT_GPR_1_ADDRESS (R/W)
	Register address. This value is unsigned. Changes take effect during Vertical Blanking.		
0xF010	15:0	0x0000	CAM_ADAPT_GPR_1_VALUE_ABOVE_TH (R/W)
	Register values when the temperature or Brightness Metric are above the thresholds. Used as data value when configured for read, write or Change-Config. This value is unsigned. Changes take effect during Vertical Blanking.		
0xF015	7:0	0x00	CAM_ADAPT_GPR_2_GPR_CONTROL (R/W)
	7:4	X	Reserved
	3	0x00	CAM_ADAPT_GPR_2_GPR_DESTINATION Destination for general purpose register ($0=$ Sensor, $1=\mathrm{ICB}$ register). This value is unsigned. Changes take effect during Vertical Blanking.
	2:0	0x00	CAM_ADAPT_GPR_2_GPR_TYPE Type for general purpose register ($0=\mathrm{gpr}$ off, $1=\mathrm{gpr}$ change-config, $2=$ reserved, $3=\mathrm{gpr} \mathrm{bm}, 4=\mathrm{gpr}$ read, $5=$ gpr write, $6=$ gpr read-always, $7=$ gpr write-always). This value is unsigned. Changes take effect during Vertical Blanking.
	General purpose registers control. This value is unsigned. Changes take effect during Vertical Blanking.		

TABLE 53. 28: CAMERA ADAPTATION VARIABLES
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xF016	15:0	0x0000	CAM_ADAPT_GPR_2_ADDRESS (R/W)
	Register address. This value is unsigned. Changes take effect during Vertical Blanking.		
0xF018	15:0	0x0000	CAM_ADAPT_GPR_2_VALUE_ABOVE_TH (R/W)
	Register values when the temperature or Brightness Metric are above the thresholds. Used as data value when configured for read, write or Change-Config. This value is unsigned. Changes take effect during Vertical Blanking.		
0xF048	15:0	0x0200	CAM_ADAPT_DELTA_DK_TARGET (R/W)
	Dark current target This value is unsigned. Changes take effect during Vertical Blanking.		

TABLE 54. 31: COMMAND HANDLER
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xFC00	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_0 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC02	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_1 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC04	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_2 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC06	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_3 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC08	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_4 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC0A	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_5 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC0C	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_6 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC0E	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_7 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC10	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_8 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
$0 \times \mathrm{xFC12}$	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_9 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC14	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_10 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC16	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_11 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		

TABLE 54. 31: COMMAND HANDLER
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xFC18	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_12 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC1A	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_13 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC1C	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_14 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC1E	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_15 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC20	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_16 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC22	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_17 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC24	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_18 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC26	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_19 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC28	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_20 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC2A	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_21 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC2C	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_22 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC2E	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_23 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC30	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_24 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC32	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_25 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC34	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_26 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC36	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_27 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC38	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_28 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC3A	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_29 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		

TABLE 54. 31: COMMAND HANDLER
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xFC3C	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_30 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC3E	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_31 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC40	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_32 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC42	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_33 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC44	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_34 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC46	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_35 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC48	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_36 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC4A	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_37 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC4C	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_38 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC4E	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_39 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC50	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_40 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC52	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_41 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC54	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_42 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC56	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_43 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC58	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_44 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC5A	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_45 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC5C	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_46 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC5E	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_47 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		

TABLE 54. 31: COMMAND HANDLER
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xFC60	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_48 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC62	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_49 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC64	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_50 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC66	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_51 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC68	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_52 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC6A	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_53 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC6C	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_54 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC6E	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_55 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC70	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_56 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC72	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_57 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC74	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_58 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC76	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_59 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC78	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_60 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC7A	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_61 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC7C	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_62 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC7E	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_63 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
$0 \mathrm{xFC80}$	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_64 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
$0 \mathrm{xFC82}$	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_65 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		

TABLE 54. 31: COMMAND HANDLER
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xFC84	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_66 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC86	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_67 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC88	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_68 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC8A	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_69 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC8C	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_70 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC8E	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_71 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC90	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_72 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC92	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_73 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC94	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_74 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC96	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_75 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC98	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_76 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC9A	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_77 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC9C	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_78 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFC9E	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_79 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCA0	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_80 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCA2	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_81 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCA4	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_82 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCA6	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_83 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		

TABLE 54. 31: COMMAND HANDLER
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xFCA8	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_84 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCAA	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_85 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCAC	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_86 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCAE	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_87 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCB0	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_88 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCB2	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_89 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCB4	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_90 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCB6	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_91 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCB8	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_92 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCBA	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_93 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCBC	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_94 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCBE	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_95 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCC0	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_96 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCC2	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_97 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCC4	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_98 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCC6	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_99 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCC8	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_100 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCCA	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_101 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		

TABLE 54. 31: COMMAND HANDLER
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xFCCC	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_102 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCCE	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_103 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCD0	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_104 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCD2	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_105 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCD4	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_106 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCD6	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_107 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCD8	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_108 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCDA	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_109 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCDC	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_110 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCDE	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_111 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCE0	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_112 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCE2	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_113 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCE4	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_114 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCE6	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_115 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCE8	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_116 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCEA	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_117 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCEC	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_118 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCEE	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_119 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		

TABLE 54. 31: COMMAND HANDLER
R/W (Read or Write) bit; RO (Read Only) bit.

Variable (Hex)	Bits	Default	Name
0xFCF0	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_120 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCF2	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_121 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCF4	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_122 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCF6	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_123 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCF8	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_124 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCFA	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_125 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCFC	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_126 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		
0xFCFE	15:0	0x0000	CMD_HANDLER_PARAMS_POOL_127 (R/W)
	Host Command parameters pool. This value is unsigned. Changes take effect immediately (unsynchronized).		

Abstract

onsemi, OnSemi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

TECHNICAL SUPPORT

North American Technical Support: Europe, Middle East and Africa Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada
Phone: 011421337902910

21337902910
For additional information, please contact your local Sales Representative

