ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

CMOS 8-BIT MICROCONTROLLER

http://onsemi.com

LC87C000 SERIES USER'S MANUAL

REV: 1.00

_	
	ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa

Chapte		verview	
1.1		ew	
1.2	Featur	es	1-1
1.3	Pinout		1-5
1.4	Systen	n Block Diagram ·····	1-6
1.5	Pin Fu	nctions ·····	1-7
1.6	Port O	utput Types ·····	1-9
Chapte		ternal Configuration	
2.1		ry Space ·····	
2.2		ım Counter (PC) ······	
2.3	Progra	ım Memory (ROM) ······	2-2
2.4	Interna	al Data Memory (RAM) ······	2-2
2.5	Accum	nulator/A Register (ACC/A) ······	2-3
2.6	B Regi	ister (B)	2-3
2.7		ister (C)	
2.8	Progra	m Status Word (PSW)·····	2-4
2.9		Pointer (SP)·····	
2.10	Indirec	et Addressing Registers ······	2-5
2.11	Addres	ssing Modes·····	2-6
	2.11.1	Immediate Addressing (#) ······	2-6
	2.11.2	Indirect Register Indirect Addressing ([Rn])	2-7
	2.11.3	Indirect Register + C Register Indirect Addressing ([Rn,C]) ·······	
	2.11.4	Indirect Register (R0) + Offset Value Indirect Addressing ([off])	
	2.11.5	Direct Addressing (dst) ·····	2-8
	2.11.6	ROM Table Look-up Addressing·····	2-9
		External Data Memory Addressing	
2.12		equence ·····	
		Wait Sequence Occurrence ······	
	2.12.2	What is a Wait Sequence?	2-10
Chapte	er 3 Pe	eripheral System Configuration	
3.1	Port 0		3-1
	3.1.1	Overview ····	3-1
	3.1.2	Functions	
	3.1.3	Related Registers	
	3.1.4	Options	
	3.1.5	HALT and HOLD Mode Operation	3-4

3.2	Port 1		3-5
	3.2.1	Overview ·····	3-5
	3.2.2	Functions·····	3-5
	3.2.3	Related Registers·····	3-5
	3.2.4	Options ·····	3-8
	3.2.5	HALT and HOLD Mode Operation	3-8
3.3	Port 2		3-9
	3.3.1	Overview ·····	3-9
	3.3.2	Functions	3-9
	3.3.3	Related Registers	3-10
	3.3.4	Options ·····	3-14
	3.3.5	HALT and HOLD Mode Operation	3-14
3.4	Port 3		3-15
	3.4.1	Overview ·····	3-15
	3.4.2	Functions	3-15
	3.4.3	Related Registers	3-15
	3.4.4	Options ·····	3-16
	3.4.5	HALT and HOLD Mode Operation	3-16
3.5	Port 7		3-17
	3.5.1	Overview ·····	3-17
	3.5.2	Functions	3-17
	3.5.3	Related Registers	3-18
	3.5.4	Options ·····	
	3.5.5	HALT and HOLD Mode Operation	3-22
3.6	Port 8		3-23
	3.6.1	Overview	3-23
	3.6.2	Functions	3-23
	3.6.3	Related Registers	3-23
	3.6.4	HALT and HOLD Mode Operation	3-23
3.7	Port C	}	3-24
	3.7.1	Overview ·····	3-24
	3.7.2	Functions	3-24
	3.7.3	Related Registers	3-24
	3.7.4	Options ·····	3-25
	3.7.5	HALT and HOLD Mode Operation	3-25
3.8	Timer	/Counter 0 (T0)	3-26
	3.8.1	Overview ·····	3-26
	3.8.2	Functions	3-26
	3.8.3	Circuit Configuration	3-28
	3.8.4	Related Registers	3-32
3.9	High-s	speed Clock Counter ······	3-35
	3.9.1	Overview ·····	3-35

	3.9.2	Functions	3-35
	3.9.3	Circuit Coufiguration	3-36
	3.9.4	Related Registers	3-37
3.	10 Timer/	Counter 1 (T1)	3-39
	3.10.1	Overview ·····	3-39
	3.10.2	Functions	3-39
	3.10.3	Circuit Configuration	3-41
	3.10.4	Related Registers	3-46
3.	11 Timers	s 4 and 5 (T4, T5)·····	3-51
	3.11.1	Overview ·····	3-51
	3.11.2	Functions	3-51
	3.11.3	Circuit Configuration	3-51
	3.11.4	Related Registers	3-53
3.	12 Timers	s 6 and 7 (T6, T7)	3-55
	3.12.1	Overview ·····	3-55
	3.12.2	Functions	3-55
	3.12.3	Circuit Configuration	3-55
	3.12.4	Related Registers	3-57
3.	13 Timer	A (TA)	3-59
	3.13.1	Overview ·····	3-59
	3.13.2	Functions	3-59
	3.13.3	Circuit Configuration	3-60
	3.13.4	Related Registers	3-63
3.	14 Base	Timer (BT) ·····	3-65
	3.14.1	Overview ·····	3-65
	3.14.2	Functions	3-65
	3.14.3	Circuit Configuration	3-66
	3.14.4	Related Registers	3-67
3.	15 Serial	Interface 0 (SIO0) ······	3-69
	3.15.1	Overview ·····	3-69
	3.15.2	Functions	3-69
	3.15.3	Circuit Configuration	3-70
	3.15.4	Related Registers	3-73
	3.15.5	SIO0 Communication Examples	3-75
	3.15.6	SIO0 HALT Mode Operation	3-77
3.	16 Serial	Interface 1 (SIO1) ······	3-78
	3.16.1	Overview ·····	3-78
	3.16.2	Functions	3-78
	3.16.3	Circuit Configuration	3-79
	3.16.4	SIO1 Communication Examples	3-83
	3.16.5	Related Registers	3-87

3.17	Asvnch	ronous Serial Interface 1 (UART1)	3-89
	3.17.1	Overview	
	3.17.2	Functions	
	3.17.3	Circuit Configuration ······	3-90
	3.17.4	Related Registers·····	
	3.17.5	UART1 Continuous Communication Examples	
	3.17.6	UART1 HALT Mode Operation ······	
3.18	Asynch	ronous Serial Interface 2 (UART2) ······	
	3.18.1	Overview	
	3.18.2	Functions	3-100
	3.18.3	Circuit Configuration ······	3-101
	3.18.4	Related Registers·····	3-104
	3.18.5	UART2 Continuous Communication Examples	3-108
	3.18.6	UART2 HALT Mode Operation ······	
3.19	SMIICO) (Single Master I ² C)······	
	3.19.1	Overview	
	3.19.2	Functions	3-111
	3.19.3	Circuit Configuration	3-111
	3.19.4	Related Registers·····	3-113
	3.19.5	Waveform of Generated Clocks and SCL Rise Times	3-124
	3.19.6	Start Condition and Stop Condition	3-125
	3.19.7	Arbitration Lost	3-129
	3.19.8	Examples of Simple SIO Mode Communication	3-132
	3.19.9	Examples of Single Master I ² C Communication	3-133
3.20	PWM2	/ PWM3	3-137
	3.20.1	Overview ·····	3-137
	3.20.2	Functions	3-137
	3.20.3	Circuit Configuration	3-138
	3.20.4	Related Registers	3-139
3.21	RMPW	M	3-145
	3.21.1	Overview ·····	3-145
	3.21.2	Functions	3-145
	3.21.3	Circuit Configuration	3-146
	3.21.4	Related Registers	3-147
3.22	Infrared	d Remote Control Receiver Circuit 2 (REMOREC2)	3-154
	3.22.1	Overview ·····	3-154
	3.22.2	Functions	3-154
	3.22.3	Circuit Configuration	3-155
	3.22.4	Related Registers	3-159
	3 22 5	Remote Control Receiver Circuit Operation	3-165

3.23	AD Co	nverter (ADC12)·····	3-171
	3.23.1	Overview ·····	3-171
	3.23.2	Functions·····	3-171
	3.23.3	Circuit Configuration	3-172
	3.23.4	Related Registers	3-172
	3.23.5	AD Conversion Example	3-176
	3.23.6	Hints on the Use of the ADC	3-177
Chapte	er 4 Co	ontrol Functions	
4.1		pt Function·····	4-1
	4.1.1	Overview	
	4.1.2	Functions	4-1
	4.1.3	Circuit Configuration ······	4-2
	4.1.4	Related Registers·····	
4.2	System	n Clock Generator Function ·····	4-6
	4.2.1	Overview ·····	
	4.2.2	Functions·····	4-6
	4.2.3	Circuit Configuration	4-7
	4.2.4	Related Registers	4-8
4.3	Standb	by Function ·····	4-12
	4.3.1	Overview ·····	4-12
	4.3.2	Functions·····	4-12
	4.3.3	Related Registers	4-12
4.4	Reset I	Function ·····	4-18
	4.4.1	Overview ·····	4-18
	4.4.2	Functions·····	4-18
	4.4.3	Reset State	4-19
4.5	Watch	dog Timer Function ······	4-20
	4.5.1	Overview ·····	4-20
	4.5.2	Functions·····	4-20
	4.5.3	Circuit Configuration	4-20
	4.5.4	Related Registers	4-21
	4.5.5	Using the Watchdog Timer ·····	4-23
		Special Function Register (SFR) Map	
Appen	dix II	Port Block Diagrams A	.II (1-10)

1. Overview

1.1 Overview

The LC87C000 series is an 8-bit microcontroller that, centered around a CPU running at a minimum bus cycle time of 83.3ns, integrates on a single chip a number of hardware features such as 98K-byte flash ROM (onboard programmable), 4K-byte RAM, a sophisticated 16-bit timer/counter (may be divided into 8-bit timers), a 16-bit timer/counter (may be divided into 8-bit timers/counters or 8-bit PWMs), four 8-bit timers with a prescaler, a 16-bit timer with a prescaler, a base timer serving as a time-of-day clock, a synchronous SIO interface with automatic transfer function, an asynchronous/synchronous SIO interface, two UART interfaces (full duplex), a single master I²C/synchronous SIO interface, four 12-bit PWM channels, a 12-bit 11-channel AD converter, a high-speed clock counter, a system clock frequency divider, an infrared remote control receiver, and a 32-source 10-vector interrupt function.

1.2 Features

ROM

LC87C000 series

LC87FC096A: 100352 × 8 bits (flash ROM)

- Capable of onboard programming with a supply voltage range of 2.7 to 3.6V
- Block erasable in 2K-byte units
- RAM

LC87C000 series

LC87FC096A: 4096 × 9 bits

- Minimum bus cycle time
 - 83.3 ns (at 12 MHz)

Note: The bus cycle time here refers to the ROM read speed.

- Minimum instruction cycle time (Tcyc)
 - 250 ns (at 12 MHz)
- Ports
 - Normal withstand voltage I/O ports

Ports whose input/output can be specified in 1-bit units: 46 (P1n, P2n, P3n, P70 to P73, P80 to P86,

PCn, PWM2, PWM3, XT2)

Ports whose input/output can be specified in 4-bit units: 8 (P0n)

• Normal withstand voltage input port: 1 (XT1)

• Dedicated oscillator ports: 2 (CF1, CF2)

• Reset pin: 1 (RES)

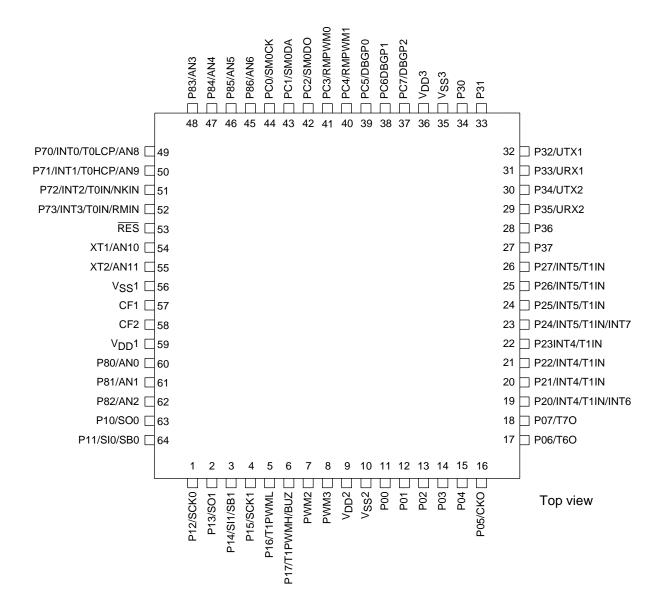
• Power pins: 6 (VSS1 to VSS3, VDD1 to VDD3)

Timers

- Timer 0: 16-bit timer/counter with a capture register
 - Mode 0: 8-bit timer with an 8-bit programmable prescaler (with two 8-bit capture registers) × 2 channels
 - Mode 1: 8-bit timer with an 8-bit programmable prescaler (with two 8-bit capture registers) + 8-bit counter (with two 8-bit capture registers)
 - Mode 2: 16-bit timer with an 8-bit programmable prescaler (with two 16-bit capture registers)
 - Mode 3: 16-bit counter (with two 16-bit capture registers)
- Timer 1: 16-bit timer/counter that supports PWM/toggle output
 - Mode 0: 8-bit timer with an 8-bit prescaler (with toggle output) + 8-bit timer/counter (with toggle output)
 - Mode 1: 8-bit PWM with an 8-bit prescaler × 2 channels
 - Mode 2: 16-bit timer/counter with an 8-bit prescaler (with toggle output) (Toggle output also possible from the low-order 8 bits)
 - Mode 3: 16-bit timer with an 8-bit prescaler (with toggle output) (The low-order 8 bits can be used as PWM.)
- Timer 4: 8-bit timer with a 6-bit prescaler
- Timer 5: 8-bit timer with a 6-bit prescaler
- Timer 6: 8-bit timer with a 6-bit prescaler (with toggle output)
- Timer 7: 8-bit timer with a 6-bit prescaler (with toggle output)
- Timer A: 16-bit timer
 - Mode 0: 8-bit timer with an 8-bit programmable prescaler × 2 channels
 - Mode 1: 16-bit counter
- Base timer
 - 1) The clock can be selected from among the subclock (32.768 kHz crystal oscillator), system clock, and timer 0 prescaler output.
 - 2) Interrupts can be generated at five specified time intervals.
- High-speed clock counter
 - 1) Can count clocks with a maximum clock rate of 24 MHz (at a main clock of 12 MHz).
 - 2) Real-time output
- Serial interface
 - SIO0: 8-bit synchronous serial interface
 - 1) LSB first/MSB first selectable
 - 2) Built-in 8-bit baudrate generator (maximum transfer clock cycle = $\frac{4}{3}$ Tcyc)
 - 3) Automatic continuous data communication (1 to 256 bits)
 - SIO1: 8-bit asynchronous/synchronous serial interface
 - Mode 0: Synchronous 8-bit serial I/O (2- or 3-wire configuration, 2 to 512 Tcyc transfer clock)
 - Mode 1: Asynchronous serial I/O (Half-duplex, 8 data bits, 1 stop bit, 8 to 2048 Tcyc baudrate)
 - Mode 2: Bus mode 1 (start bit, 8 data bits, 2 to 512 Tcyc transfer clock)
 - Mode 3: Bus mode 2 (start detection, 8 data bits, stop detection)
 - SMIIC0: Single master I²C/8-bit synchronous serial interface
 - Mode 0: Single-master master mode communication
 - Mode 1: Synchronous 8-bit serial I/O (data MSB first)

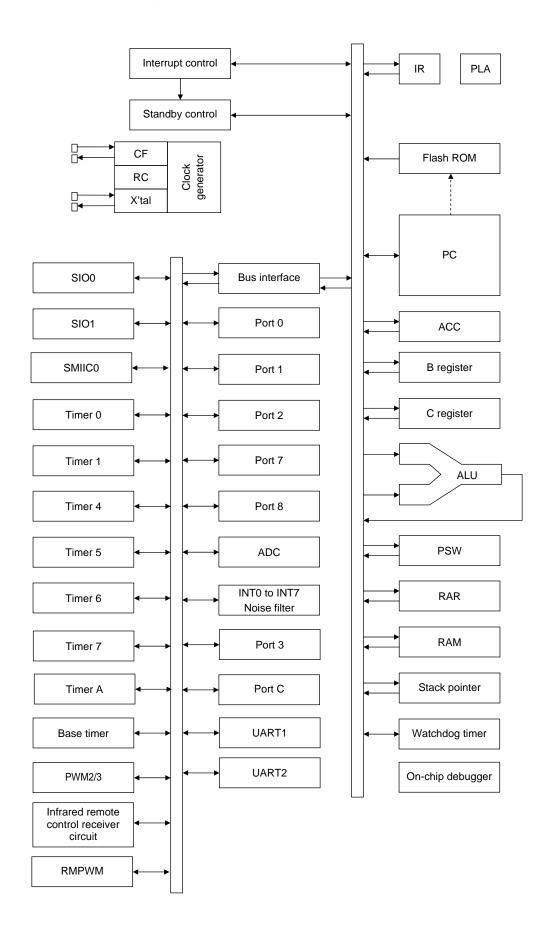
- UART: 2 channels
 - 1) Full duplex
 - 2) 7/8/9 bit data bits selectable
 - 3) 1 stop bit (2 bits in continuous transmission mode)
 - 4) Built-in baudrate generator (with baudrates of 16/3 to 8192/3 Tcyc)
- AD converter: 12 bits × 11 channels
- PWM: Multifrequency 12-bit PWM × 4 channels
- Remote control receiver circuit (multiplexed with P73/INT3/T0IN pin)
 - 1) Noise filtering function (noise filter time constant selectable from 1 Tcyc, 32 Tcyc, and 128 Tcyc)
 - 2) The noise filtering function is available for the INT3, T0IN, or T0HCP signal at P73. When P73 is read with an instruction, the signal level at that pin is read regardless of the availability of the noise filtering function.
- Infrared remote control receiver circuit
 - 1) Noise filtering function (noise filter time constant: Approx. 120 μs when the 32.768 kHz crystal oscillator is selected as the reference clock source)
 - 2) Supports data encording systems such as PPM (Pulse Position Modulation) and Manchester encording.
 - 3) X'tal HOLD mode release function
- Watchdog timer
 - 1) External RC watchdog timer
 - 2) Interrupt/system reset can be selected.
- Clock output function
 - 1) Capable of generating a clock with a frequency of 1/1, 1/2, 1/4, 1/8, 1/16, 1/32, or 1/64 of the source oscillator clock selected as the system clock.
 - 2) Capable of generating the source oscillator clock for the subclock.

Interrupts


- 32 sources, 10 vector addresses
 - 1) Provides three levels (low (L), high (H), and highest (X)) of multiplex interrupt control. Any interrupt requests of the level equal to or lower than the current interrupt are not accepted.
 - 2) When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level takes precedence over the other interrupts. For interrupts of the same level, the interrupt into the lowest vector address takes precedence.

No.	Vector	Level	Interrupt Source
1	00003H	X or L	INT0
2	0000BH	X or L	INT1
3	00013H	H or L	INT2/T0L/INT4/TAL/infrared remote control receive
4	0001BH	H or L	INT3/INT5/base timer 0/base timer 1
5	00023H	H or L	T0H/INT6/TAH
6	0002BH	H or L	T1L/T1H/INT7/SMIIC0
7	00033Н	H or L	SIO0/UART1 receive/UART2 receive
8	0003BH	H or L	SIO1/UART1 transmit/UART2 transmit
9	00043H	H or L	ADC/T6/T7
10	0004BH	H or L	Port 0/T4/T5/PWM2, 3/RMPWM

- Priority level: X > H > L
- When interrupts of the same level occur at the same time, the interrupt with the lowest vector address is given priority.


- Subroutine stack levels: Up to 2048 levels (The stack is allocated in RAM.)
- High-speed multiplication/division instructions
 - 16 bits × 8 bits (5 Tcyc execution time)
 - 24 bits × 16 bits (12 Tcyc execution time)
 - 16 bits ÷ 8 bits (8 Tcyc execution time)
 - 24 bits ÷ 16 bits (12 Tcyc execution time)
- Oscillator circuits
 - RC oscillator circuit (internal): For system clock
 - CF oscillator circuit: For system clock with internal Rf
 - Crystal oscillator circuit:
 For low-speed system clock
 - Multifrequency RC oscillator circuit (internal): For system clock
- System clock divider function
 - · Can run on low current.
 - The minimum instruction cycle can be selected from among 250 ns, 500 ns, 1.0 μs, 2.0 μs, 4.0 μs, 8.0 μs, 16.0 μs, 32.0 μs, and 64.0 μs (at a main clock rate of 12 MHz).
- Standby function
 - HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.
 - 1) Oscillators do not stop automatically.
 - 2) Released by a system reset or occurrence of interrupt.
 - HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.
 - 1) The CF, RC, and crystal oscillators automatically stop operation.
 - 2) There are three ways of releasing HOLD mode.
 - <1> Setting the reset pin to a low level
 - <2> Setting at least one of the INT0, INT1, INT2, INT4, and INT5 pins to the specified level
 - <3> Establishing an interrupt source at port 0
 - X'tal HOLD mode: Suspends instruction execution and the operation of the peripheral circuits except the base timer.
 - 1) The CF and RC oscillators automatically stop operation.
 - 2) The crystal oscillator retains the state established when HOLD mode is entered.
 - 3) There are five ways of releasing X'tal HOLD mode.
 - <1> Setting the reset pin to a low level
 - <2> Setting at least one of the INT0, INT1, INT2, INT4, and INT5 pins to the specified level
 - <3> Establishing an interrupt source at port 0
 - <4> Establishing an interrupt source in the base timer circuit
 - <5> Establishing an interrupt source in the infrared remote control receiver circuit
- On-chip debugging function (flash ROM version)
 - Supports software debugging with the microcontroller mounted on the target board.
- Package form:
 - QIP64E (lead-free and halogen-free product)
- Development tools
 - On-chip debugger: TCB87-TyprC + LC87FC096A

1.3 Pinout

SANYO: QIP64E (Lead-free and halogen-free product)

1.4 System Block Diagram

1.5 Pin Functions

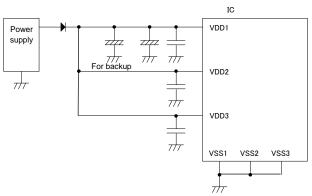
Pin	I/O			Descr	iption				Option
VSS1, VSS2, VSS3	_	Power supply 1	pin (–)						No
VDD1, VDD2, VDD3	_	Power supply 1	pin (+)						No
Port 0	I/O	• 8-bit I/O port							Yes
P00 to P07			I/O can be specified in 4-bit units.						
		• Pull-up resist			nd off in 4-b	oit units.			
		• HOLD releas							
		• Port 0 interru	pt input						
		• Pin functions							
			m clock ou	-					
			r 6 toggle o	-					
			r 7 toggle o	output					
Port 1	I/O	• 8-bit I/O port							Yes
P10 to P17		• I/O can be sp							
		• Pull-up resist		turned on ar	nd off in 1-b	oit units.			
		• Pin functions							
			data outpu						
			data input/	bus I/O					
		P12: SIO0							
			data outpu						
			data input/	bus I/O					
		P15: SIO1		autmut					
			r 1 PWML	-	zar autnut				
D = = 4 2	I/O			output/buz	zer output				3.7
Port 2	1/0	• 8-bit I/O port • I/O can be sp		hit unita					Yes
P20 to P27		• Pull-up resist			nd off in 1 k	sit unita			
		• Pin functions		urneu on ar	iu oii iii 1-c	on units.			
				D release i	nput/timer 1	Levent innu	ıt/timer ()I		
					ure input /I				
			ire 1 input	nor orr oup.	our o imparo / i	i (i o input)			
				ut/HOLD re	elease input	timer 1 eve	ent input/tin	ner	
					er 0H captu		•		
					nput/timer 1				
				ner 0H capt	ure input/IN	JT7 input/ti	mer 0H		
			re 1 input	/IIOI D	1	/·· 1			
		P25 to P27			elease input		ent input/tin	ner	
		Interrupt o	or captul cknowledge		er 0H captu	re input			
		Interrupt a	ckilowicago	Турс	Rising			1	
			Rising	Falling	Kising &	H level	L level		
			rtioning	i annig	Falling	1110101			
		INT4	Y	Y	Y	N	N		
		INT5	Y	Y	Y	N	N		
		INT6	Y	Y	Y	N	N		
		INT7	Y	Y	Y	N	N		
Port 3	1/0			I	I			J .	37
P30 to P37	I/O	• 8-bit I/O port • I/O can be sp		-hit unite					Yes
130 10 13/					nd off in 1-k	nit units			
			 Pull-up resistors can be turned on and off in 1-bit units. Multiplexed functions 						
			T1 transmit	t					
			T1 receive	-					
			T2 transmit	t					
			T2 receive						
			· · · ·				(Continuea	lonn	art naga)

(Continued on next page)

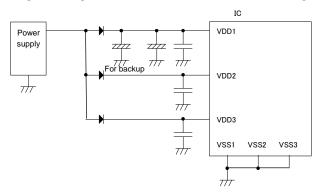
(Continued from preceding page)

Pin	I/O	Description						С	ption	
Port 7	I/O	• 4-bit I/O po							No	
P70 to P73	1		• I/O can be specified in 1-bit units.							
				turned on an	id off in 1-bi	t units.				
			• Pin functions							
		P70: INT0 input/HOLD release input/timer 0L capture input/watchdog								
			ner output	N D ralanga is	anut/timar ()	I conture i				
				LD release in LD release in						
			oture input	LD release ii	iput timer o	event inpu	diffici of			
				th noise filter)/timer 0 eve	ent input/tii	mer 0H			
				emote contro						
		Interrupt	acknowledg	ge type						
					Rising					
			Rising	Falling	&	H level	L level			
		DITO	3.7	37	Falling	37	37			
		INT0 INT1	Y Y	Y Y	N	Y Y	Y Y			
		INT1 INT2	Y Y	Y	N Y	N N	N N			
		INT3	Y	Y	Y	N	N			
		L L		t: AN8 (P70)	_		11			
Port 8	I/O	• 7-bit I/O po		t. A110 (1 70)	, AIV (I / I)	'			No	
P80 to P86	1	• I/O can be		1-bit units					110	
1 00 10 1 00		Multiplexe		i oir unius.						
				verter input p	ort					
Port C	I/O	• 8-bit I/O po	ort						Yes	
PC0 to PC7	1	• I/O can be		1-bit units.						
				turned on an	d off in 1-bi	t units.				
		Multiplexe								
			IIIC0 clock							
			IIIC0 data I/							
				utput (used in	3-wire SIO	mode)				
			IPWM0 out _] IPWM1 out _]							
				put p debugger ir	nterface (DR)	GPO to DR	GP2)			
PWM2,	I/O	• PWM2 and			iterrace (DD	010 10 DD	G1 2)		No	
PWM3	1/0	• General-p							140	
RES	I	Reset pin	arpose 1/ o u	· unuoie					No	
XT1	I	-	z crystal reso	onator input p	nin				No	
7111	1	• Multiplexe		mator input p	,1111				110	
			AD converte	r input port						
		General-pur								
				DD1 if not to	be used.					
XT2	I/O			onator output					No	
		Multiplexe		1	-					
		AN11: A	AD converte	r input port						
		General-pur								
				n and kept of	pen if not to	be used.				
CF1	I	Ceramic reso							No	
CF2	O	Ceramic reso	onator outpu	t pin					No	

1.6 Port Output Types


The table below lists the types of port outputs and the presence/absence of a pull-up resistor. Data can be read into any input port even if it is in output mode.

Port	Options Selected in Units of	Option Type	Output Type	Pull-up Resistor
P00 to P07	1 bit	1	CMOS	Programmable (Note 1)
		2	N-channel open drain	No
P10 to P17	1 bit	1	CMOS	Programmable
		2	N-channel open drain	Programmable
P20 to P27	1 bit	1	CMOS	Programmable
		2	N-channel open drain	Programmable
P30 to P37	1 bit	1	CMOS	Programmable
		2	N-channel open drain	Programmable
P70	_	No	N-channel open drain	Programmable
P71 to P73	_	No	CMOS	Programmable
P80 to P86	_	No	N-channel open drain	No
PC0 to PC7	1 bit	1	CMOS	Programmable
		2	N-channel open drain	Programmable
PWM2, PWM3	_	No	CMOS	No
XT1	_	No	Input only	No
XT2	_	No	Output for 32.768kHz crystal resonator	No
			N-channel open drain (when in general-purpose output mode)	


Note 1: Programmable pull-up resistors for port 0 are controlled in 4-bit units (P00 to P03, P04 to P07).

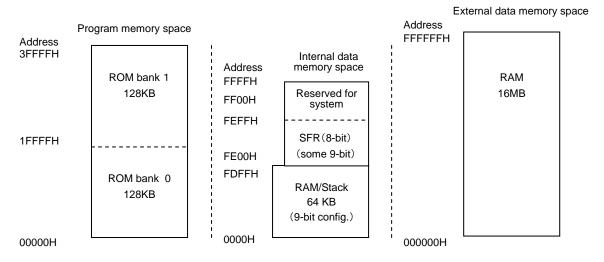
*1: Connect as follows to reduce noise on the VDD1 and lengthen the backup time. Be sure to electrically short the VSS1, VSS2, and VSS3 pins.

(Example 1) When backup is active in HOLD mode, the high level of the port outputs is supplied by the backup capacitors.

(Example 2) The high-level output at the port is unstable when HOLD mode backup is in effect.

2. Internal Configuration

2.1 Memory Space


LC870000 series microcontrollers have the following three types of memory space:

1) Program memory space: 256K bytes (128K bytes × 2 banks)

2) Internal data memory space: 64K bytes (0000H to FDFFH out of 0000H to FFFFH is shared

with the stack area.)

3) External data memory space: 16M bytes

Note: SFR is the area in which special function registers such as the accumulator are allocated (see Appendix A-I).

Figure 2.1.1 Types of Memory Space

2.2 Program Counter (PC)

The program counter (PC) is made up of 17 bits and a bank flag BNK. The value of BNK determines the bank. The low-order 17 bits of the PC allows linear access to the 128K ROM space in the current bank.

Normally, the PC advances automatically in the current bank on each execution of an instruction. Bank switching is accomplished by executing a return instruction after pushing necessary addresses onto the stack. When executing a branch or subroutine instruction, when accepting an interrupt, or when a reset is generated, the value corresponding to each operation is loaded into the PC.

Table 2.2.1 lists the values that are loaded into the PC when the respective operations are performed.

Table 2.2.1 Values Loaded in the PC

		Operation	PC Value	BNK Value
Inter-	Reset		00000Н	0
rupt	INT0		00003Н	0
	INT1		0000BH	0
	INT2/T0L/INT4/	TAL/infrared remote control receive	00013H	0
	INT3 /INT5/base	timer 0/base timer 1	0001BH	0
	T0H/INT6/TAH		00023Н	0
	T1L/T1H/INT7/S	SMIIC0	0002BH	0
	SIO0/UART1 red	reive/UART2 receive	00033Н	0
	SIO1/UART1 tra	nsmit/UART2 transmit	0003BH	0
	ADC/T6/T7		00043H	0
	Port 0/T4/T5/PW	M2,3/RMPWM	0004BH	0
Uncor	nditional branch	JUMP a17	PC=a17	Unchanged
instru	ctions	BR r12	PC=PC+2+r12[-2048 to +2047]	Unchanged
Condi	tional branch	BE, BNE, DBNZ, DBZ, BZ, BNZ,	PC=PC+nb+r8[-128 to +127]	Unchanged
instru	ctions	BZW, BNZW, BP, BN, BPC	nb: Number of instruction bytes	
Call in	nstructions	CALL a17	PC=a17	Unchanged
		RCALL r12	PC=PC+2+r12[-2048 to +2047]	Unchanged
		RCALLA	PC=PC+1+Areg[0 to +255]	Unchanged
Returi	n instructions	RET, RETI	PC16 to 08=(SP)	BNK is set
			PC07 to 00=(SP-1)	to bit 8 of
			(SP) denotes the contents of RAM	(SP-1).
			address designated by the value of	
			the stack pointer SP.	
Standa	ard instructions	NOP, MOV, ADD,	PC=PC+nb	Unchanged
			nb: Number of instruction bytes	

2.3 Program Memory (ROM)

This series of microcontrollers has a program memory space of 256K bytes but the size of the ROM that is actually incorporated varies with the type of the microcontroller. The ROM table look-up instruction (LDC) can be used to refer all ROM data within the bank. Of the ROM space, 256 bytes in ROM bank 0 (1F00H to 1FFFH for this series) are reserved as the option area. Consequently, this area is not available as a program area.

2.4 Internal Data Memory (RAM)

This series of microcontrollers has an internal data memory space of 64K bytes but the size of the RAM that is actually incorporated varies with the type of the microcontroller. Nine bits are used to access addresses 0000H to FDFFH of the 128K ROM space and 8 or 9 bits are used to access addresses FE00H to FFFFH. The 9th bit of RAM is implemented by bit 1 of the PSW and can be read and written.

The 128 bytes of RAM from 0000H to 007FH are paired to form 64 2-byte indirect address registers. The bit length of these indirect registers is normally 16 bits (8 bits \times 2). When they are used by the ROM table look-up instruction (LDC), however, their bit length is set to 17 bits (9 high-order bits + 8 low-order bits).

As shown in Figure 2.4.1, the available instructions vary depending on the RAM address. The efficiency of the ROM used and a higher execution speed can be attempted using these instructions properly.

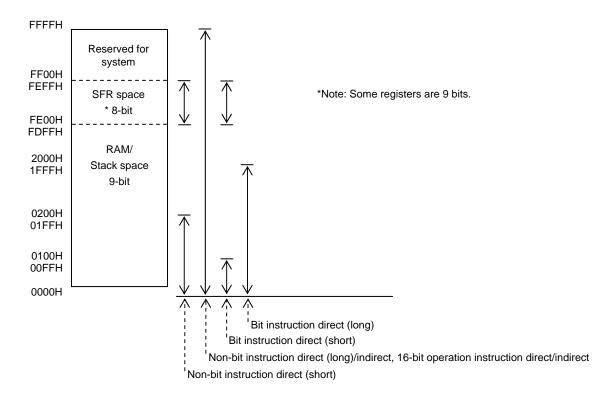


Figure 2.4.1 RAM Addressing Map

When the value of the PC is stored in RAM during the execution of a subroutine call instruction or interrupt, assuming that SP represents the current value of the stack pointer, the value of BNK and the low-order 8 bits of the (17-bit) PC are stored in RAM address SP+1 and the high-order 9 bits in SP + 2, after which SP is set to SP + 2.

2.5 Accumulator/A Register (ACC/A)

The accumulator (ACC), also called the A register, is an 8-bit register that is used for data computation, transfer, and I/O processing. It is allocated to address FE00H in the internal data memory space and initialized to 00H on a reset.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE00	0000 0000	R/W	AREG	AREG7	AREG6	AREG5	AREG4	AREG3	AREG2	AREG1	AREG0

2.6 B Register (B)

The B register is combined with the ACC to form a 16-bit arithmetic register during the execution of a 16-bit arithmetic instruction. During a multiplication or division instruction, the B register is used with the ACC and C register to store the results of computation. In addition, during an external memory access instruction (LDX or STX), the B register designates the high-order 8 bits of the 24-bit address.

The B register is allocated to address FE01H of the internal data memory space and initialized to 00H on a reset.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE01	0000 0000	R/W	BREG	BREG7	BREG6	BREG5	BREG4	BREG3	BREG2	BREG1	BREG0

2.7 C Register (C)

The C register is used with the ACC and B register to store the results of computation during the execution of a multiplication or division instruction. In addition, during a C register offset indirect instruction, the C register stores the offset data (-128 to + 127) to the contents of an indirect register.

The C register is allocated to address FE02H of the internal data memory space and initialized to 00H on a reset.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE02	0000 0000	R/W	CREG	CREG7	CREG6	CREG5	CREG4	CREG3	CREG2	CREG1	CREG0

2.8 Program Status Word (PSW)

The program status word (PSW) is made up of flags that indicate the status of computation results, a flag to access the 9th bit of RAM, and a flag to designate the bank during the LDCW instruction. The PSW is allocated to address FE06H of the internal data memory space and initialized to 00H on a reset.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE06	0000 0000	R/W	PSW	CY	AC	PSWB5	PSWB4	LDCBNK	OV	P1	PARITY

CY (bit 7): Carry flag

CY is set (to 1) when a carry occurs as the result of a computation and cleared (to 0) when no carry occurs. There are following four types of carries:

- <1> Carry resulting from an addition
- <2> Borrow resulting from a subtraction
- <3> Borrow resulting from a comparison
- <4> Carry resulting from a rotation

There are some instructions that do not affect this flag at all.

AC (bit 6): Auxiliary carry flag

AC is set (to 1) when a carry or borrow occurs in bit 3 (bit 3 of the high-order byte during a 16-bit computation) as the result of an addition or subtraction and cleared (to 0) otherwise.

There are some instructions that do not affect this flag at all.

PSWB5, PSWB4 (bits 5, 4): User bits

These bits can be read and written through instructions. They can be used by the user freely.

LDCBNK (bit 3): Bank flag for the table look-up instruction (LDCW)

This bit designates the ROM bank to be specified when reading the program ROM with a table look-up instruction.

(0: ROM-ADR = 0 to 1FFFF, 1: ROM-ADR = 20000 to 3FFFF)

OV (bit 2): Overflow flag

OV is set (to 1) when an overflow occurs as the result of an arithmetic operation and cleared (to 0) otherwise. An overflow occurs in the following cases:

- <1> When MSB is used as the sign bit and when the result of negative number + negative number or negative number positive number is a positive number.
- When MSB is used as the sign bit and when the result of positive number + positive number or positive number negative number is a negative number.

- <3> When the high-order 8 bits of a 16 bits \times 8 bits multiplication is nonzero.
- <4> When the high-order 16 bits of a 24 bits \times 16 bits multiplication is nonzero.
- <5> When the divisor of a division is 0.

There are some instructions that do not affect this flag at all.

P1 (bit 1): RAM bit 8 data flag

P1 is used to manipulate bit 8 of 9-bit internal data RAM (0000H to FDFFH). Its behavior varies depending on the instruction executed. See Table 2.4.1 for details.

PARITY (bit 0): Parity flag

This bit shows the parity of the accumulator (A register). The parity flag is set (to 1) when there is an odd number of 1's in the A register. It is cleared (to 0) when there is an even number of 1's in the A register.

2.9 Stack Pointer (SP)

LC870000 series microcontrollers can use RAM addresses 0000H to FDFFH as a stack area. The size of RAM, however, varies depending on the microcontroller type. The SP is 16 bits long and made up of two registers: SPL (at address FE0A) and SPH (at address FE0B). It is initialized to 0000H on a reset.

The SP is incremented by 1 before data is saved in stack memory and decremented by 1 after the data is restored from stack memory.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE0A	0000 0000	R/W	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0
FE0B	0000 0000	R/W	SPH	SP15	SP14	SP13	SP12	SP11	SP10	SP9	SP8

The value of the SP changes as follows:

<1> When the PUSH instruction is executed: SP = SP + 1, RAM (SP) = DATA

P When the CALL instruction is executed: P SP = P SP + 1, P RAM (P) = P ROMBANK + ADL

SP = SP + 1, RAM(SP) = ADH

<3> When the POP instruction is executed: DATA = RAM (SP), SP = SP - 1

<4> When the RET instruction is executed: ADH = RAM (SP), SP = SP - 1

ROM BANK + ADL = RAM(SP), SP = SP - 1

2.10 Indirect Addressing Registers

LC870000 series microcontrollers are provided with three addressing schemes ([Rn], [Rn + C], [off]), which use the contents of indirect registers (indirect addressing modes). (See Section 2.11 for the addressing modes.) These addressing modes use 64 2-byte indirect registers (R0 to R63) allocated to RAM addresses 0 to 7EH. The indirect registers can also be used as general-purpose registers (e.g., for saving 2-byte data). Naturally, these addresses can be used as ordinary RAM (in 1- byte (9 bits) units) if they are not used as indirect registers. R0 to R63 are "system reserved words" to the assembler and need not be defined by the user.

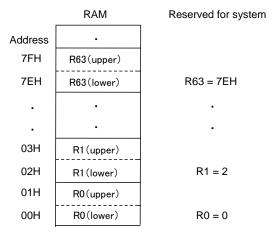


Figure 2.10.1 Allocation of Indirect Registers

2.11 Addressing Modes

LC870000 series microcontrollers support the following 7 addressing modes:

- <1> Immediate (immediate data refers to data whose value has been established at program preparation (assembly) time.)
- <2> Indirect register (Rn) indirect ($0 \le n \le 63$)
- <3> Indirect register (Rn) + C register indirect ($0 \le n \le 63$)
- <4> Indirect register (R0) + Offset value indirect
- <5> Direct
- <6> ROM table look-up
- <7> External data memory access

The rest of this section describes these addressing modes.

2.11.1 Immediate Addressing (#)

The immediate addressing mode allows 8-bit (1-byte) or 16-bit (1-word) immediate data to be handled. Examples are given below.

Examples:

	LD	#12H;	Loads the accumulator with byte data (12H).
L1:	LDW	#1234H;	Loads the BA register pair with word data (1234H).
	PUSH	#34H;	Loads the stack with byte data (34H).
	ADD	#56H;	Adds byte data (56H) to the accumulator.
	BE	#78H, L1;	Compares byte data (78H) with the accumulator for a branch.

2.11.2 Indirect Register Indirect Addressing ([Rn])

In indirect register indirect addressing mode, it is possible to select one of the indirect registers (R0 to R63) and use its contents to designate an address in RAM or SFR. When the selected register contains, for example, "FE02H," it designates the C register.

Examples: When R3 contains "123H" (RAM address 6: 23H, RAM address 7: 01H)

	LD	[R3];	Transfers the contents of RAM address 123H to the accumulator.
L1:	STW	[R3];	Transfers the contents of BA register pair to RAM address 123H.
	PUSH	[R3];	Saves the contents of RAM address123H in the stack.
	SUB	[R3];	Subtracts the contents of RAM address 123H from the accumulator.
	DBZ	[R3], L1;	Decrements the contents of RAM address 123H by 1 and causes a branch if
			zero.

2.11.3 Indirect Register + C Register Indirect Addressing ([Rn, C])

In the indirect register + C register indirect addressing mode, the result of adding the contents of one of the indirect registers (R0 to R63) to the contents of the C register (-128 to + 127 with MSB being the sign bit) designates an address in RAM or SFR. For example, if the selected indirect register contains "FE02H" and the C register contains "FFH (-1)," the address "B register (FE02H + (-1) = FE01H" is designated.

Examples: When R3 contains "123H" and the C register contains "02H"

	LD	[R3, C];	Transfers the contents of RAM address 125H to the accumulator.
L1:	STW	[R3, C];	Transfers the contents of the BA register pair to RAM address 125H.
	PUSH	[R3, C];	Saves the contents of RAM address 125H in the stack.
	SUB	[R3, C];	Subtracts the contents of RAM address 125H from the accumulator.
	DBZ	[R3, C], L1;	Decrements the contents of RAM address 125H by 1 and causes a branch if
			zero.

<Notes on this addressing mode >

The internal data memory space is divided into three closed functional areas as explained in Section 2.1, namely, 1) system reserved area (FF00H to FFFFH), 2) SFR area (FE00H to FEFFH), and 3) RAM/stack area (0000H to FDFFH). Consequently, it is not possible to point to a different area using the value of the C register from the basic area designated by the contents of Rn. For example, if the instruction "LD [R5,C]" is executed when R5 contains "0FDFFH" and the C register contains "1," since the basic area is 3) RAM/stack area (0000H to FDFFH), the intended address "0FDFFH + 1 = 0FE00H" lies outside the basic area and "0FFH" is consequently placed in the ACC as the result of LD. If the instruction "LD [R5,C]" is executed when R5 contains "0FEFFH" and the C register contains "2," since the basic area is 2) SFR area (FE00H to FEFFH), the intended address "0FEFFH + 2 = 0FF01H" lies outside the basic area. In this case, since SFR is confined in an 8-bit address space, the part of the address data addressing outside the 8-bit address space is ignored and the contents of 0FE01H (B register) are placed in the ACC as the result of the computation "0FF01H&0FFH + 0FE00H = 0FE01H."

2.11.4 Indirect Register (R0) + Offset Value Indirect Addressing ([off])

In this addressing mode, the results of adding the 7-bit signed offset data off (-64 to + 63) to the contents of the indirect register R0 designate an address in RAM or SFR. If R0 contains "FE02H" and off has a value of "7EH(-2)," for example, the A register (FE02H + (-2) = FE00H) is designated.

Examples: When R0 contains "123H" (RAM address 0: 23H, RAM address 1: 01H)

	LD	[10H];	Transfers the contents of RAM address 133H to the accumulator.
L1:	STW	[10H];	Transfers the contents of the BA register pair to RAM address 133H.
	PUSH	[10H];	Saves the contents of RAM address 133H in the stack.
	SUB	[10H];	Subtracts the contents of RAM address 133H from the accumulator.
	DBZ	[10H], L1;	Decrements the contents of RAM address 133H by 1 and causes a branch if
			zero.

<Notes on this addressing mode>

The internal data memory space is divided into three closed functional areas as explained in Section 2.1, namely, 1) system reserved area (FF00H to FFFFH), 2) SFR area (FE00H to FEFFH), and 3) RAM/stack area (0000H to FDFFH). Consequently, it is not possible to point to a different area using an offset value from the basic area designated by the contents of R0. For example, if the instruction "LD [1]" is executed when R0 contains "0FDFFH," since the basic area is 3) RAM/stack area (0000H to FDFFH), the intended address "0FDFFH+1 = 0FE00H" lies outside the basic area and "0FFH" is placed in the ACC as the result of LD. If the instruction "LD [2]" is executed when R0 contains "0FEFFH," since the basic area is 2) SFR area (FE00H to FEFFH), the intended address "0FEFFH + 2 = 0FF01H" lies outside the basic area. In this case, since SFR is confined in an 8-bit address space, the part of the address data addressing outside the 8-bit address space is ignored and the contents of "0FE01H (B register) are placed in the ACC as the result of computation "0FF01H&0FFH + 0FE00H = 0FE01H."

2.11.5 Direct Addressing (dst)

Direct addressing mode allows a RAM or SFR address to be specified directly in an operand. In this addressing mode, the assembler automatically generates the optimum instruction code from the address specified in the operand (the number of instruction bytes varies according to the address specified in the operand). Long (middle) range instructions (identified by an "L (M)" at the end of the mnemonic) are available to make the byte count of instructions constant (align instructions with the longest one).

	LD	123H;	Transfers the contents of RAM address 123H to the accumulator (2-byte instruction).
	LDL	123H;	Transfers the contents of RAM address 123H to the accumulator (3-byte instruction).
L1:	STW	123H;	Transfers the contents of the BA register pair to RAM address 123H.
	PUSH	123H;	Saves the contents of RAM address 123H in the stack.
	SUB	123H;	Subtracts the contents of RAM address 123H from the accumulator.
	DBZ	123H, L1;	Decrements the contents of RAM address 123H by 1 and causes a branch if
			zero.

2.11.6 ROM Table Look-up Addressing

The LC870000 series microcontrollers can read 2-byte data into the BA register pair at once using the LDCW instruction. Three addressing modes [Rn], [Rn, C], and [off] are available for this purpose. (In this case only, Rn is configured as 17-bit registers (128K-byte space)).

For models with banked ROM, it is possible to reference the ROM data in the ROM bank (128K bytes) identified by the LDCBNK flag (bit 3) in the PSW. Consequently, when looking into the ROM table on a series model with banked ROM, execute the LDCW instruction after switching the bank using the SET1 or CLR1 instruction so that the LDCBNK flag designates the ROM bank where the ROM table resides.

Examples:

```
TBL: DB
               34H
     DB
               12H
     DW
               5678H
     LDW
               #TBL;
                                  Loads the BA register pair with the TBL address.
                                  Loads LDCBNK in PSW with bit 17 of the TBL address. (Note 1)
     CHGP3
               (TBL >> 17) \& 1;
     CHGP1
                                  Loads P1 in PSW with bit 16 of the TBL address.
               (TBL >> 16) \& 1;
     STW
                                  Loads indirect register R0 with the TBL address (bits 16 to 0).
               R0;
     LDCW
                                  Reads the ROM table (B = 78H, ACC = 12H).
               [1];
     MOV
               #1, C;
                                  Loads the C register with 01H.
     LDCW
               [R0, C];
                                  Reads the ROM table (B = 78H, ACC = 12H).
     INC
                                  Increments the C register by 1.
               C;
     LDCW
               [R0, C]:
                                  Reads the ROM table (B = 56H, ACC = 78H).
```

Note 1: LDCBNK (bit 3) in PSW needs to be set up only for models with banked ROM.

2.11.7 External Data Memory Addressing

LC870000 series microcontrollers can access external data memory spaces of up to 16M bytes (24 bits) using the LDX and STX instructions. To designate a 24-bit space, specify the contents of the B register (8 bits) as the highest-order byte of the address, and the contents (16 bits) of (Rn), (Rn) + (C), or (R0) + off (either one) as the low-order bytes of the address.

Examples:

LDW #3456H; Sets up the low-order 16 bits.

STW R5; Loads the indirect register R5 with the low-order 16 bits of the address.

MOV #12H, B; Sets up the high-order 8 bits of the address.

LDX [1]; Transfers the contents of external data memory (address 123456H) to the accumulator.

Note: This series of microcontrollers is provided with no capability to access external memory.

2.12 Wait Sequence

2.12.1 Wait Sequence Occurrence

This series of microcontrollers performs wait sequences that suspend the execution of instructions in the following case:

1) When continuous data transfer is performed over the SIO0 with SIOCTR (SCON0, bit 4) set, a wait request is generated ahead of each transfer of 8-bit data, in which case a 1-cycle wait sequence (RAM data transfer) is performed.

2.12.2 What is a Wait Sequence?

- 1) When a wait request occurs out of a factor explained in Subsection 2.12.1, the CPU suspends the execution of the instruction for one cycle, during which the required data is transferred. This is called a wait sequence.
- 2) The peripheral circuits such as timers and PWM continue processing during the wait sequence.
- 3) A wait sequence extends over no more than two cycles.
- 4) The CPU performs no wait sequence when it is in HALT or HOLD mode.
- 5) Note that one cycle of discrepancy is introduced between the progress of the program counter and time once a wait sequence occurs.

Table 2.4.1 Chart of State Transitions of Bit 8 (RAM / SFR) and P1

Instruction	Bit 8 (RAM/SFR)	P1 (PSW Bit 1)	Remarks
LD#/LDW#	_	-	
LD	_	P1←REG8	
LDW	_	P1←REGH8	
ST	REG8←P1	_	
STW	REGL8, REGH8←P1	_	
MOV	REG8←P1	_	
PUSH#	RAM8←P1		
PUSH	RAM8←REG8	P1←REG8	
PUSHW	RAMH8←REGH8, RAML8←REGL8	P1←REGH8	
PUSH_P	RAM8←Pl		
PUSH BA	RAMH8←P1, RAML8←P1	_	
POP	REG8←RAM8	P1←RAM8	P1←bit1 when PSW is popped
POPW	REGH8←RAMH8, REGL8←RAML8	Pl←RAMH8	P1←bit1 when high- order address of PSW is popped
POP_P	_	P1←RAMl (bit l)	Bit 8 ignored
POP_BA	_	P1←RAMH8	
XCH	REG8↔P1	Same as left.	
XCHW	REGH8←P1, REGL8←Pl, P1←REGH8	Same as left.	
INC	INC 9 bits	P1←REG8 after computation	INC 9 bits
INCW	INC 17 bits, REGL8←low byte of CY	P1←REGH8 after computation	INC 17 bits
DEC	DEC 9 bits	P1←REG8 after computation	DEC 9 bits
DECW	DEC 17 bits,	P1←REGH8 after	DEC 17 bits
	REGL8← low byte of CY inverted	computation	
DBNZ	DEC 9 bits	P1←REG8	DEC 9 bits, check low-order 8 bits
DBZ	DEC 9 bits	P1←REG8	DEC 9 bits, check low-order 8 bits
SET1	_	_	
NOT1	_	_	
CLR1	_	_	
BPC	_	_	
BP	-	_	
BN	-	_	
MUL24/ DIV24	RAM8←"1"	-	Bit 8 of RAM address for storing computation results is set to 1.
FUNC	-	_	

Note: A "1" is read and processed if the processing target is an 8-bit register (no bit 8).

Legends:

REG8: Bit 8 of a RAM or SFR location

REGH8/REGL8: Bit 8 of the high-order byte of a RAM location or SFR/bit 8 of the low-order byte

RAM8: Bit 8 of a RAM location

RAMH8/RAML8: Bit 8 of the high-order byte of a RAM location/bit 8 of the low-order byte

3. Peripheral System Configuration

This chapter describes the internal functional blocks (peripheral system) of this series of microcontrollers except those for the CPU core, RAM, and ROM. Port block diagrams are provided in Appendix A-II for reference.

3.1 Port 0

3.1.1 Overview

Port 0 is an 8-bit I/O port equipped with programmable pull-up resistors. It consists of a data latch, a data direction register, and a control circuit. The I/O direction and the pull-up register are set by the data direction register in 4-bit units.

This port can also serve as a pin for external interrupts and can release HOLD mode. As a user option, either CMOS output with a programmable pull-up resistor or N-channel open drain output can be selected as the output type in 1-bit units.

3.1.2 Functions

- 1) Input/output port (8 bits: P00 to P07)
 - The port output data is controlled by the port 0 data latch (P0: FE40) in 1-bit units.
 - I/O control of P00 to P03 is accomplished by P0LDDR (P0DDR: FE41, bit 0).
 - I/O control of P04 to P07 is accomplished by P0HDDR (P0DDR: FE41, bit 1).
 - Port bits selected as CMOS output as user options are equipped with programmable pull-up resistors.
 - The programmable pull-up resistors for P00 to P03 are controlled by P0LPU (P0DDR: FE41, bit 2).
 - The programmable pull-up resistors for P04 to P07 are controlled by P0HPU (P0DDR: FE41, bit 3).

2) Interrupt pin function

P0FLG (P0DDR: FE41, bit 5) is set when an input port is specified and 0 level data is input to one of the port bits whose corresponding bit in the port 0 data latch (P0: FE40) is set to 1.

In this case, if P0IE (P0DDR: FE41, bit 4) is 1, HOLD mode is released and an interrupt request to vector address 004BH is generated.

3) Multiplexed pin functions

P05 also serves as the system clock output, P06 as the timer 6 toggle output, and P07 as the timer 7 toggle output.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE40	0000 0000	R/W	P0	P07	P06	P05	P04	P03	P02	P01	P00
FE41	HH00 0000	R/W	P0DDR	-	-	P0FLG	P0IE	P0HPU	P0LPU	P0HDDR	P0LDDR
FE42	000H 0000	R/W	P0FCR	T7OE	T6OE	-	-	CLKOEN	CKODV2	CKODV1	CKODV0

3.1.3 Related Registers

3.1.3.1 Port 0 data latch (P0)

- 1) This latch is an 8-bit register for controlling port 0 output data and port 0 interrupts.
- 2) When this register is read with an instruction, data at pins P00 to P07 is read in. However, if P0 (FE40) is manipulated using a NOT1, CLR1, SET1, DBZ, DBNZ, INC, or DEC instruction, the contents of the register are referenced instead of the data at the pins.
- 3) Port 0 data can always be read regardless of the I/O state of the port.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE40	0000 0000	R/W	P0	P07	P06	P05	P04	P03	P02	P01	P00

3.1.3.2 Port 0 data direction register (P0DDR)

1) This register is a 6-bit register that controls the I/O direction of port 0 data in 4-bit units, the pull-up resistors in 4-bit units, and port 0 interrupts.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE41	HH00 0000	R/W	P0DDR	-	-	P0FLG	P0IE	P0HPU	P0LPU	P0HDDR	P0LDDR

P0FLG (bit 5): P0 interrupt source flag

This flag is set when a low level is applied to a port 0 pin set as input and the corresponding P0 (FE40) bit is set.

A HOLD mode release signal and an interrupt request to vector address 004BH are generated when this bit and the interrupt request enable bit (P0IE) are set to 1.

This bit must be cleared with an instruction as it is not cleared automatically.

P0IE (bit 4): P0 interrupt request enable

When this bit and P0FLG are set to 1, a HOLD mode release signal and an interrupt request to vector address 004BH are generated.

P0HPU (bit 3): P07 to P04 pull-up resistor control

When this bit is set to 1 and P0HDDR is set to 0, pull-up resistors are connected to port bits P07 to P04 that are selected as CMOS output.

P0LPU (bit 2): P03 to P00 pull-up resistor control

When this bit is set to 1 and P0LDDR is set to 0, pull-up resistors are connected to port bits P03 to P00 that are selected as CMOS output.

P0HDDR (bit 1): P07 to P04 I/O control

When this bit is set to 1, P07 to P04 are placed in output mode, in which case the contents of the corresponding port 0 data latch (P0) are output from the port.

When this bit is set to 0, P07 to P04 are placed in input mode and P0FLG is set when a low level is detected at a port whose corresponding port 0 data latch (P0) bit is set to 1.

P0LDDR (bit 0): P03 to P00 I/O control

When this bit is set to 1, P03 to P00 are placed in output mode, in which case the contents of the corresponding port 0 data latch (P0) are output from the port.

When this bit is set to 0, P03 to P00 are placed in input mode and P0FLG is set when a low level is detected at a port whose corresponding port 0 data latch (P0) bit is set to 1.

3.1.3.3 Port 0 function control register (P0FCR)

1) This register is a 6-bit register that controls the multiplexed output pins of port 0.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE42	000H 0000	R/W	P0FCR	T7OE	T6OE	-	-	CLKOEN	CKODV2	CKODV1	CKODV0

T70E (bit 7):

This bit controls the output data at pin P07.

This bit is disabled when P07 is in input mode.

When P07 is in output mode:

- 0: Carries the value of the port data latch.
- 1: Carries the OR of the waveform that toggles at a period determined by timer 7 and the value of the port data latch.

T60E (bit 6):

This bit controls the output data at pin P06.

This bit is disabled when P06 is in input mode.

When P06 is in output mode:

- 0: Carries the value of the port data latch.
- 1: Carries the OR of the waveform that toggles at a period determined by timer 6 and the value of the port data latch.

CLKOEN (bit 3):

This bit controls the output data at pin P05.

This bit is disabled when P05 is in input mode.

When P05 is in output mode:

- 0: Carries the value of the port data latch.
- 1: Carries the OR of the system clock output and the value of the port data latch.

CKODV2 (bit 2):

CKODV1 (bit 1):

CKODV0 (bit 0):

These bits define the frequency of the system clock to be output to P05.

000: Frequency of source oscillator selected as system clock

001: 1/2 of frequency of source oscillator selected as system clock

010: 1/4 of frequency of source oscillator selected as system clock

011: 1/8 of frequency of source oscillator selected as system clock

100: 1/16 of frequency of source oscillator selected as system clock

101: 1/32 of frequency of source oscillator selected as system clock

110: 1/64 of frequency of source oscillator selected as system clock

111: Frequency of source oscillator selected as subclock

Port 0

<Notes on the use of the clock output function>

Follow notes 1) to 3) below when using the clock output function. Anomalies may be observed in the waveform of the port clock output if these instructions are not followed.

- 1) Do not change the frequency of the clock output when CLKOEN (bit 3) is set to 1.
 - → Do not change the settings of CKODV2 to CKODV0 (bits 2 to 0).
- 2) Do not change the system clock selection when CLKOEN (bit 3) is set to 1.
 - → Do not change the settings of CLKCB5 and CLKCB4 (bits 5, 4) of the OCR register.
- 3) CLKOEN will not go to 0 immediately even when the user executes an instruction that loads the P0FCR register with data that sets the state of CLKOEN from 1 to 0. CLKOEN is set to 0 after the end of the clock that is being output (after detection of a falling edge of the clock). Accordingly, when changing the clock frequency division setting or changing the system clock selection after setting CLKOEN to 0 with an instruction, be sure to read the CLKOEN value in advance and make sure that it is 0.

3.1.4 Options

Two user options are available.

- 1) CMOS output (with a programmable pull-up resistor)
- 2) N-channel open drain output

3.1.5 HALT and HOLD Mode Operation

When in HALT and HOLD modes, the low-level output of port 0 is preserved but the high-level output of CMOS and pull-up resistors are held off.

3.2 Port 1

3.2.1 Overview

Port 1 is an 8-bit I/O port equipped with programmable pull-up resistors. It consists of a data latch, a data direction register, a function control register, and a control circuit. The I/O direction is determined by the data direction register in 1-bit units. Port 1 can also be used as a serial interface I/O port or PWM output port by manipulating the function control register.

As a user option, either CMOS output with a programmable pull-up resistor or N-channel open drain output with a programmable pull-up resistor can be selected as the output type in 1-bit unit.

3.2.2 Functions

- 1) Input/output port (8 bits: P10 to P17)
 - The port output data is controlled by the port 1 data latch (P1: FE44) and the I/O direction is controlled by the port 1 data direction register (P1DDR: FE45).
 - Each port is equipped with a programmable pull-up resistor.

2) Multiplexed pin functions

P17 also serves as the timer 1 PWMH/base timer buzzer output, P16 as the timer 1 PWML output, P15 to P13 as SIO1 I/O, and P12 to P10 as SIO0 I/O.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE44	0000 0000	R/W	P1	P17	P16	P15	P14	P13	P12	P11	P10
FE45	0000 0000	R/W	P1DDR	P17DDR	P16DDR	P15DDR	P14DDR	P13DDR	P12DDR	P11DDR	P10DDR
FE46	0000 0000	R/W	P1FCR	P17FCR	P16FCR	P15FCR	P14FCR	P13FCR	P12FCR	P11FCR	P10FCR
FE47	0Н0Н Н0Н0	R/W	P1TST	FIX0	-	MRCSFT	-	1	DSNKOT	-	FIX0

Bits 7 and 0 of P1TST (FE47) are reserved for testing. They must always be set to 0.

Bit 2 of P1TST (FE47) is used to control the real-time output of the high-speed clock counter. It is explained in the chapter on high-speed clock counters.

Bit 5 of P1TST (FE47) is used to control the multifrequency RC oscillator. It is explained in the chapter on the system clock generators.

3.2.3 Related Registers

3.2.3.1 Port 1 data latch (P1)

- 1) This latch is an 8-bit register that controls port 1 output data and pull-up resistors.
- 2) When this register is read with an instruction, data at pins P10 to P17 is read in. However, if P1 (FE44) is manipulated using a NOT1, CLR1, SET1, DBZ, DBNZ, INC, or DEC instruction, the contents of the register are referenced instead of the data at the port pins.
- 3) Port 1 data can always be read regardless of the I/O state of the port.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE44	0000 0000	R/W	P1	P17	P16	P15	P14	P13	P12	P11	P10

3.2.3.2 Port 1 data direction register (P1DDR)

- 1) This register is an 8-bit register that controls the I/O direction of port 1 data in 1-bit units. Port P1n is placed in output mode when bit P1nDDR is set to 1, and in input mode when bit P1nDDR is set to 0.
- 2) When bit P1nDDR is set to 0 and bit P1n of the port 1 data latch is set to 1, port P1n becomes an input with a pull-up resistor.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE45	0000 0000	R/W	P1DDR	P17DDR	P16DDR	P15DDR	P14DDR	P13DDR	P12DDR	P11DDR	P10DDR

Regist	er Data		Port P1n State	Internal Pull-up
P1n	P1nDDR	Input	Output	Resistor
0	0	Enabled	Open	Off
1	0	Enabled	Internal pull-up resistor	On
0	1	Enabled	Low	Off
1	1	Enabled	High/open (CMOS/N-channel open drain)	Off

3.2.3.3 Port 1 function control register (P1FCR)

1) This register is an 8-bit register that controls the multiplexed pin outputs of port 1.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE46	0000 0000	R/W	P1FCR	P17FCR	P16FCR	P15FCR	P14FCR	P13FCR	P12FCR	P11FCR	P10FCR

n	P1nFCR	P1n	P1n Pin Data in Output Mode (P1nDDR=1)
7	0	_	Value of port data latch (P17)
	1	0	AND data of timer 1 PWMH and base timer BUZ
	1	1	NAND data of timer 1 PWMH and base timer BUZ
6	0	_	Value of port data latch (P16)
	1	0	Timer 1 PWML data
	1	1	Timer 1 PWML inverted data
5	0	_	Value of port data latch (P15)
	1	0	SIO1 clock output data
	1	1	High output
4	0	_	Value of port data latch (P14)
	1	0	SIO1 output data
	1	1	High output
3	0	-	Value of port data latch (P13)
	1	0	SIO1 output data
	1	1	High output
2	0	_	Value of port data latch (P12)
	1	0	SIO0 clock output data
	1	1	High output
1	0	_	Value of port data latch (P11)
	1	0	SIO0 output data
	1	1	High output
0	0	_	Value of port data latch (P10)
	1	0	SIO0 output data
	1	1	High output

High data output at a pin that is selected as an N-channel open drain output (user option) is represented by an open circuit.

P17FCR (bit 7): P17 function control (timer 1 PWMH & base timer buzzer output control)

This bit controls the output data at pin P17.

When P17 is placed in output mode (P17DDR=1) and P17FCR is set to 1, the AND data of timer 1 PWMH output and buzzer output from the base timer is EORed with the port data latch and the result is placed at pin P17.

P16FCR (bit 6): P16 function control (timer 1 PWML output control)

This bit controls the output data at pin P16.

When P16 is placed in output mode (P16DDR=1) and P16FCR is set to 1, the EOR of timer 1 PWML output data and the port data latch is placed at pin P16.

P15FCR (bit 5): P15 function control (SIO1 clock output control)

This bit controls the output data at pin P15.

When P15 is placed in output mode (P15DDR=1) and P15FCR is set to 1, the OR of the SIO1 clock output data and the port data latch is placed at pin P15.

P14FCR (bit 4): P14 function control (SIO1 data output control)

This bit controls the output data at pin P14.

When P14 is placed in output mode (P14DDR=1) and P14FCR is set to 1, the OR of the SIO1 output data and the port data latch is placed at pin P14.

When the SIO1 is active, SIO1 input data is read from P14 regardless of the I/O state of P14.

P13FCR (bit 3): P13 function control (SIO1 data output control)

This bit controls the output data at pin P13.

When P13 is placed in output mode (P13DDR=1) and P13FCR is set to 1, the OR of the SIO1 output data and the port data latch is placed at pin P13.

P12FCR (bit 2): P12 function control (SIO0 clock output control)

This bit controls the output data at pin P12.

When P12 is placed in output mode (P12DDR=1) and P12FCR is set to 1, the OR of the SIO0 clock output data and the port data latch is placed at pin P12.

P11FCR (bit 1): P11 function control (SIO0 data output control)

This bit controls the output data at pin P11.

When P11 is placed in output mode (P11DDR=1) and P11FCR is set to 1, the OR of the SIO0 output data and the port data latch is placed at pin P11.

When the SIO0 is active, SIO0 input data is read from P11 regardless of the I/O state of P11.

P10FCR (bit 0): P10 function control (SIO0 data output control)

This bit controls the output data at pin P10.

When P10 is placed in output mode (P10DDR=1) and P10FCR is set to 1, the OR of the SIO0 output data and the port data latch is placed at pin P10.

Port 1

3.2.4 Options

Two user options are available.

CMOS output (with a programmable pull-up resistor)
 N-channel open drain output (with a programmable pull-up resistor)

3.2.5 HALT and HOLD Mode Operation

When in HALT or HOLD mode, port 1 retains the state that is established when HALT or HOLD mode is entered.

3.3 Port 2

3.3.1 Overview

Port 2 is an 8-bit I/O port equipped with programmable pull-up resistors. It consists of a data latch, a data direction register, and a control circuit. The I/O direction is determined by the data direction register in 1-bit units.

Port 2 can also serve as an input port for external interrupts. It can also be used as a port for the timer 1 count clock input, timer 0 capture signal input, timer 0 capture 1 signal input, or HOLD mode release signal input.

As a user option, either CMOS output with a programmable pull-up resistor or N-channel open drain output with a programmable pull-up resistor can be selected as the output type in 1-bit units.

3.3.2 Functions

- 1) Input/output port (8 bits: P20 to P27)
 - The port output data is controlled by the port 2 data latch (P2:FE48) and the I/O direction is controlled by the port 2 data direction register (P2DDR:FE49).
 - Each port is equipped with a programmable pull-up resistor.

2) Interrupt input pin function

- A port (INT4) selected from P20 to P23 and a port (INT5) selected from P24 to P27 are provided with a pin interrupt function that detects a low edge, high edge, or both edges and sets the interrupt flag. These selected two ports can also be used as the timer 1 count clock input and timer 0 capture signal input.
- P20 (INT6) and P24 (INT7) are provided with a pin interrupt function that detects a low edge, high edge, or both edges and sets the interrupt flag. They can also be used as the timer 0 capture 1 signal input.

3) HOLD mode release function

- When both the interrupt flag and the interrupt enable flag are set for INT4 or INT5, a HOLD mode release signal is generated, releasing HOLD mode. The microcontroller then enters HALT mode (main oscillation by the RC oscillator). When the interrupt is accepted, the CPU switches from HALT mode to normal operating mode.
- When a signal change that sets the interrupt flag is input to INT4 or INT5 in HOLD mode, the
 interrupt flag is set. In this case, HOLD mode is released if the corresponding interrupt enable
 flag is set.

The interrupt flag, however, cannot be set by a rising edge occurring when the INT4 or INT5 data that is established when HOLD mode is entered is in the high state, or by a falling edge occurring when the INT4 or INT5 data that is established when HOLD mode is entered is in the low state. Consequently, to release HOLD mode with INT4 or INT5, it is recommended that INT4 or INT5 be used in both-edge interrupt mode.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE48	0000 0000	R/W	P2	P27	P26	P25	P24	P23	P22	P21	P20
FE49	0000 0000	R/W	P2DDR	P27DDR	P26DDR	P25DDR	P24DDR	P23DDR	P22DDR	P21DDR	P20DDR
FE4A	0000 0000	R/W	I45CR	INT5HEG	INT5LEG	INT5IF	INT5IE	INT4HEG	INT4LEG	INT4IF	INT4IE
FE4B	0000 0000	R/W	I45SL	I5SL3	I5SL2	I5SL1	I5SL0	I4SL3	I4SL2	I4SL1	I4SL0
FE4E	0000 0000	R/W	I67CR	INT7HEG	INT7LEG	INT7IF	INT7IE	INT6HEG	INT6LEG	INT6IF	INT6IE

3.3.3 Related Registers

3.3.3.1 Port 2 data latch (P2)

- 1) This latch is an 8-bit register that controls the output data from port 2 and pull-up resistors.
- 2) When this register is read with an instruction, data at pins P20 to P27 is read in. However, if P2 (FE48) is manipulated using a NOT1, CLR1, SET1, DBZ, DBNZ, INC, or DEC instruction, the contents of the register are referenced instead of the data at the pins.
- 3) Port 2 data can always be read regardless of the I/O state of the port.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE48	0000 0000	R/W	P2	P27	P26	P25	P24	P23	P22	P21	P20

3.3.3.2 Port 2 data direction register (P2DDR)

- 1) This register is an 8-bit register that controls the I/O direction of port 2 in 1-bit units. Port P2n is placed in output mode when bit P2nDDR is set to 1 and in input mode when bit P2nDDR is set to 0.
- 2) When bit P2nDDR is set to 0 and bit P2n of the port 2 data latch is set to 1, port P2n becomes an input with a pull-up resistor

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE49	0000 0000	R/W	P2DDR	P27DDR	P26DDR	P25DDR	P24DDR	P23DDR	P22DDR	P21DDR	P20DDR

Regist	ter Data		Port P2n State	Internal Pull-up		
P2n	P2nDDR	Input	Output	Resistor		
0	0	Enabled	Open	Off		
1	0	Enabled	Internal pull-up resistor	On		
0	1	Enabled	Low	Off		
1	1	Enabled	High/open (CMOS/N-channel open drain)	Off		

3.3.3.3 External interrupt 4/5 control register (I45CR)

1) This register is an 8-bit register that controls external interrupts 4 and 5.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE4A	0000 0000	R/W	I45CR	INT5HEG	INT5LEG	INT5IF	INT5IE	INT4HEG	INT4LEG	INT4IF	INT4IE

INT5HEG (bit 7): INT5 rising edge detection control

INT5LEG (bit 6): INT5 falling edge detection control

INT5HEG	INT5LEG	INT5 Interrupt Conditions (Pin Data)
0	0	No edge detected
0	1	Falling edge detected
1	0	Rising edge detected
1	1	Both edges detected

INT5IF (bit 5): INT5 interrupt source flag

This bit is set when the conditions specified by INT5HEG and INT5LEG are satisfied.

When this bit and the INT5 interrupt request enable bit (INT5IE) are set to1, a HOLD mode release signal and an interrupt request to vector address 001BH are generated.

The interrupt flag, however, cannot be set by a rising edge occurring when the INT5 data that is established when HOLD mode is entered is in the high state, or by a falling edge occurring when the INT5 data that is established when HOLD mode is entered is in the low state. Consequently, to release HOLD mode with INT5, it is recommended that INT5 be used in both-edge interrupt mode.

This bit must be cleared with an instruction as it is not cleared automatically.

INT5IE (bit 4): INT5 interrupt request enable

When this bit and INT5IF are set to 1, a HOLD mode release signal and an interrupt request to vector address 001BH are generated.

INT4HEG (bit 3): INT4 rising edge detection control

INT4LEG (bit 2): INT4 falling edge detection control

INT4HEG	INT4LEG	INT4 Interrupt Conditions (Pin Data)
0	0	No edge detected
0	1	Falling edge detected
1	0	Rising edge detected
1	1	Both edges detected

INT4IF (bit 1): INT4 interrupt source flag

This bit is set when the conditions specified by INT4HEG and INT4LEG are satisfied.

When this bit and the INT4 interrupt request enable bit (INT4IE) are set to 1, a HOLD mode release signal and an interrupt request to vector address 0013H are generated.

The interrupt flag, however, cannot be set by a rising edge occurring when the INT4 data that is established when HOLD mode is entered is in the high state, or by a falling edge occurring when the INT4 data that is established when HOLD mode is entered is in the low state. Consequently, to release HOLD mode with INT4, it is recommended that INT4 be used in both-edge interrupt mode.

This bit must be cleared with an instruction as it is not cleared automatically.

INT4IE (bit 0): INT4 interrupt request enable

When this bit and INT4IF are set to 1, a HOLD mode release signal and an interrupt request to vector address 0013H are generated.

3.3.3.4 External interrupt 4/5 pin select register (I45SL)

1) This register is an 8-bit register used to select pins for external interrupts 4 and 5.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE4B	0000 0000	R/W	I45SL	I5SL3	I5SL2	I5SL1	I5SL0	I4SL3	I4SL2	I4SL1	I4SL0

I5SL3 (bit 7): INT5 pin select I5SL2 (bit 6): INT5 pin select

I5SL3	I5SL2	Pin Assigned to INT5		
0	0	Port P24		
0	0 1 Port P25			
1	0	Port P26		
1	1	Port P27		

I5SL1 (bit 5): INT5 pin function select I5SL0 (bit 4): INT5 pin function select

When the data change specified in the external interrupt 4/5 control register (I45CR) is given to the pin that is assigned to INT5, timer 1 count clock input and timer 0 capture signal are generated.

I5SL1	I5SL0	Function Other Than INT5 Interrupt			
0	0	None			
0	1 Timer 1 count clock input				
1	0	Timer 0L capture signal input			
1	1	Timer 0H capture signal input			

I4SL3 (bit 3): INT4 pin select I4SL2 (bit 2): INT4 pin select

I4SL3	I4SL2	Pin Assigned to INT4	
0	0	Port P20	
0	0 1 Port P21		
1	1 0 Port P22		
1	1	Port P23	

I4SL1 (bit 1): INT4 pin function select I4SL0 (bit 0): INT4 pin function select

When the data change specified in the external interrupt 4/5 control register (I45CR) is given to the pin that is assigned to INT4, timer 1 count clock input and timer 0 capture signal are generated.

I4SL1	I4SL0	Function Other Than INT4 Interrupt			
0	0	None			
0	1 Timer 1 count clock input				
1	0	Timer 0L capture signal input			
1	1	Timer 0H capture signal input			

Notes:

- 1) If timer 0L capture signal input or timer 0H capture signal input is specified for INT4 or INT5 together with port 7, the signal from port 7 is ignored.
- 2) If INT4 and INT5 are specified together for timer 1 count clock input, timer 0L capture signal input, or timer 0H capture signal input, both interrupts are accepted. If both INT4 and INT5 events occur at the same time, however, only one event is recognized.
- 3) When at least one of INT4 and INT5 is specified as timer 1 count clock input, timer 1L functions as an event counter. If neither INT4 nor INT5 is specified for timer 1 count clock input, the timer 1L counts on every 2 Tcyc.

3.3.3.5 External interrupt 6/7 control register (I67CR)

1) This register is an 8-bit register that controls external interrupts 6 and 7.

Addres	s Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE4E	0000 0000	R/W	I67CR	INT7HEG	INT7LEG	INT7IF	INT7IE	INT6HEG	INT6LEG	INT6IF	INT6IE

INT7HEG (bit 7): INT7 rising edge detection control

INT7LEG (bit 6): INT7 falling edge detection control

Timer 0H capture 1 signal is generated when the data change specified by bits 7 and 6 is given to pin P24.

INT7HEG	INT7LEG	INT7 Interrupt Conditions (Data at Pin P24)
0	0	No edge detected
0	1	Falling edge detected
1	0	Rising edge detected
1	1	Both edges detected

INT7IF (bit 5): INT7 interrupt source flag

This bit is set when the conditions specified by INT7HEG and INT7LEG are satisfied.

When this bit and the INT7 interrupt request enable bit (INT7IE) are set to 1, an interrupt request to vector address 002BH is generated.

This bit must be cleared with an instruction as it is not cleared automatically.

INT7IE (bit 4): INT7 interrupt request enable

When this bit and INT7IF are set to 1, an interrupt request to vector address 002BH is generated.

INT6HEG (bit 3): INT6 rising edge detection control

INT6LEG (bit 2): INT6 falling edge detection control

Timer 0L capture 1 signal is generated when the data change specified by bits 3 and 2 is given to pin P20.

INT6HEG	INT6LEG	INT6 Interrupt Conditions (Data at Pin P20)
0	0	No edge detected
0	1	Falling edge detected
1	0	Rising edge detected
1	1	Both edges detected

INT6IF (bit 1): INT6 interrupt source flag

This bit is set when the conditions specified by INT6HEG and INT6LEG are satisfied.

When this bit and the INT6 interrupt request enable bit (INT6IE) are set to 1, an interrupt request to vector address 0023H is generated.

This bit must be cleared with an instruction as it is not cleared automatically.

INT6IE (bit 0): INT6 interrupt request enable

When this bit and INT6IF are set to 1, an interrupt request to vector address 0023H is generated.

Port 2

3.3.4 Options

Two user options are available.

CMOS output (with a programmable pull-up resistor)
 N-channel open drain output (with a programmable pull-up resistor)

3.3.5 HALT and HOLD Mode Operation

When in HALT or HOLD mode, port 2 retains the state that is established when HALT or HOLD mode is entered.

3.4 Port 3

3.4.1 Overview

Port 3 is an 8-bit I/O port equipped with programmable pull-up resistors. It consists of a data latch, a data direction register, and a control circuit. The I/O direction is determined by the data direction register in 1-bit units. Port 3 can also serve as PWM4/PWM5 output and UART1 and UART2 I/O ports

As a user option, either CMOS output with a programmable pull-up resistor or N-channel open drain output with a programmable pull-up resistor can be selected as the output type in 1-bit units.

3.4.2 Functions

- 1) Input/output port (8 bits: P30 to P37)
 - The port output data is controlled by the port 3 data latch (P3: FE4C), and the I/O direction is controlled by the port 3 data direction register (P3DDR: FE4D).
 - Each port is equipped with a programmable pull-up resistor.
- 2) Multiplexed pin functions
 - P32 and P33 also serve as UART1 I/O and P34 and P35 as UART2 I/O.
 The functions of these pins are described in the chapter on each functional block.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE4C	0000 0000	R/W	Р3	P37	P36	P35	P34	P33	P32	P31	P30
FE4D	0000 0000	R/W	P3DDR	P37DDR	P36DDR	P35DDR	P34DDR	P33DDR	P32DDR	P31DDR	P30DDR

3.4.3 Related Registers

3.4.3.1 Port 3 data latch (P3)

- 1) This latch is an 8-bit register that controls the port 3 output data and pull-up resistors.
- 2) When this register is read with an instruction, the data at pins P30 to P37 is read in. However, if P3 (FE4C) is manipulated using a NOT1, CLR1, SET1, DBZ, DBNZ, INC or DEC instruction, the contents of the register is referenced instead of the data at the pins.
- 3) Port 3 data can always be read regardless of the I/O state of the port.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE4C	0000 0000	R/W	P3	P37	P36	P35	P34	P33	P32	P31	P30

3.4.3.2 Port 3 data direction register (P3DDR)

- 1) This register is an 8-bit register that controls the I/O direction of the port 3 data in 1-bit units. Port P3n is placed in output mode when bit P3nDDR is set to 1 and in input mode when bit P3nDDR is set to 0.
- 2) When bit P3nDDR is set to 0 and bit P3n of the port 3 data latch is set to 1, port P3n becomes an input with a pull-up resistor.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE4D	0000 0000	R/W	P3DDR	P37DDR	P36DDR	P35DDR	P34DDR	P33DDR	P32DDR	P31DDR	P30DDR

Register Data			Internal Pull-up		
P3n	P3nDDR	Input	Output	Resistor	
0	0	Enabled	Open	Off	
1	0	Enabled	Internal pull-up resistor	On	
0	1	Enabled	Low	Off	
1	1	Enabled	High/open (CMOS/N-channel open drain)	Off	

Port 3

3.4.4 Options

Two user options are available.

CMOS output (with a programmable pull-up resistor)
 N-channel open drain output (with a programmable pull-up resistor)

3.4.5 HALT and HOLD Mode Operation

When in HALT or HOLD mode, port 3 retains the state that is established when HALT or HOLD mode is entered.

3.5 Port 7

3.5.1 Overview

Port 7 is a 4-bit I/O port equipped with programmable pull-up resistors. It consists of a data control latch and a control circuit. The I/O direction is determined in 1-bit units.

Port 7 can also serve as an input port for external interrupts. It can also be used as a port for the timer 0 count clock input, capture signal input, and HOLD mode release signal input.

There is no user option for this port.

3.5.2 Functions

- 1) Input/output port (4 bits: P70 to P73)
 - The low-order 4 bits of the port 7 control register (P7: FE5C) are used to control the port output data and the high-order 4 bits are used to control the I/O direction.
 - P70 is the N-channel open drain output type and P71 to P73 are CMOS output ports.
 - Each port is equipped with a programmable pull-up resistor.
- 2) Interrupt input pin function
 - P70 and P71 are assigned to INT0 and INT1, respectively, and are used to detect a low level, high level, low edge, or high edge and to set the interrupt flag.
 - P72 and P73 are assigned to INT2 and INT3, respectively, and are used to detect a low edge, high edge, or both edges and to set the interrupt flag.
- 3) Timer 0 count input function

A count signal is sent to timer 0 each time a signal change that sets the interrupt flag is supplied to a port selected from P72 and P73.

4) Timer 0L capture input function

A timer 0L capture signal is generated each time a signal change that sets the interrupt flag is supplied to a port selected from P70 and P72.

When a selected level of signal is input to P70 that is specified for level-triggered interrupts, a timer 0L capture signal is generated at 1-cycle intervals for the duration of the input signal.

5) Timer 0H capture input function

A timer 0H capture signal is generated each time a signal change that sets the interrupt flag is supplied to a port selected from P71 and P73.

When a selected level of signal is input to P71 that is specified for level-triggered interrupts, a timer 0H capture signal is generated at 1-cycle interval for the duration of the input signal.

- 6) HOLD mode release function
 - When the interrupt flag and interrupt enable flag are set by INT0, INT1, or INT2, a HOLD
 mode release signal is generated, releasing HOLD mode. The microcontroller then enters
 HALT mode (main oscillation by RC oscillator). When the interrupt is accepted, the CPU
 switches from HALT mode to normal operating mode.
 - When a signal change that sets the interrupt flag is input to P70 or P71 that is specified for level-triggered interrupts in HOLD mode, the interrupt flag is set. In this case, HOLD mode is released if the corresponding interrupt enable flag is set.
 - When a signal change that sets the interrupt flag is input to P72 in HOLD mode, the interrupt flag is set. In this case, HOLD mode is released if the corresponding interrupt enable flag is set. The interrupt flag, however, cannot be set by a rising edge occurring when P72 data that is established when HOLD mode is entered is in the high state, or by a falling edge occurring when P72 data that is established when HOLD mode is entered is in the low state. Consequently, to release HOLD mode with P72, it is recommended that P72 be used in both-edge interrupt mode.

	Input	Output	Interrupt Input Signal Detection	Timer 0 Count Input	Capture Input	Hold Mode Release
P70	With	N-channel open drain	L level, H level,		Timer 0L	Enabled
P71	programmable	CMOS	L edge, H edge		Timer 0H	Enabled
P72	pull-up		L edge, H edge,	Available	Timer 0L	Enabled
P73	resistor		both edges	Available	Timer 0H	-

Note: P70 and P71 HOLD modes can be released only when level detection is set.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE5C	0000 0000	R/W	P7	P73DDR	P72DDR	P71DDR	P70DDR	P73	P72	P71	P70
FE5D	0000 0000	R/W	I01CR	INT1LH	INT1LV	INT1IF	INT1IE	INT0LH	INT0LV	INT0IF	INT0IE
FE5E	0000 0000	R/W	I23CR	INT3HEG	INT3LEG	INT3IF	INT3IE	INT2HEG	INT2LEG	INT2IF	INT2IE
FE5F	0000 0000	R/W	ISL	ST0HCP	ST0LCP	BTIMC1	BTIMC0	BUZON	NFSEL	NFON	ST0IN

3.5.3 Related Registers

3.5.3.1 Port 7 control register (P7)

- 1) This register is an 8-bit register that controls the I/O of port 7 data and pull-up resistors.
- When this register is read with an instruction, data at pins P70 to P73 is read into bits 0 to 3. Bits 4 to 7 are loaded with bits 4 to 7 of register P7. If P7 (FE5C) is manipulated using a NOT1, CLR1, SET1, DBZ, DBNZ, INC, or DEC instruction, the contents of the register are referenced as bits 0 to 3 instead of the data at the pins.
- 3) Port 7 data can always be read regardless of the I/O state of the port.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE5C	0000 0000	R/W	P7	P73DDR	P72DDR	P71DDR	P70DDR	P73DT	P72DT	P71DT	P70DT

Regist	Register Data		Port P7n State	Internal Bull un Besieter	
P7n	P7nDDR	Input	Output	Internal Pull-up Resistor	
0	0	Enabled	Open	Off	
1	0	Enabled	Internal pull-up resistor	On	
0	1	Enabled	CMOS-low	Off	
1	1	Enabled	CMOS-high (P70 is open)	On	

P73DDR (bit 7): P73 I/O control

A 1 or 0 in this bit controls the output (CMOS) or input of pin P73.

P72DDR (bit 6): P72 I/O control

A 1 or 0 in this bit controls the output (CMOS) or input of pin P72.

P71DDR (bit 5): P71 I/O control

A 1 or 0 in this bit controls the output (CMOS) or input of pin P71.

P70DDR (bit 4): P70 I/O control

A 1 or 0 in this bit controls the output (N-channel open drain) or input of pin P70.

P73DT (bit 3): P73 data

The value of this bit is output from pin P73 when P73DDR is set to 1.

The value of this bit (1 or 0) turns on or off the internal pull-up resistor for pin P73.

P72DT (bit 2): P72 data

The value of this bit is output from pin P72 when P72DDR is set to 1.

The value of this bit (1 or 0) turns on or off the internal pull-up resistor for pin P72.

P71DT (bit 1): P71 data

The value of this bit is output from pin P71 when P71DDR is set to 1.

The value of this bit (1 or 0) turns on or off the internal pull-up resistor for pin P71.

P70DT (bit 0): P70 data

The value of this bit is output from pin P70 when P70DDR is set to 1.

Since this bit is N-channel open drain output type, however, it is placed in the high-impedance state when P70DT is set to 1.

The value of this bit (1 or 0) turns on or off the internal pull-up resistor for pin P70.

3.5.3.2 External interrupt 0/1 control register (I01CR)

1) This register is an 8-bit register that controls external interrupts 0 and 1.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE5D	0000 0000	R/W	I01CR	INT1LH	INT1LV	INT1IF	INT1IE	INT0LH	INT0LV	INT0IF	INT0IE

INT1LH (bit 7): INT1 detection polarity select

INT1LV (bit 6): INT1 detection level/edge select

INT1LH	INT1LV	INT1 Interrupt Conditions (P71 Pin Data)
0	0	Falling edge detected
0	1	Low level detected
1	0	Rising edge detected
1	1	High level detected

INT1IF (bit 5): INT1 interrupt source flag

This bit is set when the conditions specified by INT1LH and INT1LV are satisfied. When this bit and the INT1 interrupt request enable bit (INT1IE) are set to 1, a HOLD mode release signal and an interrupt request to vector address 000BH are generated.

This bit must be cleared with an instruction as it is not cleared automatically.

INT1IE (bit 4): INT1 interrupt request enable

When this bit and INT1IF are set to 1, a HOLD mode release signal and an interrupt request to vector address 000BH are generated.

INT0LH (bit 3): INT0 detection polarity select

INT0LV (bit 2): INT0 detection level/edge select

INT0LH	INT0LV	INT0 Interrupt Conditions (P70 Pin Data)			
0	0	Falling edge detected			
0	1	Low level detected			
1	0	Rising edge detected			
1	1	High level detected			

INT0IF (bit 1): INT0 interrupt source flag

This bit is set when the conditions specified by INT0LH and INT0LV are satisfied. When this bit and the INT0 interrupt request enable bit (INT0IE) are set to 1, a HOLD mode release signal and an interrupt request to vector address 0003H are generated.

This bit must be cleared with an instruction as it is not cleared automatically.

INT0IE (bit 0): INT0 interrupt request enable

When this bit and INT0IF are set to 1, a HOLD mode release signal and an interrupt request to vector address 0003H are generated.

3.5.3.3 External interrupt 2/3 control register (I23CR)

1) This register is an 8 bit register that controls external interrupts 2 and 3.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE5E	0000 0000	R/W	I23CR	INT3HEG	INT3LEG	INT3IF	INT3IE	INT2HEG	INT2LEG	INT2IF	INT2IE

INT3HEG (bit 7): INT3 rising edge detection control

INT3LEG (bit 6): INT3 falling edge detection control

INT3HEG	INT3LEG	INT3 Interrupt Conditions (P73 Pin Data)
0	0	No edge detected
0	1	Falling edge detected
1	0	Rising edge detected
1	1	Both edges detected

INT3IF (bit 5): INT3 interrupt source flag

This bit is set when the conditions specified by INT3HEG and INT3LEG are satisfied. When this bit and the INT3 interrupt request enable bit (INT3IE) are set to 1, an interrupt request to vector address 001BH is generated.

This bit must be cleared with an instruction as it is not cleared automatically.

INT3IE (bit 4): INT3 interrupt request enable

When this bit and INT3IF are set to 1, an interrupt request to vector address 001BH is generated.

INT2HEG (bit 3): INT2 rising edge detection control

INT2LEG (bit 2): INT2 falling edge detection control

INT2HEG	INT2LEG	INT2 Interrupt Conditions (P72 Pin Data)
0	0	No edge detected
0	1	Falling edge detected
1	0	Rising edge detected
1	1	Both edges detected

INT2IF (bit 1): INT2 interrupt source flag

This bit is set when the conditions specified by INT2HEG and INT2LEG are satisfied.

When this bit and the INT2 interrupt request enable bit (INT2IE) are set to 1, a HOLD mode release signal and an interrupt request to vector address 0013H are generated.

The interrupt flag, however, cannot be set by a rising edge occurring when P72 data that is established when HOLD mode is entered is in the high state, or by a falling edge occurring when P72 data that is established when the HOLD mode is entered is in the low state. Consequently, to release HOLD mode with P72, it is recommended that P72 be used in the double-edge interrupt mode.

This bit must be cleared with an instruction as it is not cleared automatically.

INT2IE (bit 0): INT2 interrupt request enable

When this bit and INT2IF are set to 1, a HOLD mode release signal and an interrupt request to vector address 0013H are generated.

3.5.3.4 Input signal select register (ISL)

1) This register is an 8-bit register that controls the timer 0 input, noise filter time constant, buzzer output, and base timer clock.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE5F	0000 0000	R/W	ISL	ST0HCP	ST0LCP	BTIMC1	BTIMC0	BUZON	NFSEL	NFON	ST0IN

ST0HCP (bit 7): Timer 0H capture signal input port select

This bit selects the timer 0H capture signal input port.

When this bit is set to 1, a timer 0H capture signal is generated when an input that satisfies the INT1 interrupt detection conditions is supplied to P71. If the INT1 interrupt detection mode is set to level detection, capture signals are generated at intervals of 1 Tcyc as long as the detection level is present at P71

When this bit is set to 0, a timer 0H capture signal is generated when an input that satisfies the INT3 interrupt detection conditions is supplied to P73.

ST0LCP (bit 6): Timer 0L capture signal input port select

This bit selects the timer 0L capture signal input port.

When this bit is set to 1, a timer 0L capture signal is generated when an input that satisfies the INT0 interrupt detection conditions is supplied to P70. If the INT0 interrupt detection mode is set to level detection, capture signals are generated at intervals of 1 Tcyc as long as the detection level is present at P70.

When this bit is set to 0, a timer 0L capture signal is generated when an input that satisfies the INT2 interrupt detection conditions is supplied to P72.

BTIMC1 (bit 5): Base timer clock select

BTIMC0 (bit 4): Base timer clock select

BTIMC1	BTIMC0	Base Timer Input Clock			
0	0	Subclock			
0	1	Cycle clock			
1	0	Subclock			
1	1	Timer/counter 0 prescaler output			

BUZON (bit 3): Buzzer output select

This bit enables the buzzer output (fBST/16).

When this bit is set to 1, a signal that is obtained by dividing the base timer clock by 16 is sent to port P17 as buzzer output.

When this bit is set to 0, the buzzer output is fixed at the high level.

NFSEL (bit 2): Noise filter time constant select

NFON (bit 1): Noise filter time constant select

NFSEL	NFON	Noise Filter Time Constant
0	0	1 Teye
0	1	128 Teye
1	0	1 Teye
1	1	32 Teye

ST0IN (bit 0): Timer 0 count clock input port select

This bit selects the timer 0 count clock signal input port.

When this bit is set to 1, a timer 0 count clock is generated when an input that satisfies the INT3 interrupt detection conditions is supplied to P73.

When this bit is set to 0, a timer 0 count clock is generated when an input that satisfies the INT2 interrupt detection conditions is supplied to P72.

Note: When timer 0L capture signal input or timer 0H capture signal input is specified for INT4 or INT5 together with port 7, the signal from port 7 is ignored.

3.5.4 Options

There is no user option for port 7.

3.5.5 HALT and HOLD Mode Operation

The pull-up resistor to P70 is turned off.

P71 to P73 retain the state that is established when HALT or HOLD mode is entered.

3.6 Port 8

3.6.1 Overview

Port 8 is a 7-bit I/O port that consists of a data latch and a control circuit. The I/O direction is determined in 1-bit units.

The output type of port 8 is N-channel open drain.

There is no user option for this port.

3.6.2 Functions

- 1) Input/output port (7 bits: P80 to P86)
 - The port 8 data latch (P8: FE63) is used to provide control over L level output and output disable switching.
- 2) Analog voltage input function
 - P80 to P86 are used to receive the analog voltage inputs to the AD converter.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE63	H111 1111	R/W	P8	-	P86	P85	P84	P83	P82	P81	P80

3.6.3 Related Registers

3.6.3.1 Port 8 data latch (P8)

- 1) This latch is a 7-bit register that controls the I/O operation of port 8.
- 2) When this register is read with an instruction, data at pins P80 to P86 is read into bits 0 to 6 of the register. However, if P8 (FE63) is manipulated using a NOT1, CLR1, SET1, DBZ, DBNZ, INC, or DEC instruction, the contents of the register are referenced instead of the data at the pins.
- 3) Port 8 data can always be read regardless of the I/O state of the port.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE63	H111 1111	R/W	P8	-	P86	P85	P84	P83	P82	P81	P80

Register Data		Port P8n State
P8n	Input	Output
0	Enabled	Low
1	Enabled	Open

3.6.4 HALT and HOLD Mode Operation

When in HALT or HOLD mode, port 8 retains the state that is established when HALT or HOLD mode is entered.

3.7 Port C

3.7.1 Overview

Port C is an 8-bit I/O port equipped with programmable pull-up resistors. It consists of a data control latch and a control circuit. The I/O direction is determined in 1-bit units.

As a user option, either CMOS output or N-channel open drain output can be specified as the output type in 1-bit units.

3.7.2 Functions

- 1) Input/output ports (8 bits: PC0 to PC7)
 - The port output data is controlled by the 8 bits of the port C data latch (PC: FE70).
 - The I/O direction is controlled by the 8 bits of the port C data direction control register (PCDDR: FE71) in 1-bit units.
 - As a user option, either CMOS output or N-channel open drain output can be specified as the output type.
 - Each port is equipped with a programmable pull-up resistor.

2) Multiplexed pin functions

 PC0 to PC2 also serve as SMIIC0 I/O function, PC3 and PC4 as RMPWM output function, and PC5 to PC7 as on-chip debugger function. The functions of these pins are described in the chapter on each functional block.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE70	0000 0000	R/W	PC	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
FE71	0000 0000	R/W	PCDDR	PC7DDR	PC6DDR	PC5DDR	PC4DDR	PC3DDR	PC2DDR	PC1DDR	PC0DDR

3.7.3 Related Registers

3.7.3.1 Port C data latch (PC)

- 1) This latch is an 8-bit register that controls the port C output data and pull-up resistors.
- 2) When this register is read with an instruction, data at pins PC0 to PC7 is read in. However, if PC (FE70) is manipulated using a NOT1, CLR1, SET1, DBZ, DBNZ, INC, or DEC instruction, the contents of the register are referenced instead of the data at the pins.
- 3) Port C data can always be read regardless of the I/O state of the port.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE70	0000 0000	R/W	PC	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0

3.7.3.2 Port C data direction register (PCDDR)

- 1) This register is an 8-bit register that controls the I/O direction of port C data in 1-bit units. Port PCn is placed in output mode when bit PCnDDR is set to 1 and in input mode when bit PCnDDR is set to 0.
- 2) When bit PCnDDR is set to 0 and bit PCn of the port C data latch is set to 1, port PCn becomes an input with a pull-up resistor.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE71	0000 0000	R/W	PCDDR	PC7DDR	PC6DDR	PC5DDR	PC4DDR	PC3DDR	PC2DDR	PC1DDR	PC0DDR

Regis	ter Data		Port PCn State	Internal Pull-up
PCn	PCnDDR	Input	Output	Resistor
0	0	Enabled	Open	Off
1	0	Enabled	Internal pull-up resistor	On
0	1	Enabled	Low	Off
1	1	Enabled	High/open (CMOS/N-channel open drain)	Off

3.7.4 Options

Two user options are available.

CMOS output (with a programmable pull-up resistor)
 N-channel open drain output (with a programmable pull-up resistor)

3.7.5 HALT and HOLD Mode Operation

When in HALT or HOLD mode, port C retains the state that is established when HALT or HOLD mode is entered.

3.8 Timer/Counter 0 (T0)

3.8.1 Overview

The timer/counter 0 (T0) incorporated in this series of microcontrollers is a 16-bit timer/counter that has the following four functions:

- 1) Mode 0: 8-bit programmable timer with a programmable prescaler (with two 8-bit capture registers) \times 2 channels
- 2) Mode 1: 8-bit programmable timer with a programmable prescaler (with two 8-bit capture registers) + 8-bit programmable counter (with two 8-bit capture registers)
- 3) Mode 2: 16-bit programmable timer with a programmable prescaler (with two 16-bit capture registers)
- 4) Mode 3: 16-bit programmable counter (with two 16-bit capture registers)

3.8.2 Functions

- 1) Mode 0: 8-bit programmable timer with a programmable prescaler (with two 8-bit capture registers) × 2 channels
 - Two independent 8-bit programmable timers (T0L and T0H) run on the clock (with a period of 1 to 256 Tcyc) from an 8-bit programmable prescaler.
 - The contents of T0L are captured into the capture register T0CAL on external input detection signals from the P70/INT0/T0LCP, P72/INT2/T0IN/T0LCP, and P20 to P27 timer 0L capture input pins.
 - The contents of T0L are captured into the capture register T0CA1L on external input detection signals from the P20/INT5/T1IN/T0LCP/T0HCP/INT6/T0LCP1 pin.
 - The contents of T0H are captured into the capture register T0CAH on external input detection signals from the P71/INT1/T0HCP, P73/INT3/T0IN/T0HCP, and P20 to P27 timer 0H capture input pins.
 - The contents of T0H are captured into the capture register T0CA1H on external input detection signals from the P24/INT5/T1IN/T0LCP/T0HCP/INT7/T0HCP1 pin.

```
TOL \text{ period} = (TOLR + 1) \times (TOPRR + 1) \times Tcyc

TOH \text{ period} = (TOHR + 1) \times (TOPRR + 1) \times Tcyc
```

Tcyc = Period of cycle clock

- 2) Mode 1: 8-bit programmable timer with a programmable prescaler (with two 8-bit capture registers) + 8-bit programmable counter (with two 8-bit capture registers)
 - T0L serves as an 8-bit programmable counter that counts the number of external input detection signals from the P72/INT2/T0IN and P73/INT3/T0IN pins.
 - T0H serves as an 8-bit programmable timer that runs on the clock (with a period of 1 to 256 Tcyc) from an 8-bit programmable prescaler.
 - The contents of T0L are captured into the capture register T0CAL on external input detection signals from the P70/INT0/T0LCP, P72/INT2/T0IN/T0LCP, and P20 to P27 timer 0L capture input pins.
 - The contents of T0L are captured into the capture register T0CA1L on external input detection signals from the P20/INT5/T1IN/T0LCP/T0HCP/INT6/T0LCP1 pin.
 - The contents of T0H are captured into the capture register T0CAH on external input detection signals from the P71/INT1/T0HCP, P73/INT3/T0IN/T0HCP, and P20 to P27 timer 0H capture input pins.
 - The contents of T0H are captured into the capture register T0CA1H on external input detection signals from the P24/INT5/T1IN/T0LCP/T0HCP/INT7/T0HCP1 pin.

```
T0L period = (T0LR + 1)
T0H period = (T0HR + 1) \times (T0PRR + 1) \times Tcyc
```

- 3) Mode 2: 16-bit programmable timer with a programmable prescaler (with two 16-bit capture registers)
 - Timer/counter 0 serves as a 16-bit programmable timer that runs on the clock (with a period of 1 to 256 Tcyc) from an 8-bit programmable prescaler.
 - The contents of T0L and T0H are captured into the capture registers T0CAL and T0CAH at the same time on external input detection signals from the P71/INT1/T0HCP, P73/INT3/T0IN, and P20 to P27 timer 0H capture input pins.
 - The contents of T0L and T0H are captured into the capture registers T0CA1L and T0CA1H at the same time on external input detection signals from the P24/INT5/T1IN/T0LCP/T0HCP/INT7/T0HCP1 pin.

T0 period = ([T0HR, T0LR] + 1)
$$\times$$
 (T0PRR +1) \times Tcyc
16 bits

- 4) Mode 3: 16-bit programmable counter (with two 16-bit capture registers)
 - Timer/counter 0 serves as a 16-bit programmable counter that counts the number of external input detection signals from the P72/INT2/T0IN and P73/INT3/T0IN pins.
 - The contents of T0L and T0H are captured into the capture registers T0CAL and T0CAH at the same time on external input detection signals from the P71/INT1/T0HCP, P73/INT3/T0IN, and P20 to P27 timer 0H capture input pins.
 - The contents of T0L and T0H are captured into the capture registers T0CA1L and T0CA1H at the same time on external input detection signals from the P24/INT5/T1IN/T0LCP/T0HCP/INT7/T0HCP1 pin.

T0 period =
$$[T0HR, T0LR] + 1$$

16 bits

5) Interrupt generation

T0L or T0H interrupt request is generated at the counter interval for T0L or T0H if the interrupt request enable bit is set.

- 6) It is necessary to manipulate the following special function registers to control timer/counter 0 (T0).
 - TOCNT, TOPRR, TOL, TOH, TOLR, TOHR, ISL, I01CR, I23CR, I45CR, I67CR

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE10	0000 0000	R/W	T0CNT	T0HRUN	T0LRUN	T0LONG	T0LEXT	ТОНСМР	T0HIE	T0LCMP	T0LIE
FE11	0000 0000	R/W	T0PRR	T0PRR7	T0PRR6	T0PRR5	T0PRR4	T0PRR3	T0PRR2	T0PRR1	T0PRR0
FE12	0000 0000	R	T0L	T0L7	T0L6	T0L5	T0L4	T0L3	T0L2	T0L1	T0L0
FE13	0000 0000	R	T0H	T0H7	T0H6	T0H5	T0H4	T0H3	T0H2	T0H1	T0H0
FE14	0000 0000	R/W	T0LR	T0LR7	T0LR6	T0LR5	T0LR4	T0LR3	T0LR2	T0LR1	T0LR0
FE15	0000 0000	R/W	T0HR	T0HR7	T0HR6	T0HR5	T0HR4	T0HR3	T0HR2	T0HR1	T0HR0
FE16	XXXX XXXX	R	T0CAL	T0CAL7	T0CAL6	T0CAL5	T0CAL4	T0CAL3	T0CAL2	T0CAL1	T0CAL0
FE17	XXXX XXXX	R	T0CAH	T0CAH7	T0CAH6	T0CAH5	T0CAH4	T0CAH3	T0CAH2	T0CAH1	T0CAH0
FE1E	XXXX XXXX	R	T0CA1L	T0CA1L7	T0CA1L6	T0CA1L5	T0CA1L4	T0CA1L3	T0CA1L2	T0CA1L1	T0CA1L0
FE1F	XXXXX XXXX	R	T0CA1H	T0CA1H7	T0CA1H6	T0CA1H5	T0CA1H4	T0CA1H3	T0CA1H2	T0CA1H1	T0CA1H0

3.8.3 Circuit Configuration

3.8.3.1 Timer/counter 0 control register (T0CNT) (8-bit register)

1) This register controls the operation and interrupts of T0L and T0H.

3.8.3.2 Programmable prescaler match register (T0PRR) (8-bit register)

1) This register stores the match data for the programmable prescaler.

3.8.3.3 Programmable prescaler (8-bit counter)

1) Start/stop: This register runs in modes other than HOLD mode.

2) Count clock: Cycle clock (period = 1 Tcyc).

3) Match signal: A match signal is generated when the count value matches the value of register

TOPRR (period: 1 to 256 Tcyc)

4) Reset: The counter starts counting from 0 when a match signal occurs or when data is

loaded into TOPRR.

3.8.3.4 Timer/counter 0 low byte (T0L) (8-bit counter)

1) Start/stop: Stop/start is controlled by the 0/1 value of T0LRUN (timer/counter 0 control

register, bit 6).

2) Count clock: Either a prescaler match signal or an external signal must be selected through the

0/1 value of T0LEXT (timer/counter 0 control register, bit 4).

3) Match signal: A match signal is generated when the count value matches the value of the match

buffer register (16 bits of data must match in the 16-bit mode).

4) Reset: When the counter stops operation or a match signal is generated.

3.8.3.5 Timer/counter 0 high byte (T0H) (8-bit counter)

1) Start/stop: Stop/start is controlled by the 0/1 value of T0HRUN (timer/counter 0 control

register, bit 7).

2) Count clock: Either a prescaler match signal or a TOL match signal must be selected through the

0/1 value of T0LONG (timer/counter 0 control register, bit 5).

3) Match signal: A match signal is generated when the count value matches the value of the match

buffer register (16 bits of data must match in the 16-bit mode).

4) Reset: When the counter stops operation or a match signal is generated.

3.8.3.6 Timer/counter 0 match data register low byte (T0LR) (8-bit register with a match buffer register)

- 1) This register is used to store the match data for T0L. It has an 8-bit match buffer register. A match signal is generated when the value of this match buffer register matches the value of the timer/counter 0 low byte (16 bits of data must match in the 16-bit mode).
- 2) The match buffer register is updated as follows:
 - When it is inactive (T0LRUN=0), the match buffer register matches T0LR.
 - When it is active (T0LRUN=1), the match buffer register is loaded with the contents of T0LR when a match signal is generated.

3.8.3.7 Timer/counter 0 match data register high byte (T0HR) (8-bit register with a match buffer register)

- 1) This register is used to store the match data for T0H. It has an 8-bit match buffer register. A match signal is generated when the value of this match buffer register matches the value of the timer/counter 0 high byte (16 bits of data must match in the 16-bit mode).
- 2) The match buffer register is updated as follows:
 - When it is inactive (T0HRUN=0), the match buffer register matches T0HR.
 - When it is active (T0HRUN=1), the match buffer register is loaded with the contents of T0HR when a match signal is generated.

3.8.3.8 Timer/counter 0 capture register low byte (T0CAL) (8-bit register)

1) Capture clock: External input detection signals from the P70/INT0/T0LCP, P72/INT2/T0IN/

T0LCP, and P20 to P27 timer 0L capture input pins when T0LONG (timer/counter 0 control register, bit 5) is set to 0.

External input detection signals from the P71/INT1/T0HCP, P73/INT3/T0IN, and P20 to P27 timer 0H capture input pins when T0LONG (timer/counter 0 control

register, bit 5) is set to 1.

2) Capture data: Contents of timer/counter 0 low byte (T0L).

3.8.3.9 Timer/counter 0 capture register high byte (T0CAH) (8-bit register)

1) Capture clock: External input detection signals from the P71/INT1/T0HCP, P73/INT3/T0IN/

TOHCP, and P20 to P27 timer 0H capture input pins

2) Capture data: Contents of timer/counter 0 high byte (T0H)

3.8.3.10 Timer/counter 0 capture register 1 low byte (T0CA1L) (8-bit register)

1) Capture clock: External input detection signals from the P20/INT5/T1IN/T0LCP/T0HCP/INT6/

TOLCP1 pin when TOLONG (timer/counter 0 control register, bit 5) is set to 0.

External input detection signals from the P24/INT5/T1IN/T0LCP/T0HCP/INT7/T0HCP1 pin when T0LONG (timer/counter 0 control register, bit 5) is set to 1.

2) Capture data: Contents of timer/counter 0 low byte (T0L).

3.8.3.11 Timer/counter 0 capture register 1 high byte (T0CA1H) (8-bit register)

1) Capture clock: External input detection signals from the P24/INT5/T1IN/T0LCP/T0HCP/INT7/

T0HCP1 pin.

2) Capture data: Contents of timer/counter 0 high byte (T0H)

Table 3.8.1 Timer 0 (T0H, T0L) Count Clocks

Mode	T0LONG	T0LEXT	T0H Count Clock	T0L Count Clock	[T0H, T0L] Count Clock
0	0	0	T0PRR match signal	TOPRR match signal	_
1	0	1	TOPRR match signal	External signal	_
2	1	0	_	_	T0PRR match signal
3	1	1	_	_	External signal

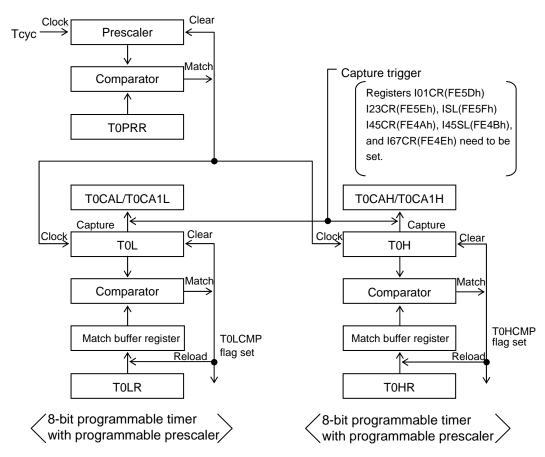


Figure 3.8.1 Mode 0 Block Diagram (T0LONG=0, T0LEXT=0)

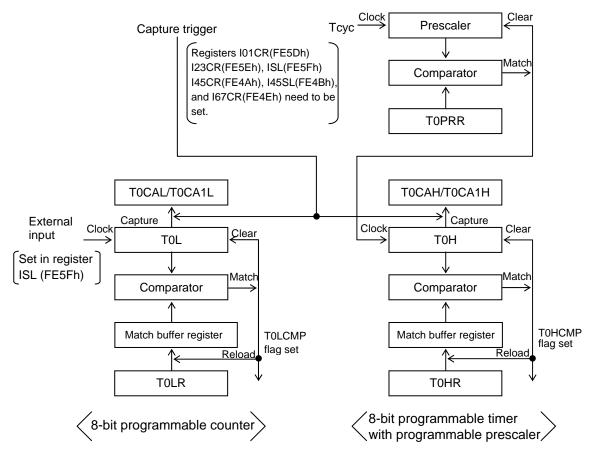


Figure 3.8.2 Mode 1 Block Diagram (T0LONG=0, T0LEXT=1)

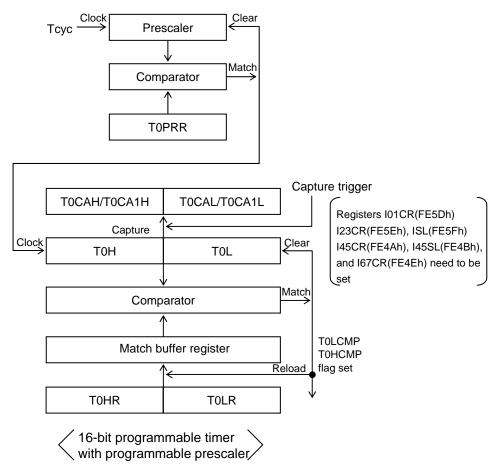


Figure 3.8.3 Mode 2 Block Diagram (T0LONG=1, T0LEXT=0)

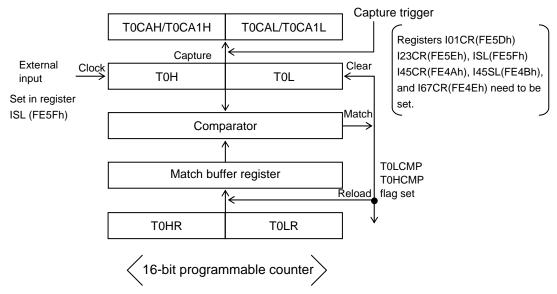


Figure 3.8.4 Mode 3 Block Diagram (T0LONG=1, T0LEXT=1)

3.8.4 Related Registers

3.8.4.1 Timer/counter 0 control register (T0CNT)

1) This register is an 8-bit register that controls the operation and interrupts of T0L and T0H.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE10	0000 0000	R/W	T0CNT	T0HRUN	T0LRUN	T0LONG	T0LEXT	ТОНСМР	T0HIE	T0LCMP	T0LIE

T0HRUN (bit 7): T0H count control

When this bit is set to 0, timer/counter 0 high byte (T0H) stops on a count value of 0. The match buffer register of T0H has the same value as T0HR.

When this bit is set to 1, timer/counter 0 high byte (T0H) performs the required counting operation. The match buffer register of T0H is loaded with the contents of T0HR when a match signal is generated.

T0LRUN (bit 6): T0L count control

When this bit is set to 0, timer/counter 0 low byte (T0L) stops on a count value of 0. The match buffer register of T0L has the same value as T0LR.

When this bit is set to 1, timer/counter 0 low byte (T0L) performs the required counting operation. The match buffer register of T0L is loaded with the contents of T0LR when a match signal is generated.

T0LONG (bit 5): Timer/counter 0 bit length select

When this bit is set to 0, timer/counter 0 high and low bytes serve as independent 8-bit timers/counters.

When this bit is set to 1, timer/counter 0 functions as a 16-bit timer/counter.

A match signal is generated when the count value of the 16-bit counter comprising T0H and T0L matches the contents of the match buffer registers of T0H and T0L.

T0LEXT (bit 4): T0L input clock select

When this bit is set to 0, the count clock for T0L is the match signal for the prescaler.

When this bit is set to 1, the count clock for T0L is an external input signal.

T0HCMP (bit 3): T0H match flag

This bit is set when the value of T0H matches the value of the match buffer register for T0H and a match signal is generated while T0H is running (T0HRUN=1). Its state does not change if no match signal is generated. Consequently, this flag must be cleared with an instruction.

In the 16-bit mode (T0LONG=1), a match must occur in all 16 bits of data for a match signal to occur.

T0HIE (bit 2): T0H interrupt request enable control

When this bit and T0HCMP are set to 1, an interrupt request to vector address 0023H is generated.

T0LCMP (bit 1): T0L match flag

This bit is set when the value of T0L matches the value of the match buffer register for T0L and a match signal is generated while T0L is running (T0LRUN=1). Its state does not change if no match signal is generated. Consequently, this flag must be cleared with an instruction.

In the 16-bit mode (T0LONG=1), a match must occur in all 16 bits of data for a match signal to occur.

T0LIE (bit 0): T0L interrupt request enable control

When this bit and TOLCMP are set to 1, an interrupt request to vector address 0013H is generated.

Notes:

- TOHCMP and TOLCMP must be cleared to 0 with an instruction.
- When the 16-bit mode is to be used, TOLRUN and TOHRUN must be set to the same value to control operation.
- TOLCMP and TOHCMP are set at the same time in the 16-bit mode.

3.8.4.2 Timer 0 programmable prescaler match register (T0PRR)

- 1) This register is an 8-bit register that is used to determine the clock period (Tpr) of timer/counter 0.
- 2) The count value of the prescaler starts at 0 when TOPRR is loaded with data.
- 3) $TPr = (T0PRR+1) \times Tcyc$ Tcyc = Period of cycle clock

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE11	0000 0000	R/W	T0PRR	T0PRR7	T0PRR6	T0PRR5	T0PRR4	T0PRR3	T0PRR2	T0PRR1	T0PRR0

3.8.4.3 Timer/counter 0 low byte (T0L)

1) This is a read-only 8-bit timer/counter. It counts the number of match signals from the prescaler or external signals.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE12	0000 0000	R	T0L	T0L7	T0L6	T0L5	T0L4	T0L3	T0L2	T0L1	T0L0

3.8.4.4 Timer/counter 0 high byte (T0H)

1) This is a read-only 8-bit timer/counter. It counts the number of match signals from the prescaler or overflows occurring in T0L.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE13	0000 0000	R	ТОН	T0H7	T0H6	T0H5	T0H4	Т0Н3	T0H2	T0H1	ТОНО

3.8.4.5 Timer/counter 0 match data register low byte (T0LR)

- 1) This register is used to store the match data for T0L. It has an 8-bit match buffer register. A match signal is generated when the value of this match buffer register matches the value of the timer/counter 0 low byte (16 bits of data must match in the 16-bit mode).
- 2) The match buffer register is updated as follows:
 - When it is inactive (T0LRUN=0), the match buffer register matches T0LR
 - When it is active (T0LRUN=1), the match buffer register is loaded with the contents of T0LR when a match signal is generated.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE14	0000 0000	R/W	T0LR	T0LR7	T0LR6	T0LR5	T0LR4	T0LR3	T0LR2	T0LR1	T0LR0

3.8.4.6 Timer/counter 0 match data register high byte (T0HR)

- 1) This register is used to store the match data for T0H. It has an 8-bit match buffer register. A match signal is generated when the value of this match buffer register matches the value of the timer/counter 0 high byte (16 bits of data must match in the 16-bit mode).
- 2) The match buffer register is updated as follows:
 - When it is inactive (T0HRUN=0), the match buffer register matches T0HR.
 - When it is active (T0HRUN=1), the match buffer register is loaded with the contents of T0HR when a match signal is generated.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE15	0000 0000	R/W	T0HR	T0HR7	T0HR6	T0HR5	T0HR4	T0HR3	T0HR2	T0HR1	T0HR0

3.8.4.7 Timer/counter 0 capture register low byte (T0CAL)

1) This register is a read-only 8-bit register that is used to capture the contents of timer/counter 0 low byte (T0L) on an external input detection signal.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE16	XXXX XXXX	R	T0CAL	T0CAL7	T0CAL6	T0CAL5	T0CAL4	T0CAL3	T0CAL2	T0CAL1	T0CAL0

3.8.4.8 Timer/counter 0 capture register high byte (T0CAH)

1) This register is a read-only 8-bit register that is used to capture the contents of timer/counter 0 high byte (T0H) on an external input detection signal.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE17	XXXX XXXX	R	T0CAH	T0CAH7	T0CAH6	T0CAH5	T0CAH4	T0CAH3	T0CAH2	T0CAH1	T0CAH0

3.8.4.9 Timer/counter 0 capture register 1 low byte (T0CA1L)

1) This register is a read-only 8-bit register that is used to capture the contents of timer/counter 0 low byte (T0L) on an external input detection signal.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE1E	XXXX XXXX	R	T0CA1L	T0CA1L7	T0CA1L6	T0CA1L5	T0CA1L4	T0CA1L3	T0CA1L2	T0CA1L1	T0CA1L0

3.8.4.10 Timer/counter 0 capture register 1 high byte (T0CA1H)

1) This register is a read-only 8-bit register that is used to capture the contents of timer/counter 0 high byte (T0H) on an external input detection signal.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE1F	XXXX XXXX	R	T0CA1H	T0CA1H7	T0CA1H6	T0CA1H5	T0CA1H4	T0CA1H3	T0CA1H2	T0CA1H1	T0CA1H0

3.9 High-speed Clock Counter

3.9.1 Overview

The high-speed clock counter is a 3-bit counter that has a real-time output capability. It is coupled with timer/counter 0 to form an 11- or 19-bit high-speed counter. It can accept clocks with a period of as short as $\frac{1}{6}$ the cycle time. The high-speed clock counter is also equipped with a 4-bit capture register incorporating a carry bit.

3.9.2 Functions

1) 11-bit or 19-bit programmable high-speed counter

Coupling the timer/counter 0 low byte (T0L) and timer/counter 0 high byte (T0H), the clock counter functions as an 11- or 19-bit programmable high-speed counter that counts the external input signals from the P72/INT2/T0IN/NKIN pin.

The coupled timer/counter 0 counts the number of overflows occurring in the 3-bit counter. In this case, timer 0 functions as a free-running counter.

2) Real-time output

A real-time output is placed at pin P17.

Real-time output is a function to change the state of output at a port in real-time when the count value of a counter reaches the required value. This output change occurs asynchronously to the microcontroller clock.

3) Capture operation

The value of the high-speed clock counter is captured into NKCOV and NKCAP2 to NKCAP0 in synchronization with the capture operation of T0L (timer 0 low byte). NKCOV is a carry into timer/counter 0. When this bit is set to 1, the capture value of timer/counter 0 must be corrected by +1. NKCAP2 to NKCAP0 carry the capture value of the high-speed clock counter.

4) Interrupt generation

The required timer/counter 0 flag is set when the high-speed clock counter and timer/counter 0 keep counting and their count value reaches "(timer 0 match register value + 1) \times 8 + NKCMP2 to NKCMP0." In this case, a T0L or T0H interrupt request is generated if the interrupt request enable bit is set.

- 5) It is necessary to manipulate the following special function registers to control the high-speed clock counter.
 - NKREG, P1TST, T0CNT, T0L, T0H, T0LR, T0HR, ISL, I01CR, I23CR

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE7D	0000 0000	R/W	NKREG	NKEN	NKCMP2	NKCMP1	NKCMP0	NKCOV	NKCAP2	NKCAP1	NKCAP0
FE47	0Н0Н Н0Н0	R/W	P1TST	FIX0	-	MRCSFT	-	-	DSNKOT	-	FIX0
FE10	0000 0000	R/W	T0CNT	T0HRUN	T0LRUN	T0LONG	T0LEXT	ТОНСМР	T0HIE	T0LCNP	T0LIE
FE12	0000 0000	R	T0L	T0L7	T0L6	T0L5	T0L4	T0L3	T0L2	T0L1	T0L0
FE13	0000 0000	R	T0H	T0H7	T0H6	T0H5	T0H4	T0H3	T0H2	T0H1	T0H0
FE14	0000 0000	R/W	T0LR	T0LR7	T0LR6	T0LR5	T0LR4	T0LR3	T0LR2	T0LR1	T0LR0
FE15	0000 0000	R/W	T0HR	T0HR7	T0HR6	T0HR5	T0HR4	T0HR3	T0HR2	T0HR1	T0HR0
FE16	XXXX XXXX	R	T0CAL	T0CAL7	T0CAL6	T0CAL5	T0CAL4	T0CAL3	T0CAL2	T0CAL1	T0CAL0
FE17	XXXX XXXX	R	T0CAH	T0CAH7	T0CAH6	T0CAH5	T0CAH4	T0CAH3	T0CAH2	T0CAH1	T0CAH0
FE5D	0000 0000	R/W	I01CR	INT1LH	INT1LV	INT1IF	INT1IE	INT0LH	INT0LV	INT0IF	INT0IE
FE5E	0000 0000	R/W	I23CR	INT3HEG	INT3LEG	INT3IF	INT3IE	INT2HEG	INT2LEG	INT2IF	INT2IE
FE5F	0000 0000	R/W	ISL	ST0HCP	ST0LCP	BTIMC1	BTIMC0	BUZON	NFSEL	NFON	ST0IN

3.9.3 Circuit Configuration

3.9.3.1 High-speed clock counter control register (NKREG) (8-bit register)

- 1) This register controls the high-speed clock counter. It contains the start bit, count value setting bit, and counter value capture bit.
- 2) Start/stop: Controlled by the start/stop operation of timer/counter 0 low byte (T0L) when NKEN=1.
- 3) Count clock: External input signals from the P72/INT2/T0IN/NKIN pin.
- 4) Real-time output: The real-time output port must be set to the output mode.

When NKEN (bit 7) is set to 0, the real-time output port relinquishes its real-time output capability and synchronizes itself with the data in the port latch.

When the value that will result in NKEN=1 is written into NKREG, the real-time output port restores its real-time output capability and holds the output data. In this state, the contents of the port latch must be replaced by the next real-time output value.

When the high-speed clock counter keeps counting and reaches the count value " $(T0LR+1) \times 8 + value$ of NKCMP2 to NKCMP0," the real-time output turns to the required value. Subsequently, the real-time output port relinquishes the real-time output capability and changes in synchronization with the data in the port latch. To restore the real-time output capability, a value that will result in NKEN=1 must be loaded into NKREG.

5) Capture clock: Generated in synchronization with the capture clock for T0L (timer 0 low byte).

3.9.3.2 P1TST register

- 1) The real-time output capability is enabled when DSNKOT (P1TST register, bit 2) is set to 0.
- 2) The real-time output capability is disabled when DSNKOT (P1TST register, bit 2) is set to 1. In this case, the real-time output pin functions as an ordinary port pin.

3.9.3.3 Timer/counter 0 operation

T0LEXT (T0CNT register, bit 4) must be set to 1 when a high-speed clock counter is to be used.

When NKEN=1 and T0LONG (T0CNT register, bit 5)=0, timer 0H runs in the normal mode and timer 0L is coupled with the high-speed clock counter to form an 11-bit free-running counter. When NKEN=1 and T0LONG (T0CNT register, bit 5)=1, timer 0 is coupled with the NK counter to form a 19-bit free-running counter.

When a free-running counter reaches the count value "(timer 0 match register value + 1) \times 8 + value of NKCMP2 to NKCMP0," a match detection signal occurs, generating the real-time output of the required value and setting the match flag of timer 0. No new match signal is detected until the next NKREG write operation is performed.

The match data for these free-running counters must always be greater than the current counter value. When updating the match data, the match register for timer 0 must be set up before loading the match register for NKREG (NKCMP2 to NKCMP0) with data. Even if the same value is loaded, it must be written into NKREG to start a search for a match.

3.9.4 Related Registers

3.9.4.1 High-speed clock counter control register (NKREG)

1) This register is an 8-bit register that controls the operation of the high-speed clock counter.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE7D	0000 0000	R/W	NKREG	NKEN	NKCMP2	NKCMP1	NKCMP0	NKCOV	NKCAP2	NKCAP1	NKCAP0

NKEN (bit 7): Counter control

When this bit is set to 0, the NK control circuit is inactive.

When this bit is set to 1, the NK control circuit is active. The timer 0 operation is switched to make an asynchronous high-speed counter with timer 0 being the high-order counter. Counting is started by setting this bit to 1 and starting timer 0 in the external clock mode.

NKCMP2 to NKCMP0 (bits 6 to 4): Match register

As soon as the counter reaches the count value "(timer 0 match register value+1) \times 8 + value of NKCMP2 to NKCMP0," a match detection signal occurs, generating the real-time output of the required value and setting the match flag of timer 0. Subsequently, the real-time output port relinquishes the real-time output capability and changes its state in synchronization with the data in the port latch. The real-time output capability and match detection function will not be resumed until the next NKREG write operation is performed.

NKCOV, NKCAP2 to NKCAP0 (bits 3 to 0): Capture register

The NK counter value is captured into these bits in synchronization with the timer 0L capture operation.

NKCOV is a carry into timer 0. When this bit is set to 1, the capture value of timer 0 must be corrected by +1.

NKCAP2 to NKCAP0 carry the capture value of the NK counter.

These bits are read only.

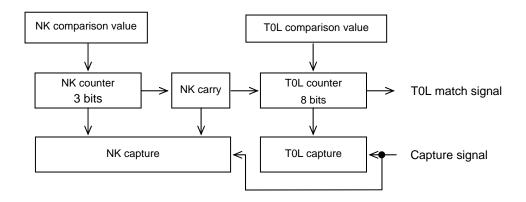


Figure 3.9.1 11-bit Counter Block Diagram (T0LONG=0 (Timer 0: 8-bit mode))

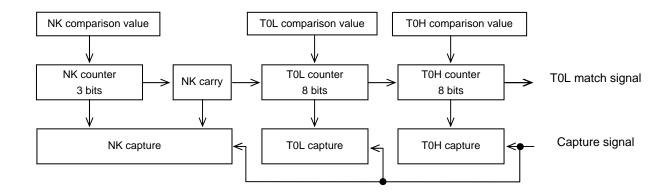


Figure 3.9.2 19-bit Counter Block Diagram (T0LONG=0 (Timer 0: 16-bit mode))

3.10 Timer/Counter 1 (T1)

3.10.1 Overview

The timer/counter 1 (T1) incorporated in this series of microcontrollers is a 16-bit timer/counter that has the following four functions:

- 1) Mode 0: 8-bit programmable timer with an 8-bit prescaler (with toggle output) + 8-bit programmable timer/counter (with toggle output)
- 2) Mode 1: 8-bit PWM with an 8-bit prescaler \times 2 channels
- 3) Mode 2: 16-bit programmable timer/counter with an 8-bit prescaler (with toggle output) (The low-order 8 bits may be used as a timer/counter with toggle output.)
- 4) Mode 3: 16-bit programmable timer with an 8-bit prescaler (with toggle output) (The low-order 8 bits may be used as a PWM.)

3.10.2 Functions

- 1) Mode 0: 8-bit programmable timer with an 8-bit prescaler (with toggle output) + 8-bit programmable timer/counter (with toggle output)
 - Two independent 8-bit programmable timers (T1L and T1H) run on a clock that is obtained by dividing the cycle clock by 2.
 - T1L functions as an 8-bit programmable timer/counter that counts the number of signals obtained by dividing the cycle clock by 2 or external events, while T1H functions as an 8-bit programmable timer that counts the number of signals obtained by dividing the cycle clock by 2.
 - T1PWML and T1PWMH generate a signal that toggles at the interval of T1L and T1H periods, respectively. (Note 1)

```
T1L period = (T1LR + 1) \times (T1LPRC \text{ count}) \times 2 \text{ Tcyc} or (T1LR + 1) \times (T1LPRC \text{ count}) events detected T1PWML period = T1L period \times 2 T1H period = (T1HR + 1) \times (T1HPRC \text{ count}) \times 2 \text{ Tcyc} T1PWMH period = T1H period \times 2
```

- 2) Mode 1: 8-bit PWM with an 8-bit prescaler \times 2 channels
 - Two independent 8-bit PWMs (T1PWML and T1PWMH) run on the cycle clock.

```
T1PWML period = 256 \times (T1LPRC \text{ count}) \times Tcyc

T1PWML low period = (T1LR + 1) \times (T1LPRC \text{ count}) \times Tcyc

T1PWMH period = 256 \times (T1HPRC \text{ count}) \times Tcyc

T1PWMH low period = (T1HR + 1) \times (T1HPRC \text{ count}) \times Tcyc
```

- 3) Mode 2: 16-bit programmable timer/counter with an 8-bit prescaler (with toggle output) (The low-order 8 bits may be used as a timer/counter with toggle output.)
 - T1 functions as a 16-bit programmable timer/counter that counts the number of signals obtained by dividing the cycle clock by 2 or external events. Since interrupts can occur from the low-order 8-bit timer (T1L) at the interval of T1L period, the low-order 8 bits of this 16-bit programmable timer/counter can be used as the reference timer.
 - T1PWML and T1PWMH generate a signal that toggles at the interval of T1L and T1 periods, respectively. (Note 1)

Timer 1

$$T1L \ period = (T1LR+1) \times (T1LPRC \ count) \times 2 \ Tcyc \quad or$$

$$(T1LR+1) \times (T1LPRC \ count) \ events \ detected$$

$$T1PWML \ period = T1L \ period \times 2$$

$$T1 \ period = (T1HR+1) \times (T1HPRC \ count) \times T1L \ period \quad or$$

$$(T1HR+1) \times (T1HPRC \ count) \times (T1LR+1) \times (T1LPRC \ count) \ events \ detected$$

$$T1PWMH \ period = T1 \ period \times 2$$

- 4) Mode 3: 16-bit programmable timer with an 8-bit prescaler (with toggle output) (The low-order 8 bits may be used as a PWM.)
 - A 16-bit programmable timer runs on the cycle clock.
 - The low-order 8 bits run as a PWM (T1PWML) having a period of 256 Tcyc.
 - T1PWMH generates a signal that toggles at the interval of T1 period. (Note 1)

T1PWML period =
$$256 \times (T1LPRC \text{ count}) \times Tcyc$$

T1PWML low period = $(T1LR + 1) \times (T1LPRC \text{ count}) \times Tcyc$
T1 period = $(T1HR + 1) \times (T1HPRC \text{ count}) \times T1PWML$ period
T1PWMH period = T1 period \times 2

5) Interrupt generation

A T1L or T1H interrupt request is generated at the counter period of T1L or T1H if the interrupt request enable bit is set.

- 6) It is necessary to manipulate the following special function registers to control timer 1 (T1).
 - T1CNT, T1L, T1H, T1LR, T1HR, T1PRR
 - P1, P1DDR, P1FCR
 - P2, P2DDR, I45CR, I45SL

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE18	0000 0000	R/W	T1CNT	T1HRUN	T1LRUN	T1LONG	T1PWM	T1HCMP	T1HIE	T1LCMP	T1LIE
FE1A	0000 0000	R	T1L	T1L7	T1L6	T1L5	T1L4	T1L3	T1L2	T1L1	T1L0
FE1B	0000 0000	R	T1H	T1H7	T1H6	T1H5	T1H4	T1H3	T1H2	T1H1	T1H0
FE1C	0000 0000	R/W	T1LR	T1LR7	T1LR6	T1LR5	T1LR4	T1LR3	T1LR2	T1LR1	T1LR0
FE1D	0000 0000	R/W	T1HR	T1HR7	T1HR6	T1HR5	T1HR4	T1HR3	T1HR2	T1HR1	T1HR0
FE19	0000 0000	R/W	T1PRR	T1HPRE	T1HPRC2	T1HPRC1	T1HPRC0	T1LPRE	T1LPRC2	T1LPRC1	T1LPRC0

Note 1: The output of T1PWML is fixed high when T1L is stopped. When T1L is running, the output of T1PWML is fixed low when T1LR = FFH. The output of T1PWMH is fixed high if T1H is stopped. If T1H is running, the output of T1PWMH is fixed low when T1HR = FFH.

3.10.3 Circuit Configuration

3.10.3.1 Timer 1 control register (T1CNT) (8-bit register)

1) This register controls the operation and interrupts of T1L and T1H.

3.10.3.2 Timer 1 prescaler control register (T1PRR) (8-bit counter)

1) This register sets the clocks for T1L and T1H.

3.10.3.3 Timer 1 prescaler low byte (8-bit counter)

1) Start/stop: Stop/start is controlled by the 0/1 value of T1LRUN (timer 1 control register, bit 6)

2) Count clock: Depends on the operating mode.

Mode	T1LONG	T1PWM	T1L Prescaler Count Clock
0	0	0	2 Tcyc/events (Note1)
1	0	1	1 Tcyc (Note 2)
2	1	0	2 Tcyc/events (Note 1)
3	1	1	1 Tcyc (Note 2)

Note 1: T1L serves as an event counter when INT4 or INT5 is specified as the timer 1 count clock input in the external interrupt 4/5 pin select register (I45SL). It serves as a timer that runs on 2 Tcyc as its count clock if neither INT4 nor INT5 is specified as the timer 1 count clock input.

Note 2: T1L will not run normally if INT4 or INT5 is specified as the timer 1 count clock input when T1PWM = 1. When T1PWM = 1, do not specify INT4 or INT5 as the timer 1 count clock input.

3) Prescaler count: Determined by the T1PRC value.

The count clock for T1L is output at intervals determined by the prescaler count.

T1LPRE	T1LPRC2	T1LPRC1	T1LPRC0	T1L Prescaler Count
0	_	_	_	1
1	0	0	0	2
1	0	0	1	4
1	0	1	0	8
1	0	1	1	16
1	1	0	0	32
1	1	0	1	64
1	1	1	0	128
1	1	1	1	256

4) Reset: When timer 1 stops operation or a T1L reset signal is generated.

Timer 1

3.10.3.4 Timer 1 prescaler high byte (8-bit counter)

1) Start/stop: Stop/start is controlled by the 0/1 value of T1HRUN (timer 1 control register, bit 7).

2) Count clock: Depends on the operating mode.

Mode	T1LONG	T1PWM	T1H Prescaler Count Clock
0	0	0	2 Teye
1	0	1	1 Teye
2	1	0	T1L match signal
3	1	1	256 × (T1LPRC count) × Tcyc

Prescaler count: Determined by the T1PRC value.
 The count clock for T1H is output at intervals determined by the prescaler count.

T1HPRE	T1HPRC2	T1HPRC1	T1HPRC0	T1H Prescaler Count
0	_	_	_	1
1	0	0	0	2
1	0	0	1	4
1	0	1	0	8
1	0	1	1	16
1	1	0	0	32
1	1	0	1	64
1	1	1	0	128
1	1	1	1	256

4) Reset: When timer 1 stops operation or a T1H reset signal is generated.

3.10.3.5 Timer 1 low byte (T1L) (8-bit counter)

1) Start/stop: Stop/start is controlled by the 0/1 value of T1LRUN (timer 1 control register, bit 6).

2) Count clock: T1L prescaler output clock

3) Match signal: A match signal is generated when the count value matches the value of the match

buffer register.

4) Reset: When the counter stops operation or a match signal occurs in the mode 0 or 2

condition.

3.10.3.6 Timer 1 high byte (T1H) (8-bit counter)

1) Start/stop: Stop/start is controlled by the 0/1 value of T1HRUN (timer 1 control register,

bit 7).

2) Count clock: T1H prescaler output clock

3) Match signal: A match signal is generated when the count value matches the value of the match

buffer register.

4) Reset: When the counter stops operation or a match signal occurs in the mode 0, 2, or 3

condition.

3.10.3.7 Timer 1 match data register low byte (T1LR) (8-bit register with a match buffer register)

- 1) This register is used to store the match data for T1L. It has an 8-bit match buffer register. A match signal is generated when the value of this match buffer register matches the value of timer 1 low byte (T1L).
- 2) The match buffer register is updated as follows:
 - When it is inactive (T1LRUN=0), the match buffer register matches T1LR.
 - When it is active (T1LRUN=1), the match buffer register is loaded with the contents of T1LR when the value of T1L reaches 0.

3.10.3.8 Timer 1 match data register high byte (T1HR) (8-bit register with a match buffer register)

- 1) This register is used to store the match data for T1H. It has an 8-bit match buffer register. A match signal is generated when the value of this match buffer register matches the value of timer 1 high byte (T1H).
- 2) The match buffer register is updated as follows:
 - When it is inactive (T1HRUN=0), the match buffer register matches T1HR.
 - When it is active (T1HRUN=1), the match buffer register is loaded with the contents of T1HR when the value of T1H reaches 0.

3.10.3.9 Timer 1 low byte output (T1PWML)

- 1) The output of T1PWML is fixed high when T1L is stopped. When T1L is running, the output of T1PWML is fixed low when T1LR = FFH.
- 2) When T1PWM (timer 1 control register, bit 4) is set to 0, timer 1 low byte output is a toggle output whose state changes on a T1L match signal.
- 3) When T1PWM (timer 1 control register, bit 4) is set to 1, timer 1 low byte output is a PWM output that is cleared on a T1L overflow and set on a T1L match signal.

3.10.3.10 Timer 1 high byte output (T1PWMH)

- 1) The T1PWMH output is fixed high when T1H is stopped. When T1H is running, the output of T1PWMH is fixed low when T1HR = FFH.
- 2) When T1PWM = 0 or T1LONG = 1, the timer 1 high byte output is a toggle output whose state changes on a T1H match signal.
- 3) When T1PWM = 1 and T1LONG = 0, timer 1 high byte output is a PWM output that is cleared on a T1H overflow and set on a T1H match signal.

Timer 1

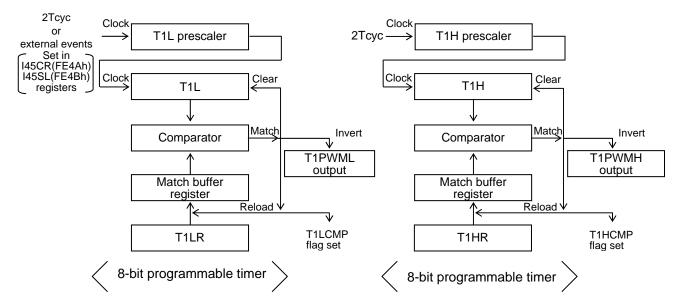


Figure 3.10.1 Mode 0 Block Diagram (T1LONG = 0, T1PWM = 0)

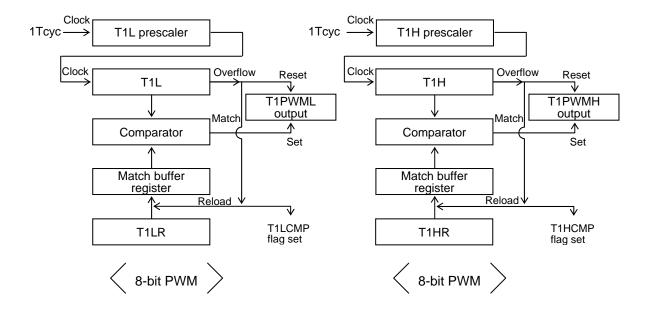


Figure 3.10.2 Mode 1 Block Diagram (T1LONG = 0, T1PWM = 1)

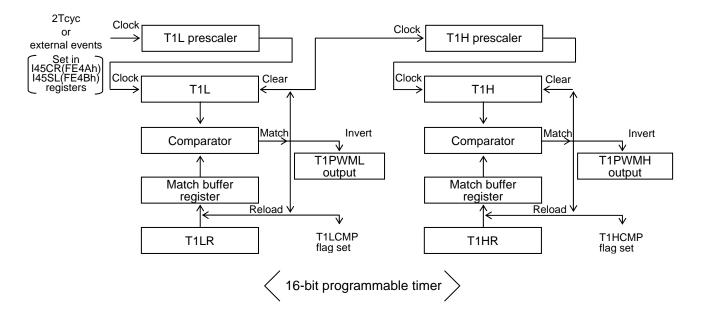


Figure 3.10.3 Mode 2 Block Diagram (T1LONG = 1, T1PWM = 0)

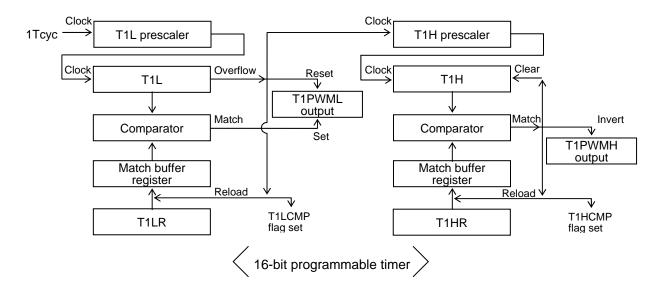


Figure 3.10.4 Mode 3 Block Diagram (T1LONG = 1, T1PWM = 1)

3.10.4 Related Registers

3.10.4.1 Timer 1 control register (T1CNT)

1) This register is an 8-bit register that controls the operation and interrupts of T1L and T1H.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE18	0000 0000	R/W	T1CNT	T1HRUN	T1LRUN	T1LONG	T1PWM	T1HCMP	T1HIE	T1LCMP	T1LIE

T1HRUN (bit 7): T1H count control

When this bit is set to 0, timer 1 high byte (T1H) stops on a count value of 0. The match buffer register of T1H has the same value as T1HR.

When this bit is set to 1, timer 1 high byte (T1H) performs the required counting operation.

T1LRUN (bit 6): T1L count control

When this bit is set to 0, timer 1 low byte (T1L) stops on a count value of 0. The match buffer register of T1L has the same value as T1LR.

When this bit is set to 1, timer 1 low byte (T1L) performs the required counting operation.

T1LONG (bit 5): Timer 1 bit length select

When this bit is set to 0, timer 1 high and low bytes serve as independent 8-bit timers.

When this bit is set to 1, timer 1 serves as a 16-bit timer since the timer 1 high byte (T1H) counts up at the interval of the timer 1 low byte (T1L).

Independent match signals are generated from T1H and T1L when their count value matches the contents of the corresponding match buffer register, regardless of the value of this bit.

T1PWM (bit 4): T1 output mode select

This bit and T1LONG (bit 5) determine the output mode of T1 (T1PWMH and T1PWML) as summarized in Table 3.10.1.

Table 3.10.1 Timer 1 Output (T1PWMH, T1PWML)

Mode	T1LONG	T1PWM		T1PWMH		T1PWML
0	0	0	Toggle output	Period: $(T1HR+1) \times (T1HPRC count) \times 4 \times Tcyc$	Toggle output or	Period: (T1LR+1) × (T1LPRC count) × 4 × Tcyc Period: 2(T1LR+1) × (T1LPRC count) events
1	0	1	PWM output	Period: 256 × (T1HPRC count) × Tcyc	PWM output	Period: 256 × (T1LPRC count) × Tcyc
2	1	0	Toggle output or	Period: (T1HR+1) × (T1HPRC count) × (T1PWML period) Period: 2(T1HR+1) × (T1HPRC count) × (T1LR+1) × (T1LPRC) events	Toggle output or	Period: (T1LR+1) × (T1LPRC count) × 4 × Tcyc Period: 2(T1LR+1) × (T1LPRC count) events
3	1	1	Toggle output	Period: (T1HR+1) × (T1HPRC count) × (T1PWML period) × 2	PWM output	Period: 256 × (T1LPRC count) × Tcyc

T1HCMP (bit 3): T1H match flag

This flag is set if T1H reaches 0 when T1H is active (T1HRUN = 1).

This flag must be cleared with an instruction.

T1HIE (bit 2): T1H interrupt request enable control

When this bit and T1HCMP are set to 1, an interrupt request to vector address 002BH is generated.

T1LCMP (bit 1): T1L match flag

This flag is set if T1L reaches 0 when T1L is active (T1LRUN = 1).

This flag must be cleared with an instruction.

T1LIE (bit 0): T1L interrupt request enable control

When this bit and T1LCMP are set to 1, an interrupt request to vector address 002BH is generated.

Note: T1HCMP and T1LCMP must be cleared to 0 with an instruction.

3.10.4.2 Timer 1 prescaler control register (T1PRR)

1) This register sets the count values for the timer 1 prescaler.

2) When the register value is changed while the timer is running, the change is reflected in the prescaler operation at the same timing when the match buffer register for the timer (T1L, T1H) is updated.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE19	0000 0000	R/W	T1PRR	T1HPRE	T1HPRC2	T1HPRC1	T1HPRC0	T1LPRE	T1LPRC2	T1LPRC1	T1LPRC0

T1HPRE (bit 7): Timer 1 prescaler high byte control

T1HPRC2 (bit 6): Timer 1 prescaler high byte control

T1HPRC1 (bit 5): Timer 1 prescaler high byte control

T1HPRC0 (bit 4): Timer 1 prescaler high byte control

T1HPRE	T1HPRC2	T1HPRC1	T1HPRC0	T1H Prescaler Count
0	_	_	_	1
1	0	0	0	2
1	0	0	1	4
1	0	1	0	8
1	0	1	1	16
1	1	0	0	32
1	1	0	1	64
1	1	1	0	128
1	1	1	1	256

T1LPRE (bit 3): Timer 1 prescaler low byte control

T1LPRC2 (bit 2): Timer 1 prescaler low byte control

T1LPRC1 (bit 1): Timer 1 prescaler low byte control

T1LPRC0 (bit 0): Timer 1 prescaler low byte control

Timer 1

T1LPRE	T1LPRC2	T1LPRC1	T1LPRC0	T1L Prescaler Count
0	_	_	_	1
1	0	0	0	2
1	0	0	1	4
1	0	1	0	8
1	0	1	1	16
1	1	0	0	32
1	1	0	1	64
1	1	1	0	128
1	1	1	1	256

3.10.4.3 Timer 1 low byte (T1L)

1) This is a read-only 8-bit timer. It counts up on the T1L prescaler output clock.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE1A	0000 0000	R	T1L	T1L7	T1L6	T1L5	T1L4	T1L3	T1L2	T1L1	T1L0

3.10.4.4 Timer 1 high byte (T1H)

1) This is a read-only 8-bit timer. It counts up on the T1H prescaler output clock.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE1B	0000 0000	R	T1H	T1H7	T1H6	T1H5	T1H4	T1H3	T1H2	T1H1	T1H0

3.10.4.5 Timer 1 match data register low byte (T1LR)

- 1) This register is used to store the match data for T1L. It has an 8-bit match buffer register. A match signal is generated when the value of this match buffer register matches the value of timer 1 low byte.
- 2) The match buffer register is updated as follows:
 - When it is inactive (T1LRUN=0), the match buffer register matches T1LR.
 - When it is active (T1LRUN=1), the match buffer register is loaded with the contents of T1LR when the value of T1L reaches 0.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE1C	0000 0000	R/W	T1LR	T1LR7	T1LR6	T1LR5	T1LR4	T1LR3	T1LR2	T1LR1	T1LR0

3.10.4.6 Timer 1 match data register high byte (T1HR)

- 1) This register is used to store the match data for T1H. It has an 8-bit match buffer register. A match signal is generated when the value of this match buffer register matches the value of timer 1 high byte.
- 2) The match buffer register is updated as follows:
 - When it is inactive (T1HRUN=0), the match buffer register matches T1HR.
 - When it is active (T1HRUN=1), the match buffer register is loaded with the contents of T1HR when the value of T1H reaches 0.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE1D	0000 0000	R/W	T1HR	T1HR7	T1HR6	T1HR5	T1HR4	T1HR3	T1HR2	T1HR1	T1HR0

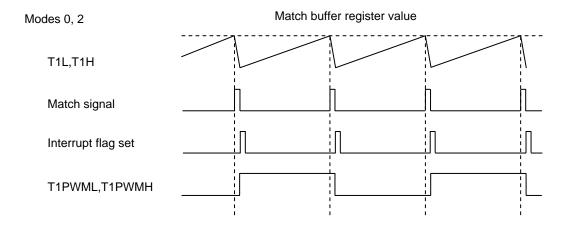


Figure 3.10.5 Modes 0, 2 Operating Waveform Example

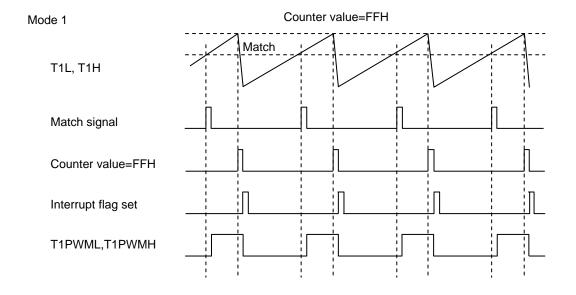


Figure 3.10.6 Mode 1 Operating Waveform Example

Timer 1

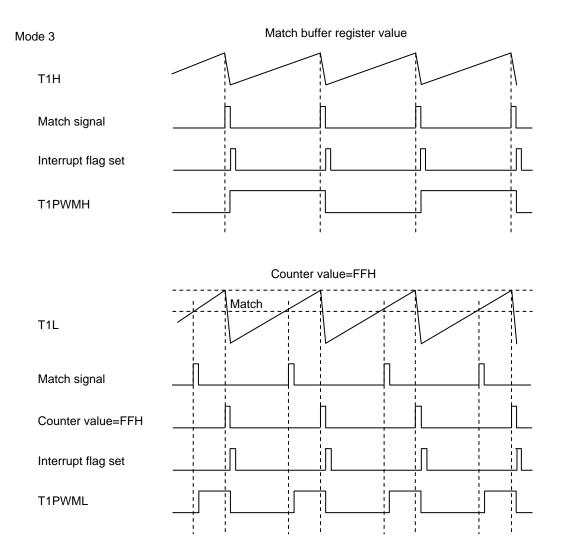


Figure 3.10.7 Mode 3 Operating Waveform Example

3.11 Timers 4 and 5 (T4, T5)

3.11.1 Overview

Timer 4 (T4) and timer 5 (T5) incorporated in this series of microcontrollers are 8-bit timers with two independently controlled 6-bit prescalers.

3.11.2 Functions

1) Timer 4 (T4)

Timer 4 is an 8-bit timer that runs on a 4 Tcyc, 16 Tcyc, or 64 Tcyc clock.

$$T4 \text{ period} = (T4R+1) \times 4^{n} \text{Tcyc} \quad (n=1, 2, 3)$$

Tcyc = Period of cycle clock

2) Timer 5 (T5)

Timer 5 is an 8-bit timer that runs on a 4 Tcyc, 16 Tcyc, or 64 Tcyc clock.

T5 period =
$$(T5R+1) \times 4^{n}$$
 Tcyc $(n=1, 2, 3)$

Tcyc = Period of cycle clock

3) Interrupt generation

An interrupt request to vector address 004BH is generated when the overflow flag is set at the interval of timer 4 or timer 5 period and the corresponding interrupt request enable bit is set.

- 4) It is necessary to manipulate the following special function registers to control timer 4 (T4) and timer 5 (T5).
 - T45CNT, T4R, T5R

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE3C	0000 0000	R/W	T45CNT	T5C1	T5C0	T4C1	T4C0	T5OV	T5IE	T4OV	T4IE
FE3E	0000 0000	R/W	T4R	T4R7	T4R6	T4R5	T4R4	T4R3	T4R2	T4R1	T4R0
FE3F	0000 0000	R/W	T5R	T5R7	T5R6	T5R5	T5R4	T5R3	T5R2	T5R1	T5R0

3.11.3 Circuit Configuration

3.11.3.1 Timer 4/5 control register (T45CNT) (8-bit register)

1) This register controls the operation and interrupts of T4 and T5.

3.11.3.2 Timer 4 counter (T4CTR) (8-bit counter)

- 1) This counter counts the number of clocks from the timer 4 prescaler (T4PR). The value of the timer 4 counter (T4CTR) is reset to 0 on the clock following the one that reaches value specified in the timer 4 period setting register (T4R), when the interrupt flag (T4OV) is set.
- 2) When T4C0 and T4C1 (T45CNT: FE3C, bits 4 and 5) are set to 0, the timer 4 counter stops at a count value of 0. In other cases, the timer 4 counter continues operation.
- 3) When data is loaded into T4R while timer 4 is running, both the timer 4 prescaler and counter are cleared and start counting again.

3.11.3.3 Timer 4 prescaler (T4PR) (6-bit counter)

1) This prescaler is used to define the clock period for timer 4 with the value of T4C0 and T4C1 (T45CNT: FE3C, bits 4 and 5).

Table 3.11.1 Timer 4 Count Clocks

T4C1	T4C0	T4 Count Clock
0	0	Timer 4 prescaler and timer/counter are in the reset state.
0	1	4 Tcyc
1	0	16 Tcyc
1	1	64 Tcyc

3.11.3.4 Timer 4 period setting register (T4R) (8-bit register)

- 1) This register defines the period of timer 4.
- 2) When data is loaded into T4R while timer 4 is running, both the timer 4 prescaler and counter are cleared and start counting again.

3.11.3.5 Timer 5 counter (T5CTR) (8-bit counter)

- 1) The timer 5 counter counts the number of clocks from the timer 5 prescaler (T5PR). The value of the timer 5 counter is reset to 0 on the clock following the one that reaches the value specified in the timer 5 period setting register (T5R), when the interrupt flag (T5OV) is set.
- 2) When T5C0 and T5C1 (T45CNT: FE3C, bits 6 and 7) are set to 0, the timer 5 counter stops at a count value of 0. In other cases, the timer 5 counter continues operation.
- 3) When data is loaded into T5R while timer 5 is running, both the timer 5 prescaler and counter are cleared and start counting again.

3.11.3.6 Timer 5 prescaler (T5PR) (6-bit counter)

1) This prescaler is used to define the clock period for timer 5 with the value of T5C0 and T5C1 (T45CNT: FE3C, bits 6 and 7).

Table 3.11.2 Timer 5 Count Clocks

T5C1	T5C0	T5 Count Clock
0	0	Timer 5 prescaler and timer/counter are in the reset state.
0	1	4 Tcyc
1	0	16 Tcyc
1	1	64 Tcyc

3.11.3.7 Timer 5 period setting register (T5R) (8-bit register)

- 1) This register defines the period of timer 5.
- 2) When data is loaded into T5R while timer 5 is running, both the timer 5 prescaler and counter are cleared and start counting again.

3.11.4 Related Registers

3.11.4.1 Timer 4/5 control register (T45CNT)

1) This register is an 8-bit register that controls the operation and interrupts of T4 and T5.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE3C	0000 0000	R/W	T45CNT	T5C1	T5C0	T4C1	T4C0	T5OV	T5IE	T4OV	T4IE

T5C1 (bit 7): T5 count clock control

T5C0 (bit 6): T5 count clock control

T5C1	T5C0	T5 Count Clock
0	0	Timer 5 prescaler and timer/counter are stopped in the reset state.
0	1	4 Teye
1	0	16 Tcyc
1	1	64 Tcyc

T4C1 (bit 5): T4 count clock control

T4C0 (bit 4): T4 count clock control

T4C1	T4C0	T4 Count Clock
0	0	Timer 4 prescaler and timer/counter are stopped in the reset state.
0	1	4 Teye
1	0	16 Teye
1	1	64 Tcyc

T5OV (bit 3): T5 overflow flag

This flag is set at the interval of the timer 5 period when timer 5 is running.

This flag must be cleared with an instruction.

T5IE (bit 2): T5 interrupt request enable control

An interrupt request to vector address 004BH is generated when this bit and T5OV are set to 1.

T4OV (bit 1): T4 overflow flag.

This flag is set at the interval of the timer 4 period when timer 4 is running.

This flag must be cleared with an instruction.

T4IE (bit 0): T4 interrupt request enable control

An interrupt request to vector address 004BH is generated when this bit and T4OV are set to 1.

3.11.4.2 Timer 4 period setting register (T4R)

1) This register is an 8-bit register for defining the period of timer 4.

Timer 4 period = $(T4R \text{ value}+1) \times Timer 4 \text{ prescaler value}$

(4, 16 or 64 Tcyc)

2) When data is loaded into T4R while timer 4 is running, both the timer 4 prescaler and counter are cleared and start counting again.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE3E	0000 0000	R/W	T4R	T4R7	T4R6	T4R5	T4R4	T4R3	T4R2	T4R1	T4R0

3.11.4.3 Timer 5 period setting register (T5R)

1) This register is an 8-bit register for defining the period of timer 5.

Timer 5 period = $(T5R \text{ value}+1) \times Timer 5 \text{ prescaler value}$

(4, 16 or 64 Tcyc)

2) When data is loaded into T5R while timer 5 is running, both the timer 5 prescaler and counter are cleared and start counting again.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE3F	0000 0000	R/W	T5R	T5R7	T5R6	T5R5	T5R4	T5R3	T5R2	T5R1	T5R0

3.12 Timers 6 and 7 (T6, T7)

3.12.1 Overview

Timer 6 (T6) and timer 7 (T7) incorporated in this series of microcontrollers are 8-bit timers with two independently controlled 6-bit prescalers.

3.12.2 Functions

1) Timer 6 (T6)

Timer 6 is an 8-bit timer that runs on a 4 Tcyc, 16 Tcyc, or 64 Tcyc clock. It can generate toggle waveforms at pin P06 whose frequency is equal to the period of timer 6.

T6 period =
$$(T6R+1) \times 4^{n}$$
Tcyc (n=1, 2, 3)

Tcyc = Period of cycle clock

2) Timer 7 (T7)

Timer 7 is an 8-bit timer that runs on a 4 Tcyc, 16 Tcyc, or 64 Tcyc clock. It can generate toggle waveforms at pin P07 whose frequency is equal to the period of timer 7.

T7 period =
$$(T7R+1) \times 4^{n}$$
Tcyc $(n=1, 2, 3)$

Tcyc = Period of cycle clock

3) Interrupt generation

An interrupt request to vector address 0043H is generated when the overflow flag is set at the interval of timer 6 or timer 7 period and the corresponding interrupt request enable bit is set.

- 4) It is necessary to manipulate the following special function registers to control timer 6 (T6) and timer 7 (T7).
 - T67CNT, T6R, T7R, P0FCR

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE78	0000 0000	R/W	T67CNT	T7C1	T7C0	T6C1	T6C0	T7OV	T7IE	T6OV	T6IE
FE7A	0000 0000	R/W	T6R	T6R7	T6R6	T6R5	T6R4	T6R3	T6R2	T6R1	T6R0
FE7B	0000 0000	R/W	T7R	T7R7	T7R6	T7R5	T7R4	T7R3	T7R2	T7R1	T7R0
FE42	00HH 0000	R/W	P0FCR	T7OE	T6OE	-	-	CLKOEN	CKODV2	CKODV1	CKODV0

3.12.3 Circuit Configuration

3.12.3.1 Timer 6/7 control register (T67CNT) (8-bit register)

1) This register controls the operation and interrupts of T6 and T7.

3.12.3.2 Timer 6 counter (T6CTR) (8-bit counter)

- 1) This counter counts the number of clocks from the timer 6 prescaler (T6PR). The value of the timer 6 counter (T6CTR) is reset to 0 on the clock following the one that reaches the value specified in the timer 6 period setting register (T6R), when the interrupt flag (T6OV) is set.
- 2) When T6C0 and T6C1 (T67CNT: FE78, bits 4 and 5) are set to 0, the timer 6 counter stops at a count value of 0. In other cases, the timer 6 counter continues operation.
- 3) When data is loaded into T6R while timer 6 is running, both the timer 6 prescaler and counter are cleared and start counting again.

3.12.3.3 Timer 6 prescaler (T6PR) (6-bit counter)

1) This prescaler is used to define the clock period for timer 6 with the value of T6C0 and T6C1 (T67CNT: FE78, bits 4 and 5).

Table 3.12.1 Timer 6 Count Clocks

T6C1	T6C0	T6 Count Clock
0	0	Timer 6 prescaler and timer/counter are in the reset state.
0	1	4 Teye
1	0	16 Teye
1	1	64 Tcyc

3.12.3.4 Timer 6 period setting register (T6R) (8-bit register)

- 1) This register defines the period of timer 6.
- 2) When data is loaded into T6R while timer 6 is running, both the timer 6 prescaler and counter are cleared and start counting again.

3.12.3.5 Timer 7 counter (T7CTR) (8-bit counter)

- 1) This counter counts the number of clocks from the timer 7 prescaler (T7PR). The value of the timer 7 counter (T7CTR) is reset to 0 on the clock following the one that reaches the value specified in the timer 7 period setting register (T7R), when the interrupt flag (T7OV) is set.
- 2) When T7C0 and T7C1 (T67CNT: FE78, bits 6 and 7) are set to 0, the timer 7 counter stops at a count value of 0. In other cases, the timer 7 counter continues operation.
- 3) When data is loaded into T7R while timer 7 is running, both the timer 7 prescaler and counter are cleared and start counting again.

3.12.3.6 Timer 7 prescaler (T7PR) (6-bit counter)

1) This prescaler is used to define the clock period for timer 7 with the value of T7C0 and T7C1 (T67CNT: FE78, bits 6 and 7).

Table 3.12.2 Timer 7 Count Clocks

T7C1	T7C0	T7 Count Clock
0	0	Timer 7 prescaler and timer/counter are in the reset state.
0	1	4 Tcyc
1	0	16 Tcyc
1	1	64 Tcyc

3.12.3.7 Timer 7 period setting register (T7R) (8-bit register)

- 1) This register defines the period of timer 7.
- 2) When data is loaded into T7R while timer 7 is running, both the timer 7 prescaler and counter are cleared and start counting again.

3.12.4 Related Registers

3.12.4.1 Timer 6/7 control register (T67CNT)

1) This register is an 8-bit register that controls the operation and interrupts of T6 and T7.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE78	0000 0000	R/W	T67CNT	T7C1	T7C0	T6C1	T6C0	T7OV	T7IE	T6OV	T6IE

T7C1 (bit 7): T7 count clock control

T7C0 (bit 6): T7 count clock control

T7C1	T7C0	T7 Count Clock
0	0	Timer 7 prescaler and timer/counter are stopped in the reset state.
0	1	4 Teye
1	0	16 Teye
1	1	64 Teye

T6C1 (bit 5): T6 count clock control

T6C0 (bit 4): T6 count clock control

T6C1	T6C0	T6 Count Clock
0	0	Timer 6 prescaler and timer/counter are stopped in the reset state.
0	1	4 Tcyc
1	0	16 Tcyc
1	1	64 Tcyc

T7OV (bit 3): T7 overflow flag

This flag is set at the interval of the timer 7 period when timer 7 is running.

This flag must be cleared with an instruction.

T7IE (bit 2): T7 interrupt request enable control

An interrupt request to vector address 0043H is generated when this bit and T7OV are set to 1.

T6OV (bit 1): T6 overflow flag

This flag is set at the interval of the timer 6 period when timer 6 is running.

This flag must be cleared with an instruction.

T6IE (bit 0): T6 interrupt request enable control

An interrupt request to vector address 0043H is generated when this bit and T6OV are set to 1.

3.12.4.2 Timer 6 period setting register (T6R)

1) This register is an 8-bit register for defining the period of timer 6.

Timer 6 period = $(T6R \text{ value}+1) \times Timer 6 \text{ prescaler value}$

(4, 16 or 64 Tcyc)

2) When data is loaded into T6R while timer 6 is running, both the timer 6 prescaler and counter are cleared and start counting again.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE7A	0000 0000	R/W	T6R	T6R7	T6R6	T6R5	T6R4	T6R3	T6R2	T6R1	T6R0

3.12.4.3 Timer 7 period setting register (T7R)

1) This register is an 8-bit register for defining the period of timer 7.

Timer 7 period = $(T7R \text{ value}+1) \times Timer 7 \text{ prescaler value}$

(4, 16 or 64 Tcyc)

2) When data is loaded into T7R while timer 7 is running, both the timer 7 prescaler and counter are cleared and start counting again.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE7B	0000 0000	R/W	T7R	T7R7	T7R6	T7R5	T7R4	T7R3	T7R2	T7R1	T7R0

3.12.4.4 Port 0 function control register (P0FCR)

1) P0FCR is a 6-bit register that controls the multiplexed output of port 0 pins. It controls the toggle outputs of timers 6 and 7.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE42	00HH 0000	R/W	P0FCR	T7OE	T6OE	-	-	CLKOEN	CKODV2	CKODV1	CKODV0

T70E (bit 7):

This flag is used to control the timer 7 toggle output at pin P07.

This flag is disabled when pin P07 is placed in input mode.

When pin P07 is placed in output mode:

A 0 in this bit outputs the value of the port data latch.

A 1 in this bit outputs the OR of the value of the port data latch and the waveform that toggles at the interval equal to the timer 7 period.

T60E (bit 6):

This flag is used to control the timer 6 toggle output at pin P06.

This flag is disabled when pin P06 is placed in input mode.

When pin P06 is placed in output mode:

A 0 in this bit outputs the value of the port data latch.

A 1 in this bit outputs the OR of the value of the port data latch and the waveform that toggles at the interval equal to the timer 6 period.

CLKOEN (bit 3):

CKODV2 (bit 2):

CKODV1 (bit 1):

CKODV0 (bit 0):

These four bits have nothing to do with the control functions of timers 6 and 7.

See the description of port 0 for details on these bits.

3.13 Timer A (TA)

3.13.1 Overview

The timer A (TA) incorporated in this series of microcontrollers is a 16-bit timer that has the following two functions:

- 1) Mode 0: 8-bit programmable timer with a programmable prescaler \times 2 channels
- 2) Mode 1: 16-bit programmable timer with a programmable prescaler

3.13.2 Functions

- Mode 0: 8-bit programmable timer with a programmable prescaler \times 2 channels
 - Two independent 8-bit programmable timers (TAL, TAH) run on the clock (with a period of 1 to 256Tcyc) from an 8-bit programmable prescaler.

$$TAL \ period = (TALR + 1) \times (TAPRR + 1) \times Tcyc$$

$$TAH \ period = (TAHR + 1) \times (TAPRR + 1) \times Tcyc$$

$$Tcyc = Period \ of \ cycle \ clock$$

- 2) Mode 2: 16-bit programmable timer with a programmable prescaler
 - TA runs as a 16-bit programmable timer on the clock (with a period of 1 to 256 Tcyc) from an 8-bit programmable prescaler.

TA period =
$$([TAHR, TALR] + 1) \times (TAPRR + 1) \times Tcyc$$

16 bits

3) Interrupt generation

TAL or TAH interrupt request is generated at the counter interval for TAL or TAH if the interrupt request enable bit is set.

- 4) It is necessary to manipulate the following special function registers to control the timer A (TA).
 - TACNT, TAPRR, TALR, TAHR

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FEF4	0000 0000	R/W	TACNT	TAHRUN	TALRUN	TALONG	TACB4	TAHCMP	TAHIE	TALCMP	TALIE
FEF5	0000 0000	R/W	TAPRR	TAPRR7	TAPRR6	TAPRR5	TAPRR4	TAPRR3	TAPRR2	TAPRR1	TAPRR0
FEF6	0000 0000	R/W	TALR	TALR7	TALR6	TALR5	TALR4	TALR3	TALR2	TALR1	TALR0
FEF7	0000 0000	R/W	TAHR	TAHR7	TAHR6	TAHR5	TAHR4	TAHR3	TAHR2	TAHR1	TAHR0

3.13.3 Circuit Configuration

3.13.3.1 Timer A control register (TACNT) (8-bit register)

1) This register controls the operation and interrupts of TAL and TAH.

3.13.3.2 Programmable prescaler match register (TAPRR) (8-bit register)

1) This register stores the match data for the programmable prescaler.

3.13.3.3 Programmable prescaler (8-bit counter)

1) Start/stop: Stop/start is controlled by the 0/1 value of TAHRUN (timer A control register, bit 7)

or TALRUN (timer A control register, bit 6).

2) Count clock: Cycle clock (period = 1 Tcyc)

3) Match signal: A match signal is generated when the count value matches the value of register

TAPRR (period: 1 to 256 Tcyc)

4) Reset: The counter starts counting at 0 when the timer is stopped, a match signal is

generated, or TAPRR is loaded with data.

3.13.3.4 Timer A low byte (TAL) (8-bit counter)

1) Start/stop: Stop/start is controlled by the 0/1 value of TALRUN (timer A control register, bit 6).

2) Count clock: Prescaler match signal

3) Match signal: A match signal is generated when the count value matches the value of the match

buffer register (16 bits of data must match in the 16-bit mode).

4) Reset: When the counter stops operation or a match signal is generated.

3.13.3.5 Timer A high byte (TAH) (8-bit counter)

1) Start/stop: Stop/start is controlled by the 0/1 value of TAHRUN (timer A control register, bit 7).

2) Count clock: Either the prescaler match signal or TAL match signal is selected by the 0/1 value of

TALONG (timer A control register, bit 5).

3) Match signal: A match signal is generated when the count value matches the value of the match

buffer register (16 bits of data must match in the 16-bit mode).

4) Reset: When the counter stops operation or a match signal is generated.

3.13.3.6 Timer A match data register low byte (TALR) (8-bit register with a match buffer register)

- 1) This register is used to store the match data for TAL. It has an 8-bit match buffer register. A match signal is generated when the value of this match buffer register matches the value of the timer A low byte (16 bits of data must match in the 16-bit mode).
- 2) The match buffer register is updated as follows:
 - When it is inactive (TALRUN=0), the match buffer register matches TALR.
 - When it is active (TALRUN=1), the match buffer register is loaded with the contents of TALR when a match signal is generated.

3.13.3.7 Timer A match data register high byte (TAHR) (8-bit register with a match buffer register)

- 1) This register is used to store the match data for TAH. It has an 8-bit match buffer register. A match signal is generated when the value of this match buffer register matches the value of the timer A high byte (16 bits of data must match in the 16-bit mode).
- 2) The match buffer register is updated as follows:
 - When it is inactive (TAHRUN=0), the match buffer register matches TAHR.
 - When it is active (TAHRUN=1), the match buffer register is loaded with the contents of TAHR when a match signal is generated.

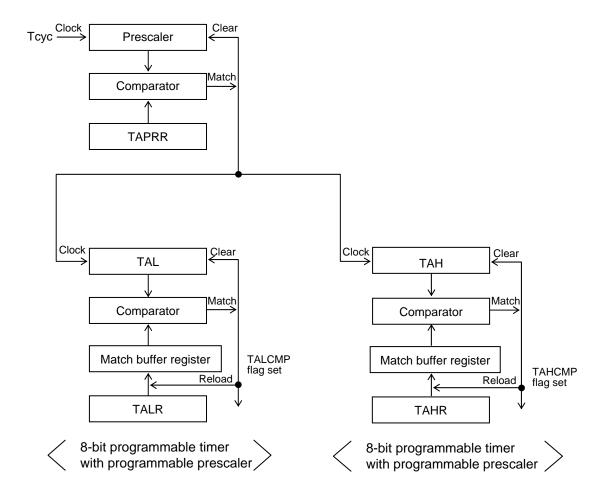


Figure 3.13.1 Mode 0 Block Diagram (TALONG = 0)

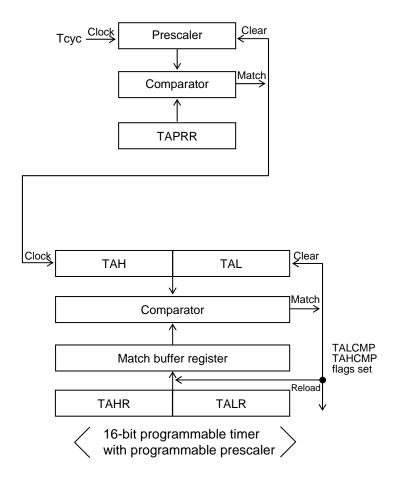


Figure 3.13.2 Mode 1 Block Diagram (TALONG = 1)

3.13.4 Related Registers

3.13.4.1 Timer A control register (TACNT)

1) This register is an 8-bit register that controls the operation and interrupts of TAL and TAH.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FEF4	0000 0000	R/W	TACNT	TAHRUN	TALRUN	TALONG	TACB4	TAHCMP	TAHIE	TALCMP	TALIE

TAHRUN (bit 7): TAH count control

When this bit is set to 0, timer A high byte (TAH) stops on a count value of 0. The match buffer register of TAH has the same value as TAHR.

When this bit is set to 1, timer A high byte (TAH) performs the required counting operation. The match buffer register of TAH is loaded with the contents of TAHR when a match signal is generated.

TALRUN (bit 6): TAL count control

When this bit is set to 0, timer A low byte (TAL) stops on a count value of 0. The match buffer register of TAL has the same value as TALR.

When this bit is set to 1, timer A low byte (TAL) performs the required counting operation. The match buffer register of TAL is loaded with the contents of TALR when a match signal is generated.

TALONG (bit 5): Timer A bit length select

When this bit is set to 0, timer A high and low bytes serve as two independent 8-bit timers.

When this bit is set to 1, timer A serves as a 16-bit timer. A match signal is generated when the value of the 16-bit counter comprising TAH and TAL matches the contents of the match buffer registers for TAH and TAL.

TACB4 (bit 4): User bit

This bit can be read and written with instructions. It can be used by the user freely.

TAHCMP (bit 3): TAH match flag

This bit is set when the value of TAH matches the value of the match buffer register for TAH and a match signal is generated while TAH is running (TAHRUN=1). Its state does not change if no match signal is generated. Consequently, this flag must be cleared with an instruction.

In the 16-bit mode (TALONG=1), a match must occur in all 16 bits of data for a match signal to be generated.

TAHIE (bit 2): TAH interrupt request enable control

When this bit and TAHCMP are set to 1, an interrupt request to vector address 0023H is generated.

TALCMP (bit 1): TAL match flag

This bit is set when the value of TAL matches the value of the match buffer register for TAL and a match signal is generated while TAL is running (TALRUN=1). Its state does not change if no match signal is generated. Consequently, this flag must be cleared with an instruction.

In the 16-bit mode (TALONG=1), a match must occur in all 16 bits of data for a match signal to be generated.

TALIE (bit 0): TAL interrupt request enable control

When this bit and TALCMP are set to 1, an interrupt request to vector address 0013H is generated.

Notes:

- TAHCMP and TALCMP must be cleared to 0 with an instruction.
- When the 16-bit mode is to be used, TALRUN and TAHRUN must be set to the same value at the same time to control timer operation.
- TALCMP and TAHCMP are set at the same time in the 16-bit mode.

3.13.4.2 Timer A programmable prescaler match register (TAPRR)

- 1) This register is an 8-bit register that is used to determine the clock period (Tpr) of timer A.
- 2) The count value of the prescaler starts at 0 when TAPRR is loaded with data.
- 3) $Tpr = (TAPRR + 1) \times Tcyc$

Tcyc = Period of the cycle clock

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FEF5	0000 0000	R/W	TAPRR	TAPRR7	TAPRR6	TAPRR5	TAPRR4	TAPRR3	TAPRR2	TAPRR1	TAPRR0

3.13.4.3 Timer A match data register low byte (TALR)

- 1) This register is used to store the match data for TAL. It has an 8-bit match buffer register. A match signal is generated when the value of this match buffer register matches the value of the timer A low byte (16 bits of data must match in the 16-bit mode)
- 2) The match buffer register is updated as follows:
 - When it is inactive (TALRUN=0), the match buffer register matches TALR.
 - When it is active (TALRUN=1), the match buffer register is loaded with the contents of TALR when a match signal is generated.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FEF6	0000 0000	R/W	TALR	TALR7	TALR6	TALR5	TALR4	TALR3	TALR2	TALR1	TALR0

3.13.4.4 Timer A match data register high byte (TAHR)

- 1) This register is used to store the match data for TAH. It has an 8-bit match buffer register. A match signal is generated when the value of this match buffer register matches the value of the timer A high byte (16 bits of data must match in the 16-bit mode).
- 2) The match buffer register is updated as follows:
 - When it is inactive (TAHRUN=0), the match buffer register matches TAHR.
 - When it is active (TAHRUN=1), the match buffer register is loaded with the contents of TAHR when a match signal is generated.

Addr	ess Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FEI	7 0000 0000	R/W	TAHR	TAHR7	TAHR6	TAHR5	TAHR4	TAHR3	TAHR2	TAHR1	TAHR0

3.14 Base Timer (BT)

3.14.1 Overview

The base timer (BT) incorporated in this series of microcontrollers is a 14-bit binary up-counter that has the following five functions:

- 1) Clock timer
- 2) 14-bit binary up-counter
- 3) High-speed mode (when used as a 6-bit base timer)
- 4) Buzzer output
- 5) HOLD mode release

3.14.2 Functions

1) Clock timer

The base timer can count clocks at 0.5 second intervals when a 32.768 kHz subclock is used as the count clock for the base timer. In this case, one of three clocks (cycle clock, timer/counter 0 prescaler output, or subclock) must be loaded in the input signal select register (ISL) as the base timer count clock.

2) 14-bit binary up-counter

A 14-bit binary up-counter can be constructed using an 8-bit binary up-counter and a 6-bit binary up-counter. These counters can be cleared under program control.

3) High-speed mode (when used as a 6-bit base timer)

When the base timer is used as a 6-bit timer, it can clock at intervals of approximately 2 ms if the 32.768 kHz subclock is used as the count clock. The bit length of the base timer can be specified using the base timer control register (BTCR).

4) Buzzer output function

The base timer can generate 2 kHz buzzer when the 32.768 kHz subclock is used as the count clock. The buzzer output can be controlled using the input signal select register (ISL). The buzzer output is ANDed with the timer 1 PWMH output and can be transmitted via pin P17.

5) Interrupt generation

An interrupt request to vector address 001BH is generated if an interrupt request is generated by the base timer when the interrupt request enable bit is set. The base timer can generate two types of interrupt requests: "base timer interrupt 0" and "base timer interrupt 1."

6) HOLD mode operation and HOLD mode release

The base timer is enabled for operation in HOLD mode when bit 2 of the power control register (PCON) is set. HOLD mode can be released by an interrupt from the base timer. This function allows the microcontroller to perform low-current intermittent operations.

- 7) It is necessary to manipulate the following special function registers, to control the base timer.
 - BTCR, ISL, P1DDR, P1, P1FCR

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE7F	0000 0000	R/W	BTCR	BTFST	BTON	BTC11	BTC10	BTIF1	BTIE1	BTIF0	BTIE0
FE5F	0000 0000	R/W	ISL	ST0HCP	ST0LCP	BTIMC1	BTIMC0	BUZON	NFSEL	NFON	ST0IN

3.14.3 Circuit Configuration

3.14.3.1 8-bit binary up-counter

 This counter is an up-counter that receives, as its input, the signal selected by the input signal select register (ISL). It generates a 2 kHz buzzer output and base timer interrupt 1 flag set signals.
 The overflow from this counter serves as the clock for the 6-bit binary counter.

3.14.3.2 6-bit binary up-counter

1) This counter is a 6-bit up-counter that receives, as its input, the signal selected by the input signal select register (ISL) or the overflow signal from the 8-bit counter and generates set signals for base timer interrupts 0 and 1. The switching of the input clock is accomplished by the base timer control register (BTCR).

3.14.3.3 Base timer input clock source

1) The clock input to the base timer (fBST) can be selected from among the cycle clock, timer 0 prescaler, and subclock via the input signal select register (ISL).

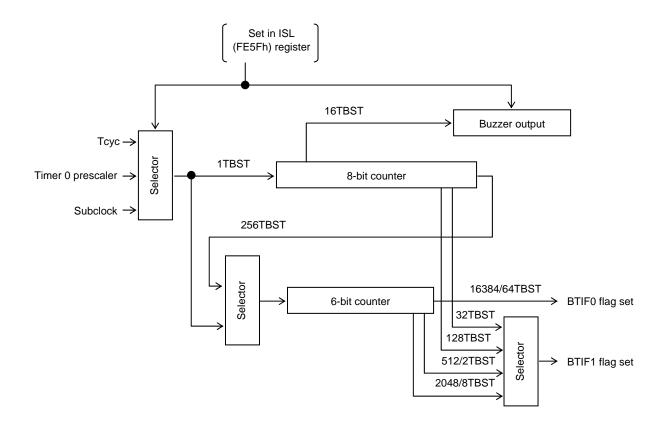


Figure 3.14.1 Base Timer Block Diagram

3.14.4 Related Registers

3.14.4.1 Base timer control register (BTCR)

1) This register is an 8-bit register that controls the operation of the base timer.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE7F	0000 0000	R/W	BTCR	BTFST	BTON	BTC11	BTC10	BTIF1	BTIE1	BTIF0	BTIE0

BTFST (bit 7): Base timer interrupt 0 period control

This bit is used to select the interval at which base timer interrupt 0 is to occur.

When this bit is set to 1, the base timer interrupt 0 flag is set when an overflow occurs in the 6-bit counter. The interval at which overflows occur is 64/fBST.

When this bit is set to 0, the base timer interrupt 0 flag is set when an overflow occurs in the 14-bit counter. The interval at which overflows occur is 16384fBST.

This bit must be set to 1 when high-speed mode is to be used.

BTON (bit 6): Base timer operation control

When this bit is set to 0, the base timer stops when the count value reaches 0.

When this bit is set to 1, the base timer continues operation.

BTC11 (bit 5): Base timer interrupt 1 period control

BTC10 (bit 4): Base timer interrupt 1 period control

BTFST	BTC11	BTC10	Base Timer Interrupt 0 Period	Base Timer Interrupt 1 Period
0	0	0	16384fBST	32fBST
1	0	0	64fBST	32fBST
0	0	1	16384fBST	128fBST
1	0	1	64fBST	128fBST
0	1	0	16384fBST	512fBST
0	1	1	16384fBST	2048fBST
1	1	0	64fBST	2fBST
1	1	1	64fBST	8fBST

fBST: Frequency of the input clock selected by the input signal select register (ISL)

BTIF1 (bit 3): Base timer interrupt 1 flag

This flag is set at the interval equal to the base timer interrupt 1 period that is defined by BTFST, BTC11, and BTC10.

This flag must be cleared with an instruction.

BTIE1 (bit 2): Base timer interrupt 1 request enable control

Setting this bit and BTIF1 to 1 generates an X'tal HOLD mode release signal and an interrupt request to vector address 001BH.

BTIF0 (bit 1): Base timer interrupt 0 flag

This flag is set at the interval equal to the base timer interrupt 0 period that is defined by BTFST, BTC11, and BTC10.

This flag must be cleared with an instruction.

BTIE0 (bit 0): Base timer interrupt 0 request enable control

Setting this bit and BTIF0 to 1 generates an X'tal HOLD mode release signal and an interrupt request to vector address 001BH.

Notes:

- The system clock and base timer clock cannot be selected at the same time as the subclock when BTFST=BTC10=1 (high-speed mode).
- Note that BTIF1 is likely to be set to 1 if BTC11 and BTC10 are rewritten.
- If HOLD mode is entered while running the base timer when the cycle clock or subclock is selected as the base timer clock source, the base timer is subject to the influence of unstable oscillation caused by the main clock and subclock when they are started following the release of HOLD mode, resulting in an erroneous count from the base timer. When entering HOLD mode, therefore, it is recommended that the base timer be stopped.
- This series of microcontrollers supports X'tal HOLD mode, which enables low-current intermittent operation. In this mode, only the base timer is enabled for operation.

3.14.4.2 Input signal select register (ISL)

1) This register is an 8-bit register that controls the timer 0 input, noise filter time constant, buzzer output, and base timer clock.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE5F	0000 0000	R/W	ISL	ST0HCP	ST0LCP	BTIMC1	BTIMC0	BUZON	NFSEL	NFON	ST0IN

ST0HCP (bit 7): Timer 0H capture signal input port select

STOLCP (bit 6): Timer 0L capture signal input port select

These 2 bits have nothing to do with the control function of the base timer.

BTIMC1 (bit 5): Base timer clock select BTIMC0 (bit 4): Base timer clock select

BTIMC1	BTIMC0	Base Timer Input Clock
0	0	Subclock
0	1	Cycle clock
1	0	Subclock
1	1	Timer/counter 0 prescaler output

BUZON (bit 3): Buzzer output select

This bit enables the buzzer output (fBST/16).

When this bit is set to 1, a signal that is obtained by dividing the base timer clock by 16 is sent to port P17 as the buzzer output.

When this bit is set to 0, the buzzer output is fixed at a high level.

NFSEL (bit 2): Noise filter time constant select

NFON (bit 1): Noise filter time constant select

ST0IN (bit 0): Timer 0 count clock input port select

These 3 bits have nothing to do with the control function of the base timer.

3.15 Serial Interface 0 (SIO0)

3.15.1 Overview

The serial interface 0 (SIO0) incorporated in this series of microcontrollers has the following two functions:

- 1) Synchronous 8-bit serial I/O (2- or 3-wire system, $\frac{4}{3}$ to $\frac{512}{3}$ Tcyc transfer clock)
- 2) Continuous data transmission/reception (transfer of data whose length varies between 1 and 256 bits in 1-bit units, $\frac{4}{3}$ to $\frac{512}{3}$ Tcyc transfer clock)

3.15.2 Functions

- 1) Synchronous 8-bit serial I/O
 - Performs 2- or 3-wire synchronous serial communication. The clock may be an internal or external clock.
 - The period of the internal clock is programmable within the range of $(n+1) \times \frac{2}{3}$ Tcyc (n = 1 to 255; Note: n = 0 is inhibited).
- 2) Continuous data transmission/reception
 - Transmits and receives bit streams whose length is variable between 1 and 256 bits in 1-bit units. Transfer is carried out in clock synchronization mode. The clock may be an internal or external clock.
 - The period of the internal clock is programmable within the range of $(n+1) \times \frac{2}{3}$ Tcyc (n= 1 to 255; Note: n = 0 is inhibited).
 - 1 to 256 bits of transmit data is automatically transferred from RAM to the data shift register (SBUF0) and receive data is automatically transferred from the data shift register (SBUF0) to RAM.
- 3) Interrupt generation

An interrupt request is generated at the end of communication when the interrupt request enable bit is set.

- It is necessary to manipulate the following special function registers to control serial interface 0 (SIO0).
 - SCON0, SBUF0, SBR0, SCTR0, SWCON0
 - P1, P1DDR, P1FCR

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE30	0000 0000	R/W	SCON0	SI0BNK	SI0WRT	SI0RUN	SI0CTR	SI0DIR	SI0OVR	SI0END	SIOIE
FE31	0000 0000	R/W	SBUF0	SBUF07	SBUF06	SBUF05	SBUF04	SBUF03	SBUF02	SBUF01	SBUF00
FE32	0000 0000	R/W	SBR0	SBRG07	SBRG06	SBRG05	SBRG04	SBRG03	SBRG02	SBRG01	SBRG00
FE33	0000 0000	R/W	SCTR0	SCTR07	SCTR06	SCTR05	SCTR04	SCTR03	SCTR02	SCTR01	SCTR00
FE37	0000 0000	R/W	SWCON0	S0WSTP	SWCONB6	SWCONB5	S0XBYT4	S0XBYT3	S0XBYT2	S0XBYT1	S0XBYT0

3.15.3 Circuit Configuration

3.15.3.1 SIO0 control register (SCON0) (8-bit register)

1) This register controls the operation and interrupts of SIO0.

3.15.3.2 SIO0 data shift register (SBUF0) (8-bit register)

1) This register is an 8-bit shift register that performs data input and output operations at the same time.

3.15.3.3 SIO0 baudrate generator (SBR0) (8-bit reload counter)

- 1) This is a reload counter for generating internal clocks.
- 2) It can generate clocks at intervals of $(n+1) \times \frac{2}{3}$ Tcyc (n=1 to 255; Note: n=0 is inhibited).

3.15.3.4 Continuous data bit register (SCTR0) (8-bit register)

1) This register controls the bit length of data to be transmitted or received in continuous data transmission/reception mode.

3.15.3.5 Continuous data transfer control register (SWCON0) (8-bit register)

- 1) This register controls the suspension and resumption of serial transfer in byte units in continuous data transmission/reception mode.
- 2) It allows the application program to read the number of bytes transferred in continuous data transmission/reception mode.

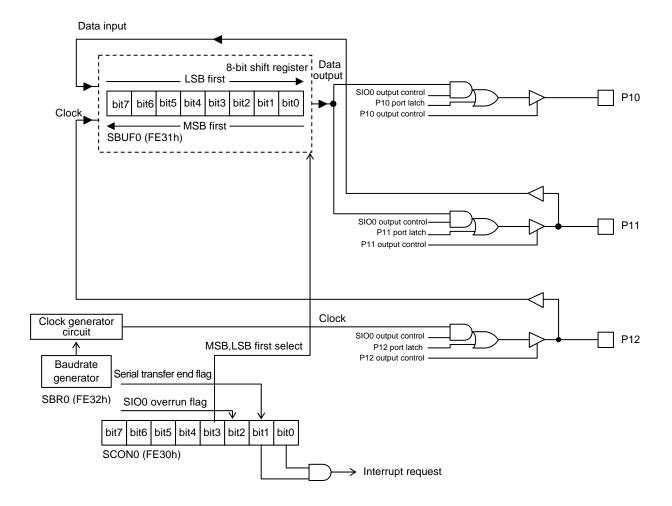


Figure 3.15.1 SIO0 Synchronous 8-bit Serial I/O Block Diagram (SI0CTR=0)

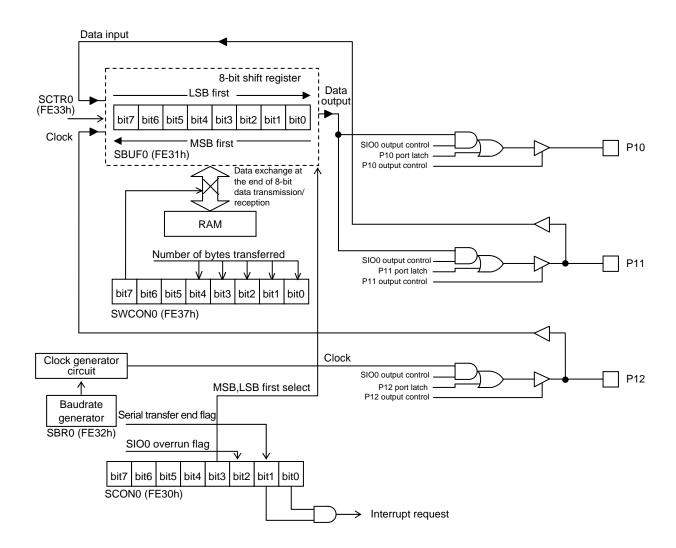


Figure 3.15.2 SIO0 Continuous Data Transmission/Reception Mode Block Diagram (SI0CTR=1)

3.15.4 Related Registers

3.15.4.1 SIO0 control register (SCON0)

1) This register is an 8-bit register that controls the operation and interrupts of SIO0.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE30	0000 0000	R/W	SCON0	SI0BNK	SI0WRT	SI0RUN	SI0CTR	SI0DIR	SI0OVR	SI0END	SIOIE

SIOBNK (bit 7): Transfer RAM address control during continuous data transmission/reception

- <1> When this bit is set to 1, transfer of continuous transmission/reception data is carried out between RAM addresses (01E0[H] to 01FF[H]) and SBUF0.
- <2> When this bit is set to 0, transfer of continuous transmission/reception data is carried out between RAM addresses(01C0[H] to 01DF[H]) and SBUF0.

SIOWRT (bit 6): RAM write control during continuous data transmission/reception

- <1> When this bit is set to 1, the contents of data RAM and SBUF0 are automatically exchanged during continuous data transmission/reception.
- <2> When this bit is set to 0, the contents of data RAM are automatically transferred to SBUF0 during continuous data transmission/reception, but the contents of data RAM remain unchanged.

SI0RUN (bit 5): SIO0 operation flag

- <1> A 1 in this bit indicates that SIO0 is running.
- <2> This bit must be set with an instruction.
- <3> This bit is automatically cleared at the end of serial transfer (on the rising edge of the last clock involved in the transfer).

SI0CTR (bit 4): SIO0 continuous data transmission/reception / synchronous 8-bit control

- <1> A 1 in this bit places SIO0 into continuous data transmission/reception mode.
- <2> A 0 in this bit places SIO0 into synchronous 8-bit mode.

SIODIR (bit 3): MSB/LSB first select

- <1> A 1 in this bit places SIO0 into MSB first mode.
- <2> A 0 in this bit places SIO0 into LSB first mode.

SI0OVR (bit 2): SIO0 overrun flag

- <1> This bit is set when a falling edge of the input clock is detected with SIORUN=0.
- <2> This bit is set when a falling edge of the input clock is detected during internal data communication between SBUF0 and RAM with each 8-bit transfer .
- <3> Read this bit at the end of the communication to judge if the communication is performed normally.
- <4> This bit must be cleared with an instruction.

SI0END (bit 1): Serial transfer end flag

- <1> This bit is set at the end of serial transfer (on the rising edge of the last clock involved in the transfer).
- <2> This bit must be cleared with an instruction.

SI0IE (bit 0): SIO0 interrupt request enable control

<1> When this bit and SI0END are set to 1, an interrupt request to vector address 0033H is generated.

3.15.4.2 SIO0 data shift register (SBUF0)

- 1) This register is an 8-bit shift register for SIO0 serial transfer.
- 2) Data to be transmitted/received is written to and read from this shift register directly.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE31	0000 0000	R/W	SBUF0	SBUF07	SBUF06	SBUF05	SBUF04	SBUF03	SBUF02	SBUF01	SBUF00

3.15.4.3 SIO0 baudrate generator register (SBR0)

- 1) This register is an 8-bit register that defines the transfer rate of an SIO0 serial transfer.
- 2) The transfer rate is computed as follows:

 $TSBR0 = (SBR0 \text{ value} + 1) \times \frac{2}{3} \text{ Tcyc}$

SBR0 can take a value from 1 to 255 and the valid value range of TSBR0 is from $\frac{4}{3}$ to $\frac{512}{3}$ Tcyc.

* The SBR0 value of 00[H] is prohibited.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE32	0000 0000	R/W	SBR0	SBRG07	SBRG06	SBRG05	SBRG04	SBRG03	SBRG02	SBRG01	SBRG00

3.15.4.4 Continuous data bit register (SCTR0)

- 1) This register is used to specify the bit length of serial data to be transmitted/received continuously through SIO0 in continuous data transmission/reception mode.
- 2) The valid value range is from 00[H] to FF[H].
- 3) When continuous data transmission/reception is started with this register set to 00[H], 1 bit of data transmission/reception is carried out after the contents of data RAM are transferred to SBUF0 (after the contents of RAM and SBUF0 are exchanged when SI0WRT = 1). (Number of bits transferred = SCTR0 value + 1)

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE33	0000 0000	R/W	SCTR0	SCTR07	SCTR06	SCTR05	SCTR04	SCTR03	SCTR02	SCTR01	SCTR00

3.15.4.5 Continuous data transfer control register (SWCON0)

1) This register is used to suspend or resume the operation of SIO0 in byte units in continuous data transmission/reception mode and to read the number of transferred bytes (Bits 4 to 0 are read only).

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE37	0000 0000	R/W	SWCON0	SOWSTP	SWCONB6	SWCONB5	S0XBYT4	S0XBYT3	S0XBYT2	S0XBYT1	S0XBYT0

S0WSTP (bit 7):

When this bit is set to 1, SIO0 stops operation after completing the transfer of 1 byte of data in continuous transfer mode (1 byte of serial data separated at the beginning of transfer). Serial transfer resumes when this bit is subsequently set to 0.

SWCONB6, SWCONB5 (bits 6, 5):

These bits can be read and written with instructions. The user can use these bits freely.

S0XBYT4 to S0XBYT0 (bits 4 to 0):

These bits can be read to check the number of bytes transferred during continuous data transfer.

3.15.4.6 RAM used in continuous data transmission/reception mode

SIO0 can transmit and receive 1 to 256 bits of serial data continuously in continuous data transmission/reception mode, using the RAM area from 01C0[H] to 01FF[H].

- 1) The RAM area from 01C0[H] to 01DF[H] is used when SI0BNK=0.
- 2) The RAM area from 01E0[H] to 01FF[H] is used when SI0BNK=1.
- 3) In continuous data transmission/reception mode, data transmission/reception is started after the operation flag is set and RAM data at the lowest address is transferred to SBUF0 (after the contents of RAM and SBUF0 are exchanged when SI0WRT=1). After 8 bits of data are transmitted and received, the RAM data from the next RAM address is transferred to SBUF0 (the contents of RAM and SBUF0 are exchanged when SI0WRT=1) and data transmission/reception processing is continued. The last 8 bits or less of received data are left in SBUF0 and not exchanged with data in RAM. If the volume of data to transmit/receive is set to 8 bits or less, after the operation flag is set and RAM data is transferred to SBUF0 (after the contents of RAM and SBUF0 are exchanged when SI0WRT=1), data transmission and reception processing is carried out. Any data received after the transmission/reception processing terminated is left in SBUF0 and not exchanged with data in RAM.

3.15.5 SIO0 Communication Examples

3.15.5.1 Synchronous 8-bit mode

- 1) Setting the clock
 - Set up SBR0 when using an internal clock.
- 2) Setting the mode
 - Set as follows:
 SIOCTR = 0, SIODIR = ?, SIOIE = 1
- 3) Setting up the ports

	Clock Port
Internal clock	Output
External clock	Input

	Data Output Port	Data I/O Port
Data transmission only	Output	_
Data reception only		Input
Data transmission/reception (3-wire)	Output	Input
Data transmission/reception (2-wire)	_	N-channel open drain output

- 4) Setting up output data
 - Load the output data into SBUF0 in data transmission or data transmission/reception mode.
- 5) Starting operation
 - Set SIORUN.
- 6) Reading data (after an interrupt)
 - Read SBUF0 (SBUF0 has been loaded with serial data from the data I/O port even in transmission mode).
 - · Clear SI0END.
 - Return to step 4) when repeating processing.

3.15.5.2 Continuous data transmission/reception mode

- 1) Setting the clock
 - Set up SBR0 when using an internal clock
- 2) Setting the mode
 - · Set as follows:

$$SIOBNK = ?$$
, $SIOWRT = 1$, $SIODIR = ?$, $SIOIE = 1$

3) Setting up the ports

	Clock Port
Internal clock	Output
External clock	Input

	Data Output Port	Data I/O Port
Data transmission only	Output	_
Data reception only	I	Input
Data transmission/reception (3-wire)	Output	Input
Data transmission/reception (2-wire)	-	N-channel open drain output

- 4) Setting up the continuous data bit register
 - Specify the number of bits to be subject to continuous transmission/reception processing.
- 5) Setting up output data
 - Load the output data of the specified bit length to data RAM at the specified address in data transmission or data transmission/reception mode.
 - Load to:

RAM area (01C0[H] to 01DF[H]) when SI0BNK = 0 RAM area (01E0[H] to 01FF[H]) when SI0BNK = 1.

- Data transmission and reception processing is started after the operation flag is set and the contents of RAM and SBUF0 are exchanged. Consequently, there is no need to load the data into SBUF0.
- 6) Starting operation
 - Set SIOCTR.
 - Set SIORUN.
 - * Suspending continuous data transfer processing
 - Set SOWSTP.
 - ⇒ Resuming continuous data transfer processing
 - · Clear SOWSTP.
 - * Check the number of bytes transferred during continuous data transfer processing.
 - Read S0XBYT4 to S0XBYT0.
- 7) Reading data (after an interrupt)
 - Received data has been stored in data RAM at the specified address and SBUF0.

RAM area (01C1[H] to 01DF[H]) when SI0BNK = 0

RAM area (01E1[H] to 01FF[H]) when SI0BNK = 1

- The last 8 bits or less of received data are left in SBUF0 and not present in RAM.
- · Clear SI0END.
- Return to step 5) when repeating processing.

3.15.6 SIO0 HALT Mode Operation

3.15.6.1 Synchronous 8-bit mode

- 1) SIO0 synchronous 8-bit mode processing is enabled in HALT mode.
- 2) HALT mode can be released using a synchronous 8-bit mode SIO0 interrupt.

3.15.6.2 Continuous data transmission/reception mode

- SIO0 suspends processing immediately before the contents of RAM and SBUF0 are exchanged when HALT mode is entered in continuous data transmission/reception mode. After HALT mode is entered, SIO0 continues processing until immediately before the contents of the first RAM address and SBUF0 are exchanged. After HALT mode is released, SIO0 resumes the suspended processing.
- 2) Since SIO0 processing is suspended by HALT mode, it is impossible to release HALT mode using a continuous data transmission/reception mode SIO0 interrupt.

3.16 Serial Interface 1 (SIO1)

3.16.1 Overview

The serial interface 1 (SIO1) incorporated in this series of microcontrollers has the following four functions:

- 1) Mode 0: Synchronous 8-bit serial I/O (2- or 3-wire system, 2 to 512 Tcyc transfer clock)
- 2) Mode 1: Asynchronous serial interface (half-duplex, 8 data bits, 1 stop bit, 8 to 2048 Tcyc baudrate)
- 3) Mode 2: Bus-master (start bit, 8 data bits, 2 to 512 Tcyc transfer clock)
- 4) Mode 3: Bus-slave (start detection, 8 data bits, stop detection)

3.16.2 Functions

- 1) Mode 0: Synchronous 8-bit serial I/O
 - Performs 2- or 3-wire synchronous serial communication. The clock may be an internal or external clock.
 - The period of the internal clock is programmable within the range of 2 to 512 Tcyc.
- 2) Mode 1: Asynchronous serial interface (UART)
 - Performs half-duplex, 8 data bits, 1 stop bit asynchronous serial communication.
 - The baudrate is programmable within the range of 8 to 2048 Tcyc.
- 3) Mode 2: Bus-master
 - SIO1 is used as a bus master controller.
 - The start conditions are automatically generated, but the stop conditions must be generated by manipulating ports.
 - Clock synchronization is used. Since it is possible to verify the transfer-time bus data at the end
 of transfer, this mode can be combined with mode 3 to provide support for multi-master
 configurations.
 - The period of the output clock is programmable within the range of 2 to 512 Tcyc.
- 4) Mode 3: Bus-slave
 - SIO1 is used as a slave device of the bus.
 - Start/stop condition detection processing is performed but the detection of an address match condition and the output of acknowledge require program intervention.
 - SIO1 can generate an interrupt by forcing the clock line to a low level on the falling edge of the 8th clock for recognition by a program.
- 5) Interrupt generation

An interrupt request is generated at the end of communication if the interrupt request enable bit is set.

- 6) It is necessary to manipulate the following special function registers to control the serial interface 1 (SIO1).
 - SCON1, SBUF1, SBR1
 - P1, P1DDR, P1FCR

Address	Initial Value	R/W	Name	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE34	0000 0000	R/W	SCON1	-	SI1M1	SI1M0	SI1RUN	SI1REC	SI1DIR	SI10VR	SI1END	SI1IE
FE35	00000 0000	R/W	SBUF1	SBUF18	SBUF17	SBUF16	SBUF15	SBUF14	SBUF13	SBUF12	SBUF11	SBUF10
FE36	0000 0000	R/W	SBR1	-	SBRG17	SBRG16	SBRG15	SBRG14	SBRG13	SBRG12	SBRG11	SBRG10

3.16.3 Circuit Configuration

3.16.3.1 SIO1 control register (SCON1) (8-bit register)

1) This register controls the operation and interrupts of SIO1.

3.16.3.2 SIO1 shift register (SIOSF1) (8-bit shift register)

- 1) This register is a shift register used to transfer and receive SIO1 data.
- 2) This register cannot be directly accessed with an instruction. It is accessed via SBUF1.

3.16.3.3 SIO1 data register (SBUF1) (9-bit register)

- 1) The low-order 8 bits of SBUF1 are transferred to SIOSF1 at the beginning of data transfer.
- 2) At the end of data transfer, the contents of SIOSF1 are placed in the low-order 8 bits of SBUF1. In modes 1, 2, and 3, since the 9th input data is placed in bit 8 of SBUF1, it is possible to check for a stop bit, etc.

3.16.3.4 SIO1 baudrate generator (SBR1) (8-bit reload counter)

- 1) This is a reload counter for generating internal clocks.
- 2) The generator can generate clocks of 2 to 512 Tcyc in modes 0 and 2, and clocks of 8 to 2048 Tcyc in mode 1.

Table 3.16.1 SIO1 Operations and Operating Modes

		Synchronous	s (Mode 0)	UART (Mode	: 1)	Bus Master	(Mode 2)	Bus Slave (Mode 3)
		Transfer SI1REC=0	Receive SI1REC=1	Transfer SI1REC=0	Receive SI1REC=1	Transfer	Receive SI1REC=1	Transfer SI1REC=0	Receive SI1REC=1
Start bit		None	None	Output (Low)	Input (Low)	See 1) and 2) below	Not required	Not required	See 2) below
Data outp	ut	8 (Shift data)	8 (All 1's)	8 (Shift data)	8 (All 1's)	8 (Shift data)	8 (All 1's)	8 (Shift data)	8 (All 1's)
Data inpu	t	8 (Input pin)	←	8 (Input pin)	←	8 (Input pin)	←	8 (Input pin)	←
Stop bit		None	←	Output (High)	Input (H/L)	Input (H/L)	Output (SBUF1,bit8)	Input (H/L)	Output (L)
Clock		8	←	9 (Internal)	←	9	←	Low output on falling edge of 8th clock	←
Operation	ı start	SIIRUN ↑	←	1) SI1RUN ↑ 2) Start bit detected	Start bit detected	1) No start bit on falling edge of SI1END when SI1RUN=1 2) With start bit on rising edge of SI1RUN when SI1END=0	1) on left side	1) on right side	1) Clock released on falling edge of SI1END when SI1RUN=1 2) Start bit detected when SI1RUN=0 and SI1END=0
Period		2 to 512Tcyc	←	8 to 2048Tcyc	←	2 to 512Tcyc	←	2 to 512Tcyc	←
SI1RUN (bit 5)	Set	Instruction	←	1) Instruction 2) Start bit detected	Start bit detected	Instruction	Already set	Already set	Start bit detected
		End of processing	←	End of stop bit	←	1) Stop condition detected 2) When arbitration lost (Note 1)	←	1) Stop condition detected 2) Ack=1 detected	←
SI1END (bit 1)		End of processing	←	End of stop bit Instruction	←	1) Rising edge of 9th clock 2) Stop condition detected Instruction	←	1) Falling edge of 8th clock 2) Stop condition detected Instruction	←

Note 1: If internal data output value = H and data port value = L are detected on the rising edges of the 1st to 8th clocks, the CPU recognizes a bus contention loss and clears SI1RUN (and also stops sending the clock at the same time).

(Continued on next page)

Table 3.16.1 SIO1 Operations and Operating Modes (cont
--

		Synchrono	us (Mode 0)	UART (Mo	de 1)	Bus Master	(Mode 2)	Bus Slave (Mode 3)
		Transfer	Receive	Transfer	Receive	Transfer	Receive	Transfer	Receive
		SI1REC=0	SI1REC=1	SI1REC=0	SI1REC=1	SI1REC=0	SI1REC=1	SI1REC=0	SI1REC=1
	Set	1)	←	1)	←	1)	←	1)	←
(bit 2)		Falling edge		Falling edge		SI1END set		Falling edge	
		of clock		of clock		conditions		of clock	
		detected		detected		met when		detected	
		when		when		SI1END=1		when	
		SI1RUN=0		SI1RUN=0				SI1RUN=0	
		2)		2)				2)	
		SI1END set		SI1END set				SI1END set	
		conditions		conditions				conditions	
		met when		met when				met when	
		SI1END=1		SI1END=1				SI1END=1	
								3)	
								Start bit	
								detected	
	Clear	Instruction	←	Instruction	←	Instruction	←	Instruction	←
Shifter da	ta	SBUF1→	←	SBUF1→	←	SBUF1→	←	SBUF1→	←
update		shifter at		shifter at		shifter at		shifter at	
		beginning		beginning		beginning of		beginning of	
		of operation		of operation		operation		operation	
Shifter→		Rising edge	←	When 8-bit	When 8-bit	Rising edge	←	Rising edge	←
SBUF1		of 8th clock		data	data	of 8th clock		of 8th clock	
(bits 0 to	7)			transferred	received				
Automatic	data	None	←	Input data	←	Input data	←	Input data	←
update of				read in on		read in on		read in on	
SBUF1, b	it 8			stop bit		rising edge of		rising edge of	
						9th clock		9th clock	

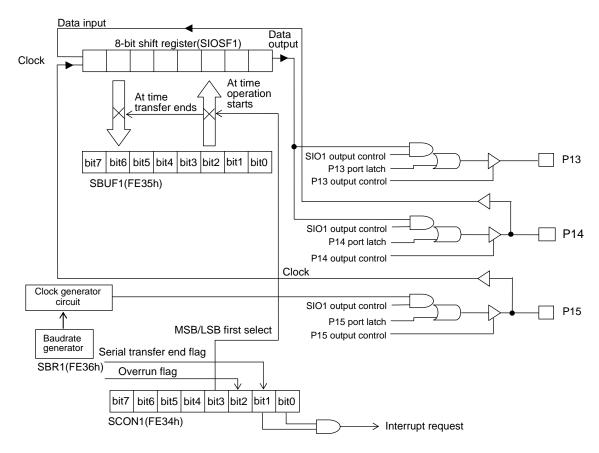


Figure 3.16.1 SIO1 Mode 0: Synchronous 8-bit Serial I/O Block Diagram (SI1M1=0, SI1M0=0)

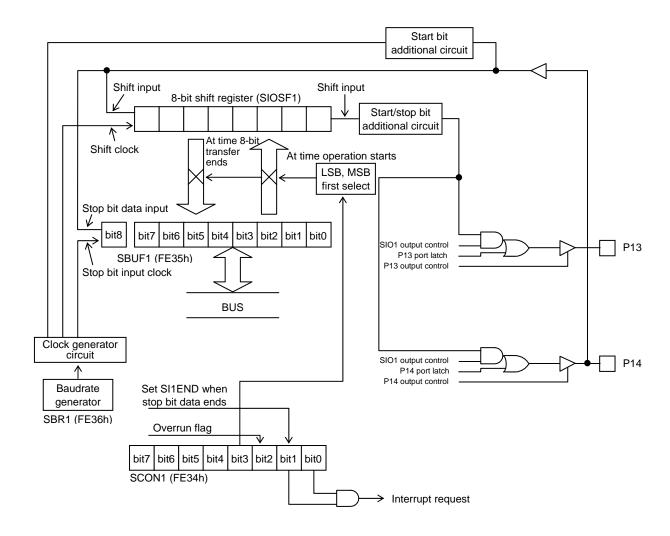


Figure 3.16.2 SIO1 Mode 1: Asynchronous Serial (UART) Block Diagram(SI1M1=0, SI1M0=1)

3.16.4 SIO1 Communication Examples

3.16.4.1 Synchronous serial communication (mode 0)

- 1) Setting the clock
 - Set up SBR1 when using an internal clock.
- 2) Setting the mode
 - · Set as follows:

SI1M0 = 0, SI1M1 = 0, SI1DIR, SI1IE = 1

3) Setting up the ports and SI1REC (bit 4)

	Clock Port P15
Internal clock	Output
External clock	Input

	Data Output Port P13	Data I/O Port P14	SI1REC
Data transmission only	Output	-	0
Data reception only	-	Input	1
Data transmission/reception (3-wire)	Output	Input	0
Data transmission/reception (2-wire)	-	N-channel open drain output	0

- 4) Setting up output data
 - Write output data into SBUF1 in the data transmission mode (SI1REC=0).
- 5) Starting operation
 - Set SI1RUN.
- 6) Reading data (after an interrupt)
 - Read SBUF1 (SBUF1 has been loaded with serial data from the data I/O port even in transmission mode).
 - Clear SI1END and exit interrupt processing.
 - Return to step 4) when repeating processing.

3.16.4.2 Asynchronous serial communication (mode 1)

- 1) Setting the baudrate
 - · Set up SBR1.
- 2) Setting the mode
 - Set as follows: SI1M0=1, SI1M1=0, SI1DIR, SI1IE=1
- 3) Setting up the ports

	Data output Port P13	Data I/O Port P14
Data transmission/reception (2-wire)	Output	Input
Data transmission/reception (1-wire)	I	N-channel open drain output

- 4) Starting transmit operation
 - Set SI1REC to 0 and write output data into SBUF1.
 - Set SI1RUN.

Note: Use the SIO1 data I/O port (P14) when using the SIO1 transmission only in mode 1.

In mode 1, transmission is automatically started when a falling edge of receive data is detected. While mode 1 is on, the falling edge of data is always detected at the data I/O port (P14). Consequently, if the transmit port is assigned to the data output port (P13), it is likely that data transmission is started unexpectedly according to the changes in the state of P14.

- 5) Starting receive operation
 - Set SI1REC to 1. (Once SI1REC is set to 1, do not attempt to write data to the SCON1 register until the SI1END flag is set.)
 - · Detect the falling edge of receive data.
- 6) Reading data (after an interrupt)
 - Read SBUF1. (SBUF1 has been loaded with serial data from the data I/O port even in transmission mode. When SBUF1 is read in, the data on the position of the stop bit is read into bit 1 of the PSW.)
 - Clear SI1END and exit interrupt processing.
 - · Return to step 4) when repeating processing.

Note: Make sure that the following conditions are met when performing continuous receive operation in mode 1 (UART):

- The number of stop bits is set to 2 or greater.
- Clearing of SIIEND during interrupt processing terminates before the next start bit arrives.

3.16.4.3 Bus-master mode (mode 2)

- 1) Setting the clock
 - Set up SBR1.
- 2) Setting the mode
 - Set as follows:

SI1M0=0, SI1M1=1, SI1DIR, SI1IE=1, SI1REC=0

- 3) Setting up the ports
 - Configure the clock port and data port as N-channel open drain output ports.
- 4) Starting communication (sending an address)
 - · Load SBUF1 with address data.
 - Set SI1RUN (transfer a start bit + SBUF1 (8 bits) + stop bit (H)).
- 5) Checking address data (after an interrupt)
 - Read SBUF1. (SBUF1 has been loaded with serial data from the data I/O port even in transmission mode. When SBUF1 is read in, the data on the position of the stop bit is read into bit 1 of the PSW.)
 - Check for an acknowledge by reading bit 1 of the PSW.
 - If a condition for losing the bus contention occurs (see Note 1 in Table 3.16.1), no interrupt will be generated as SI1RUN is cleared in that case. If there is a possibility of a condition for losing the bus contention, for example, when another device in master mode is in the system, perform timeout processing using the timer module, etc. to detect the condition.

6) Sending data

- Load SBUF1 with output data.
- Clear SI1END and exit interrupt processing (transfer SBUF1 (8 bits) + stop bit (H)).

7) Checking transmission data (after an interrupt)

- Read SBUF1. (SBUF1 has been loaded with serial data from the data I/O port even in transmission mode. When SBUF1 is read in, the data on the position of the stop bit is read into bit 1 of the PSW.)
- Check for an acknowledge by reading bit 1 of the PSW.
- If a condition for losing the bus contention occurs (see Note 1 in Table 3.16.1), no interrupt will be generated as SI1RUN is cleared in that case. If there is a possibility of a condition for losing the bus contention, for example, when another device in master mode is in the system, perform timeout processing using the timer module, etc. to detect the condition.
- Return to step 6) to continue data transmission.
- Go to step 10) to terminate communication.

8) Receiving data

- Set SI1REC to 1.
- Clear SI1END and exit interrupt processing (receive (8 bits) + output SBUF1, bit 8 (acknowledge)).
- 9) Reading received data (after an interrupt)
 - · Read SBUF1.
 - Return to step 8) to continue data reception.
 - Go to * in step 10) to terminate communication. At this moment SBUF1, bit 8 has already been
 output as acknowledge data and the clock for the master side has been released.

10) Terminating communication

- Manipulate the clock output port (P15FCR=0, P15DDR=1, P15=0) and set the clock output to 0.
- Manipulate the data output port (P14FCR=0, P14DDR=1, P14=0) and set the data output to 0.
- Restore the clock output port to the original state (P15FCR=1, P15DDR=1, P15=0) and release the clock output.
- * Wait for all slaves to release the clock and the clock to be set to 1.
 - Secure a data set-up time, then manipulate the data output port (P14FCR=0, P14DDR=1, P14=1) and set the data output to 1. In this case, the SIO1 overrun flag SI1OVR (SCON1:FE34, bit 2) is set but this will exert no influence on the operation of SIO1.
 - Restore the data output port to the original state (set P14FCR to 1, then P14DDR to 1 and P14 to 0).
 - Clear SI1END and SI1OVR, then exit interrupt processing.
 - Return to step 4) when repeating processing.

3.16.4.4 Bus-slave mode (mode 3)

- 1) Setting the clock
 - Set up SBR1 (to set the acknowledge data set-up time).
- 2) Setting the mode
 - · Set as follows:

SI1M0=1, SI1M1=1, SI1DIR, SI1IE=1, SI1REC=0

- 3) Setting up ports
 - Configure the clock port and data port as N-channel open drain output ports.
- 4) Starting communication (waiting for an address)
 - *1 Set SI1REC.
 - *2 SI1RUN is automatically set on detection of a start bit.
 - Perform a receive operation (8 bits), then set the clock output to 0 on the falling edge of the 8th clock, after which an interrupt occurs.
- 5) Checking address data (after an interrupt)
 - When a start condition is detected, SI1OVR is set. Check SI1RUN=1 and SI1OVR=1 to determine if the address has been received.

(SI1OVR is not automatically cleared. Clear it by software.)

- · Read SBUF1 and check the address.
- If no address match occurs, clear SI1RUN and SI1END and exit interrupt processing, then wait
 for a stop condition detection at * in step 8).
- 6) Receiving data
 - Clear SI1END and exit interrupt processing. (If a receive sequence has been performed, send an acknowledge and release the clock port after the lapse of (SBR1 value + 1) × Tcyc.)
 - When a stop condition is detected, SI1RUN is automatically cleared and an interrupt is generated. Then, clear SI1END to exit interrupt processing and return to *2 in step 4).
 - Perform a receive operation (8 bits), then set the clock output to 0 on the falling edge of the 8th clock, after which an interrupt occurs. However, the clock counter is cleared if a start condition is detected in the middle of receive processing, in which case another 8 clocks are required to generate an interrupt.
 - Read SBUF1 and store the read data.

Note: Bit 8 of SBUF1 is not yet updated because the rising edge of the 9th clock has not yet occurred.

• Return to * in step 6) to continue receive processing.

7) Sending data

- · Clear SI1REC.
- · Load SBUF1 with output data.
- Clear SI1END and exit interrupt processing. (Send an acknowledge for the preceding receive operation and release the clock port after the lapse of (SBR1 value + 1) × Tcyc.)
- *1 Perform a send operation (8 bits) and set the clock output to 0 on the falling edge of the 8th clock, after which an interrupt occurs.
- *2 Go to *3 in step 7) if SI1RUN is set to 1.
 - If SI1RUN is set to 0, implying an interrupt from *4 in step 7), clear SI1END and SI1OVR and return to *1 in step 4).

*3 • Read SBUF1 and check send data as required.

Note: Bit 8 of SBUF1 is not yet updated because the rising edge of the 9th clock has not yet occurred.

- Load SBUF1 with the next output data.
- Clear SI1END and exit interrupt processing. (Release the clock port after the lapse of (SBR1 value + 1) × Tcyc.)
- Return to *1 in step 7) if an acknowledge from the master is present (L).
- If there is no acknowledge from the master (H), SIO1, recognizing the end of data transmission, automatically clears S11RUN and releases the data port.
- * However, if the restart condition occurs just after the event, SI1REC must be set to 1 before exiting the interrupt (SI1REC is for detecting a start condition and is not set automatically).
 - It may disturb the transmission of address from the master if there is an unexpected restart just after the slave transmission (if SI1REC is not set to 1 by software).
- *4 When a stop condition is detected, an interrupt is generated and processing returns to *2 in step 7).
- 8) Terminating communication
 - · Set SI1REC.
 - Return to * in step 6) to automatically terminate communication.
 - To force communication to terminate, clear SI1RUN and SI1END (release the clock port).
 - * An interrupt occurs when a stop condition is detected. Then, clear SI1END and SI1OVR and return to *2 in step 4).

3.16.5 Related Registers

3.16.5.1 SIO1 control register (SCON1)

1) This register is an 8-bit register that controls the operation and interrupts of SIO1.

Address	Initial Value	R/W	Name	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE34	0000 0000	R/W	SCON1	-	SI1M1	SI1M0	SI1RUN	SI1REC	SI1DIR	SI1OVR	SI1END	SI1IE

SI1M1 (bit 7): SIO1 mode control SI1M0 (bit 6): SIO1 mode control

Table 3.16.2 SIO1 Operating Modes

Mode	SI1M1	SI1M0	Operating Mode
0	0	0	Synchronous 8-bit SIO
1	0	1	UART (1 stop bit, no parity)
2	1	0	Bus master mode
3	1	1	Bus slave mode

SI1RUN (bit 5): SIO1 operation flag

- <1> A 1 in this bit indicates that SIO1 is running.
- <2> See Table 3.16.1 for the conditions for setting and clearing this bit.

SI1REC (bit 4): SIO1 receive/transmit control

- <1> Setting this bit to 1 places SIO1 into reception mode.
- <2> Setting this bit to 0 places SIO1 into transmission mode.

SI1DIR (bit 3): MSB/LSB first select

- <1> A 1 in this bit selects MSB first.
- <2> A 0 in this bit selects LSB first

SI1OVR (bit 2): SIO1 overrun flag

- <1> This bit is set when a falling edge of the input clock is detected with SI1RUN=0 in mode 0, 1, or 3.
- <2> This bit is set if the conditions for setting SI1END are established when SI1END=1.
- <3> In mode 3, this bit is set when the start condition is detected.
- <4> This bit must be cleared with an instruction.

SI1END (bit 1): Serial transfer end flag

- <1> This bit is set when serial transfer terminates (see Table 3.16.1).
- <2> This bit must be cleared with an instruction.

SI1IE (bit 0): SIO1 interrupt request enable control

<1> When this bit and SI1END are set to 1, an interrupt request to vector address 003BH is generated.

3.16.5.2 Serial buffer 1 (SBUF1)

- 1) Serial buffer 1 is a 9-bit register used to store data to be handled during SIO1 serial transfer.
- 2) The low-order 8 bits of SBUF1 are transferred to the data shift register for data transmission/reception at the beginning of transfer processing, and the contents of the shift register are placed in the low-order 8 bits of SBUF1 when 8-bit data is transferred.
- 3) In modes 1, 2, and 3, bit 8 of SBUF1 is loaded with the 9th data (data on the position of the stop bit) received.

Address	Initial Value	R/W	Name	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE35	0000 0000	R/W	SBUF1	SBUF18	SBUF17	SBUF16	SBUF15	SBUF14	SBUF13	SBUF12	SBUF11	SBUF10

3.16.5.3 Baudrate generator register (SBR1)

- 1) This register is an 8-bit register that defines the baudrate of SIO1 serial transfer.
- 2) Loading this register with data causes the baudrate generating counter to be initialized immediately.
- 3) The baudrate varies from mode to mode. (The baudrate generator is disabled in mode 3.)

Modes 0 and 2: $TSBR1 = (SBR1 \text{ value} + 1) \times 2 \text{ Tcyc}$

(value range = 2 to 512 Tcyc)

Mode 1: $TSBR1 = (SBR1 \text{ value} + 1) \times 8 \text{ Tcyc}$

(value range = 8 to 2048 Tcyc)

Address	Initial Value	R/W	Name	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE36	0000 0000	R/W	SBR1	-	SBRG17	SBRG16	SBRG15	SBRG14	SBRG13	SBRG12	SBRG11	SBRG10

3.17 Asynchronous Serial Interface 1 (UART1)

3.17.1 Overview

This series of microcontrollers incorporates asynchronous serial interface 1 (UART1), which has the following characteristics and functions:

1) Data length: 7/8/9 bits (LSB first)

2) Stop bit: 1 bit (2 bits in continuous transmission mode)

3) Parity bit: None

4) Transfer rate: Programmable within the range of $(\frac{16}{3} \text{ to } \frac{2048}{3})$ Tcyc or $(\frac{64}{3} \text{ to } \frac{8192}{3})$ Tcyc

5) Full duplex communication

The independent transmitter and receiver blocks allow both transmit and receive operations to be performed at the same time. Both transmitter and receiver blocks adopt a double buffer configuration, so that data can be transmitted and received continuously.

3.17.2 Functions

1) Asynchronous serial interface (UART1)

- Performs full duplex asynchronous serial communication using a data length of 7, 8, or 9 bits with 1 stop bit.
- The transfer rate of UART1 is programmable within the range of $(\frac{16}{3} \text{ to } \frac{2048}{3})$ Tcyc or $(\frac{64}{3} \text{ to } \frac{8192}{3})$ Tcyc.

2) Continuous data transmission/reception

- Performs continuous transmission of serial data whose data length and transfer rate are fixed. (The data length and transfer rate that are identified at the beginning of transmission are used.)
- The number of stop bits used in continuous transmission mode is 2 bits (see Figure 3.17.4).
- Performs continuous reception of serial data whose data length and transfer rate vary on each receive operation.
- The transfer rate of UART1 is programmable within the range of $(\frac{16}{3} \text{ to } \frac{2048}{3})$ Tcyc or $(\frac{64}{3} \text{ to } \frac{8192}{3})$ Tcyc.
- The transmit data is read from the transmit data register (TBUF) and the receive data is stored in the receive data register (RBUF).

3) Interrupt generation

An interrupt request is generated at the beginning of transmit operation and at the end of receive operation if the interrupt request enable bit is set.

- 4) It is necessary to manipulate the following special function registers to control asynchronous serial interface 1 (UART1).
 - UCONO, UCON1, UBR, TBUF, RBUF, P3, P3DDR

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FED0	0000 0000	R/W	UCON0	UBRSEL	STRDET	RECRUN	STPERR	U0B3	RBIT8	RECEND	RECIE
FED1	0000 0000	R/W	UCON1	TRUN	8/9BIT	TDDR	TCMOS	8/7BIT	TBIT8	TEPTY	TRNSIE
FED2	0000 0000	R/W	UBR	UBRG7	UBRG6	UBRG5	UBRG4	UBRG3	UBRG2	UBRG1	UBRG0
FED3	0000 0000	R/W	TBUF	TBUF7	TBUF6	TBUF5	TBUR4	TBUF3	TBUF2	TBUF1	TBUF0
FED4	0000 0000	R/W	RBUF	RBUF7	RBUF6	RBUF5	RBUR4	RBUF3	RBUF2	RBUF1	RBUF0

3.17.3 Circuit Configuration

3.17.3.1 UART1 control register 0 (UCON0) (8-bit register)

1) This register controls the receive operation and interrupts of UART1.

3.17.3.2 UART1 control register 1 (UCON1) (8-bit register)

1) This register controls the transmit operation, data length, and interrupts of UART1.

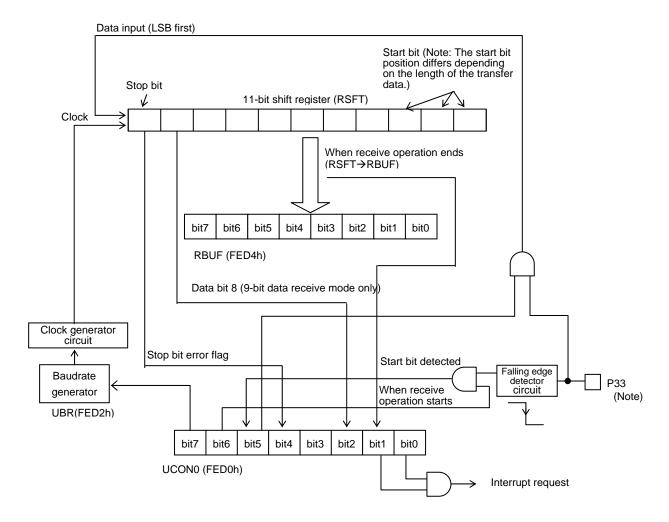
3.17.3.3 UART1 baudrate generator (UBR) (8-bit reload counter)

- 1) This is a reload counter for generating internal clocks.
- 2) It can generate clocks at intervals of $(n+1) \times \frac{8}{3}$ Tcyc or $(n+1) \times \frac{32}{3}$ Tcyc (n=1 to 255; Note: n=0 is inhibited).

3.17.3.4 UART1 transmit data register (TBUF) (8-bit register)

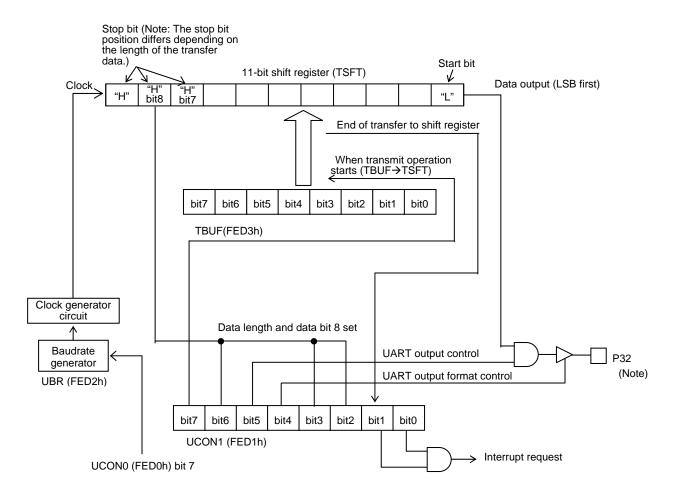
1) This register is an 8-bit register for storing transmit data.

3.17.3.5 UART1 transmit shift register (TSFT) (11-bit shift register)


- 1) This register is a shift register used to send serial data via UART1.
- 2) This register cannot be accessed directly with an instruction. It must be accessed through the transmit data register (TBUF).

3.17.3.6 UART1 receive data register (RBUF) (8-bit register)

1) This register is an 8-bit register for storing receive data.


3.17.3.7 UART1 receive shift register (RSFT) (11-bit shift register)

- 1) This register is a shift register used to receive serial data via UART1.
- 2) This register cannot be accessed directly with an instruction. It must be accessed through the receive data register (RBUF).

Note: Bit 3 of P3DDR (FE4D) must be set to 0 when UART1 is to be used in reception mode. (UART1 will not function normally if this bit is set to 1)

Figure 3.17.1 UART1 Block Diagram (Reception Mode)

Note: Bit 2 of P3DDR (FE4D) must be set to 0 when the UART1 transmit data is to be output. (Transmit data is not output if this bit is set to 1)

Figure 3.17.2 UART1 Block Diagram (Transmission Mode)

3.17.4 Related Registers

3.17.4.1 UART1 control register 0 (UCON0)

1) This register is an 8-bit register that controls the receive operation and interrupts of UART1.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FED0	0000 0000	R/W	UCON0	UBRSEL	STRDET	RECRUN	STPERR	U0B3	RBIT8	RECEND	RECIE

UBRSEL (bit 7): UART1 baudrate generator period control

- <1> When this bit is set to 1, the UART1 baudrate generator generates clocks having a period of $(n+1) \times \frac{32}{3}$ Tcyc.
- <2> When this bit is set to 0, the UART1 baudrate generator generates clocks having a period of (n+1) × $\frac{8}{3}$ Tcyc.
- * "n" represents the value of the UART baudrate generator UBR (at FED2h).

STRDET (bit 6): UART1 start bit detection control

- <1> When this bit is set to 1, the start bit detection (falling edge detection) function is enabled.
- <2> When this bit is set to 0, the start bit detection (falling edge detection) function is disabled.
- * This bit must be set to 1 to enable the start bit detection function when UART1 is to be used in continuous reception mode.
- * If this bit is set to 1 when the receive port (P33) is held at a low level, RECRUN is automatically set and UART 1 starts a receive operation.

RECRUN (bit 5): UART1 receive start flag

- <1> This bit is set and a receive operation starts when a falling edge of the signal at the receive port (P33) is detected when the start bit detection function is enabled (STRDET=1).
- <2> This bit is automatically cleared at the end of the receive operation (If this bit is cleared during the receive operation, the operation is aborted in the middle of the processing).
- * When a receive operation is forced to terminate prematurely, RECEND is set to 1 and the contents of the receive shift register are transferred to RBUF. STPERR is set to 1 if the state of the last data bit that is received on the forced termination is low.

STPERR (bit 4): UART1 stop bit error flag

- <1> This bit is set at the end of a receive operation if the state of the received stop bit (the last data bit received) is low.
- <2> This bit must be cleared with an instruction.

U0B3 (bit 3): General-purpose flag

<1> This bit can be used as a general-purpose flag. Any attempt to manipulate this bit exerts no influence on the operation of the functional block.

RBIT8 (bit 2): UART1 receive data bit 8 storage bit

- <1> This bit position is loaded with bit 8 of the received data at the end of receive operation when the data length is set to 9 bits (UCON1: 8/9BIT=1, 8/7BIT=0). (If the receive operation is ended prematurely, this bit position is loaded with the last received bit but one.)
- <2> This bit must be cleared with an instruction.

RECEND (bit 1): UART1 receive end flag

- <1> This bit is set at the end of a receive operation. (When this bit is set, the received data is transferred from the receive shift register (RSFT) to the receive data register (RBUF).)
- <2> This bit must be cleared with an instruction.
- * In continuous reception mode, the next receive operation is not carried out even when UART1 detects data that sets the receive start flag (RECRUN) before this bit is set.

RECIE (bit 0): UART1 receive interrupt request enable control

<1> When this bit and RECEND are set to 1, an interrupt request to vector address 0033H is generated.

3.17.4.2 UART1 control register 1 (UCON1)

 This register is an 8-bit register that controls the transmit operation, data length, and interrupts of UART1.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FED1	0000 0000	R/W	UCON1	TRUN	8/9BIT	TDDR	TCMOS	8/7BIT	TBIT8	TEPTY	TRNSIE

TRUN (bit 7): UART1 transmit control

- <1> When this bit is set to 1, UART1 starts a transmit operation.
- <2> This bit is automatically cleared at the end of the transmit operation. (If this bit is cleared in the middle of the transmit operation, the operation is aborted immediately.)
- * In continuous transmission mode, this bit is cleared at the end of a transmit operation, but is automatically set within the same cycle (Tcyc). Consequently, transmit operations occur with intervening 1-Tcyc delays.
- * In continuous transmission mode, TRUN will not be set automatically if a bit-manipulation instruction (NOT1, CLR1, or SET1) is executed on the UCON1 register in the same cycle TRUN is to be automatically cleared.

8/9 BIT (bit 6): UART1 transfer data length control

<1> This bit and 8/7 BIT (bit 3) are used to control the transfer data length of UART1.

8/9 BIT	8/7 BIT	Data Length (in bits)
1	0	9
0	0	8
0	1	7
1	1	Inhibited

- * UART1 will not run normally if the data length is changed in the middle of a transfer operation. Be sure to manipulate this bit after confirming completion of the transfer operation.
- * The same data length is used when both transmit and receive operations are to be performed at the same time.

TDDR (bit 5): UART1 transmit port output control

- <1> When this bit is set to 1, the transmit data is placed at the transmit port (P32). No transmit data is output if bit 0 of P3DDR (FE4D) is set to 1.
- <2> When this bit is set to 0, no transmit data is placed at the transmit port (P32).
- * The transmit port is placed in "high/open (CMOS/N-channel open-drain)" mode if this bit is set to 1 when UART1 has stopped a transmit operation (TRUN=0).
- * This bit must always be set to 0 when the UART transmit function is not to be used.

TCMOS (bit 4): UART1 transmit port output type control

- <1> When this bit is set to 1, the output type of the transmit port (P32) is set to CMOS.
- <2> When this bit is set to 0, the output type of the transmit port (P32) is set to N-channel open drain.

8/7 BIT (bit 3): UART1 transfer data length control

<1> This bit and 8/9 BIT (bit 6) are used to control the transfer data length of UART1.

TBIT8 (bit 2): UART1 transmit data bit 8 storage bit

<1> This bit stores bit 8 of the transmit data when the data length is set to 9 bits (8/9BIT=1 and 8/7BIT=0).

TEPTY (bit 1): UART1 transmit shift register transfer flag

- <1> This bit is set when the data transfer from the transmit data register (TBUF) to the transmit shift register (TSFT) ends at the beginning of the transmit operation (This bit is set in the cycle (Tcyc) following the one in which the transmit control bit (TRUN) is set to 1).
- <2> This bit must be cleared with an instruction.
- * When performing a continuous transmit operation, make sure that this bit is set before each loading of the next transmit data into the transmit data register (TBUF). When this bit is subsequently cleared, the transmit control bit (TRUN) is automatically set at the end of the transmit operation.

TRNSIE (bit 0): UART1 transmit interrupt request enable control

<1> An interrupt request to vector address 003BH is generated when this bit and TEPTY are set to 1.

3.17.4.3 UART1 baudrate generator (UBR)

- 1) This generator is an 8-bit register that defines the transfer rate of the UART1 transfer.
- 2) The counter for the baudrate generator is initialized when a UART1 transfer operation is suspended or terminated (UCON0:RECRUN=UCON1:TRUN=0).
 - * Do not change the transfer rate in the middle of a UART1 transfer operation. UART1 will not run normally if the transfer rate is changed in the middle of the operation. Be sure to stop UART1 before setting a new transfer rate.
 - * The same transfer rate is used when both transmit and receive operations are to be performed at the same time (This also applies when continuous transmit and receive operations are to be performed at the same time).
 - * When (UCON0:UBRSEL=0)

TUBR=(UBR value + 1)
$$\times \frac{8}{3}$$
 Tcyc (value range: $\frac{16}{3}$ to $\frac{2048}{3}$ Tcyc)

* When (UCON0:UBRSEL=1)

TUBR=(UBR value + 1)
$$\times \frac{32}{3}$$
 Tcyc (value range: $\frac{64}{3}$ to $\frac{8192}{3}$ Tcyc)

* Setting the UBR to 00[H] is inhibited.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FED2	0000 0000	R/W	UBR	UBRG7	UBRG6	UBRG5	UBRG4	UBRG3	UBRG2	UBRG1	UBRG0

3.17.4.4 UART1 transmit data register (TBUF)

- 1) This register is an 8-bit register that stores the data to be transmitted through UART1.
- 2) Data from the TBUF is transferred to the transmit shift register (TSFT) at the beginning of a transmit operation. (Load the next data after checking the transmit shift register transfer flag (UCON1: TEPTY).)
 - * Bit 8 of the transmit data must be loaded into the transmit data bit 8 storage bit (UCON1:TBIT8).

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FED3	0000 0000	R/W	TBUF	TBUF7	TBUF6	TBUF5	TBUF4	TBUF3	TBUF2	TBUF1	TBUF0

<u>UART1</u>

3.17.4.5 UART1 receive data register (RBUF)

- 1) This register is an 8-bit register that stores the data that is received through UART1.
- 2) The data from the receive shift register (RSFT) is transferred to this RBUF at the end of a receive operation.
 - * Bit 8 of the receive data is transferred to the receive data bit 8 storage bit (UCON0:RBIT8).
 - * Bit 7 of RBUF is set to 0 when the receive data length is 7 bits.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FED4	0000 0000	R/W	RBUF	RBUF7	RBUF6	RBUF5	RBUF4	RBUF3	RBUF2	RBUF1	RBUF0

3.17.5 UART1 Continuous Communication Examples

3.17.5.1 Continuous 8-bit data reception mode (first receive data = 55H)

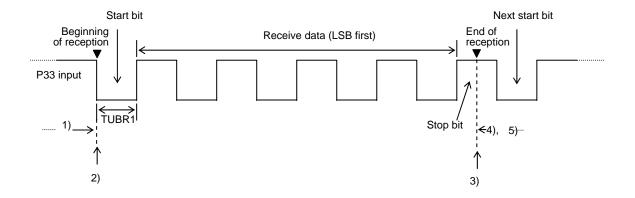


Figure 3.17.3 Example of Continuous 8-bit Data Reception Mode Operation

- 1) Setting the clock
 - Set the transfer rate (UBR).

Setting the data length

• Clear UCON1:8/9BIT and 8/7BIT.

Configuring UART1 for receive processing and setting up the receive port and interrupts

- Set up the receive control register (UCON0=41H).
- * Set P33DDR (P3DDR:bit 3) to 0 and P33 (P3:bit 3) to 0.
- 2) Starting a receive operation
 - UCON0:RECRUN is set when a falling edge of the signal at the receive port (P33) is detected.
- 3) End of a receive operation
 - When the receive operation ends, UCON0:RECRUN is automatically cleared and UCON0: RECEND is set. UART1 then waits for the start bit of the next receive data.
- 4) Receive interrupt processing
 - Read the receive data (RBUF).
 - Clear UCON0:RECEND and STPERR and exit the interrupt routine.
 - * When changing the data length and baudrate for the next receive operation, do so before the start bit (falling edge of the signal) is detected at the receive port (P33).
- 5) Next receive operation
 - Repeat steps 2), 3), and 4) above.
 - To end a continuous receive operation, clear UCON0:STRDET during a receive operation, and this receive operation will be the last receive operation that UART1 executes.

3.17.5.2 Continuous 8-bit data transmission mode (first transmit data = 55H)

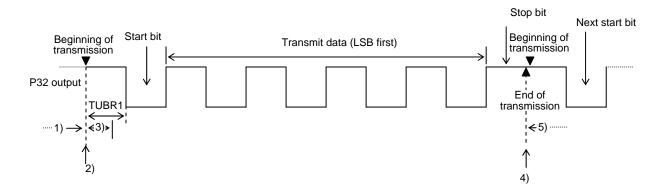


Figure 3.17.4. Example of Continuous 8-bit Data Transmission Mode Operation

- 1) Setting the clock
 - Set the transfer rate (UBR).

Setting the transmit data

• Set the transmit data (TBUF=5H).

Setting the data length, transmit port, and interrupts

- Set up the transmit control register (UCON1=31H).
- * Set P32DDR (P3DDR:bit 2) to 0 and P32 (P3:bit 2) to 0.
- 2) Starting a transmit operation
 - Set UCON1:TRUN.
- 3) Transmit interrupt processing
 - Set the next transmit data (TBUF=xxH).
 - Clear UCON1:TEPTY and exit the interrupt routine.
- 4) End of a transmit operation
 - When the transmit operation ends, UCON1:TRUN is automatically cleared and automatically set in the same cycle (Tcyc) (continuous data transmission mode only; this processing takes 1 Tcyc of time). UART1 then starts to transmit the next data.
- 5) Next transmit operation
 - Repeat steps 3) and 4) above.
 - To end a continuous transmit operation, clear UCON1:TRNSIE while not clearing UCON1: TEPTY and exit the interrupt in the step 3) processing, and the transmit operation that is being performed at that time will be the last transmit operation that UART1 executes.

3.17.5.3 UART1 communication port setting

(1) When using port 3 as the UART1 port

1) Setting up the receive port (P33)

Regist	er Data	Receive Port (P33)	Internal Pull-up
P33	P33DDR	State	Resistor
0	0	Input	Off
1	0	Input	On

^{*} UART1 cannot receive data normally if P33DDR is set to 1.

2) Setting up the transmit port (P32)

	Regist	er Data		Transmit Dart (D22) State	Internal Pull-up		
P32	P32DDR	TDDR	TCMOS	Transmit Port (P32) State	Resistor		
0	0	1	1	CMOS output	Off		
0	0	1	0	N-channel open drain output	Off		
1	0	1	0	N-channel open drain output	On		

^{*} UART1 does not output transmit data if P32DDR is set to 1.

3.17.6 UART1 HALT Mode Operation

3.17.6.1 Reception mode

- 1) A UART1 reception mode operation is enabled in HALT mode. (If UCON0:STRDET is set to 1 when the CPU enters HALT mode, the receive processing will be restarted if data that sets UCON0:RECRUN is input at the end of a receive operation.)
- 2) HALT mode can be released using UART1 receive interrupt.

3.17.6.2 Transmission mode

- A UART1 transmission mode operation is enabled in HALT mode. (If the continuous transmission
 mode is specified when the CPU enters HALT mode, UART1 will restart transmit processing after
 terminating a transmit operation. Since UCON1:TEPTY cannot be cleared in this case, UART1
 stops processing after completing that transmit operation.)
- 2) HALT mode can be released using the UART1 transmit interrupt.

3.18 Asynchronous Serial Interface 2 (UART2)

3.18.1 Overview

This series of microcontrollers incorporates asynchronous serial interface 2 (UART2), which has the following characteristics and functions:

1) Data length: 7/8/9 bits (LSB first)

2) Stop bit: 1 bit (2 bits in continuous transmission mode)

3) Parity bit: None

4) Transfer rate: Programmable within the range of $(\frac{16}{3} \text{ to } \frac{2048}{3})$ Tcyc or $(\frac{64}{3} \text{ to } \frac{8192}{3})$ Tcyc

5) Full duplex communication

The independent transmitter and receiver blocks allow both transmit and receive operations to be performed at the same time. Both transmitter and receiver blocks adopt a double buffer configuration, so that data can be transmitted and received continuously.

3.18.2 Functions

1) Asynchronous serial interface (UART2)

- Performs full duplex asynchronous serial communication using a data length of 7, 8, or 9 bits with 1 stop bit.
- The transfer rate of UART2 is programmable within the range of $(\frac{16}{3} \text{ to } \frac{2048}{3})$ Tcyc or $(\frac{64}{3} \text{ to } \frac{8192}{3})$ Tcyc.

2) Continuous data transmission/reception

- Performs continuous transmission of serial data whose data length and transfer rate are fixed. (The data length and transfer rate that are identified at the beginning of transmission are used.)
- The number of stop bits used in continuous transmission mode is 2 bits (see Figure 3.18.4).
- Performs continuous reception of serial data whose data length and transfer rate vary on each receive operation.
- The transfer rate of UART2 is programmable within the range of $(\frac{16}{3} \text{ to } \frac{2048}{3})$ Tcyc or $(\frac{64}{3} \text{ to } \frac{8192}{3})$ Tcyc.
- The transmit data is read from the transmit data register (TBUF2) and the receive data is stored in the receive data register (RBUF2).

3) Interrupt generation

An interrupt request is generated at the beginning of transmit operation and at the end of receive operation if the interrupt request enable bit is set.

- 4) It is necessary to manipulate the following special function registers to control asynchronous serial interface 2 (UART2).
 - UCON2, UCON3, UBR2, TBUF2, RBUF2, P3, P3DDR

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FEE8	0000 0000	R/W	UCON2	URBSEL2	STRDET2	RECRUN2	STPERR2	U2B3	RBIT82	RECEND2	RECIE2
FEE9	0000 0000	R/W	UCON3	TRUN2	8/9BIT2	TDDR2	TCMOS2	8/7BIT2	TBIT82	TEPTY2	TRNSIE2
FEEA	0000 0000	R/W	UBR2	U2BRG7	U2BRG6	U2BRG5	U2BRG4	U2BRG3	U2BRG2	U2BRG1	U2BRG0
FEEB	0000 0000	R/W	TBUF2	T2BUF7	T2BUF6	T2BUF5	T2BUF4	T2BUF3	T2BUF2	T2BUF1	T2BUF0
FEEC	0000 0000	R/W	RBUF2	R2BUF7	R2BUF6	R2BUF5	R2BUF4	R2BUF3	R2BUF2	R2BUF1	R2BUF0

3.18.3 Circuit Configuration

3.18.3.1 UART2 control register 2 (UCON2) (8-bit register)

1) This register controls the receive operation and interrupts of UART2.

3.18.3.2 UART2 control register 3 (UCON3) (8-bit register)

1) This register controls the transmit operation, data length, and interrupts of UART2.

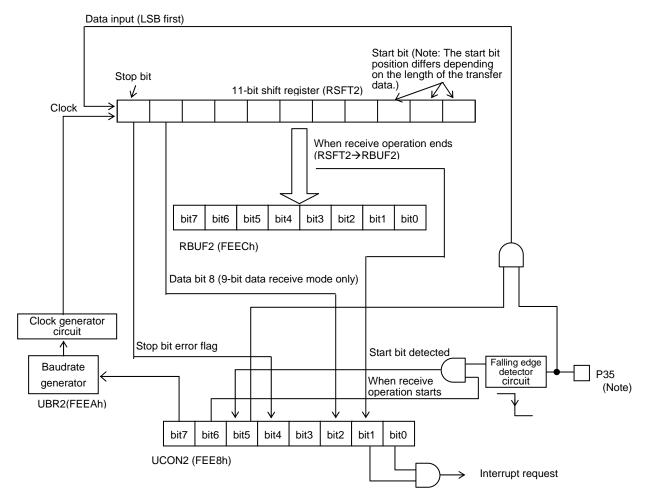
3.18.3.3 UART2 baudrate generator (UBR2) (8-bit reload counter)

- 1) This is a reload counter for generating internal clocks.
- 2) It can generate clocks at intervals of $(n+1) \times \frac{8}{3}$ Tcyc or $(n+1) \times \frac{32}{3}$ Tcyc (n=1 to 255; Note: n=0 is inhibited).

3.18.3.4 UART2 transmit data register (TBUF2) (8-bit register)

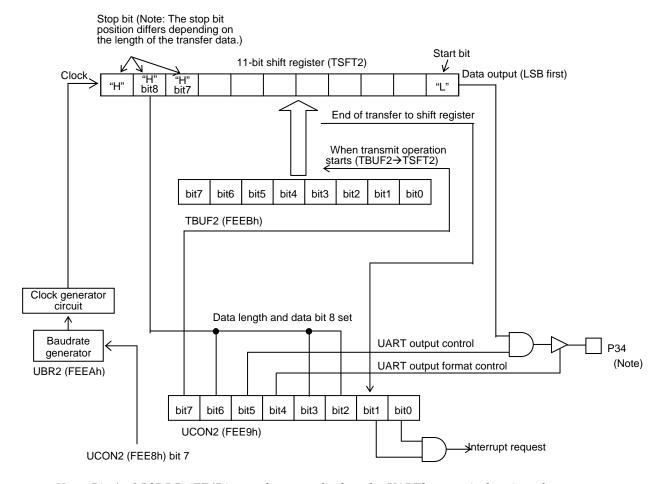
1) This register is an 8-bit register for storing transmit data.

3.18.3.5 UART2 transmit shift register (TSFT2) (11-bit shift register)


- 1) This register is a shift register used to send serial data via UART2.
- 2) This register cannot be accessed directly with an instruction. It must be accessed through the transmit data register (TBUF2).

3.18.3.6 UART2 receive data register (RBUF2) (8-bit register)

1) This register is an 8-bit register for storing receive data.


3.18.3.7 UART2 receive shift register (RSFT2) (11-bit shift register)

- 1) This register is a shift register used to receive serial data via UART2.
- 2) This register cannot be accessed directly with an instruction. It must be accessed through the receive data register (RBUF2).

Note: Bit 5 of P3DDR (FE4D) must be set to 0 when UART2 is to be used in reception mode. (UART2 will not function normally if this bit is set to 1)

Figure 3.18.1 UART2 Block Diagram (Reception Mode)

Note: Bit 4 of P3DDR (FE4D) must be set to 0 when the UART2 transmit data is to be output. (Transmit data is not output if this bit is set to 1)

Figure 3.18.2 UART2 Block Diagram (Transmission Mode)

3.18.4 Related Registers

3.18.4.1 UART2 control register 0 (UCON2)

1) This register is an 8-bit register that controls the receive operation and interrupts of UART2.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FEE8	0000 0000	R/W	UCON2	UBRSEL2	STRDET2	RECRUN2	STPERR2	U2B3	RBIT82	RECEND2	RECIE2

UBRSEL2 (bit 7): UART2 baudrate generator period control

- <1> When this bit is set to 1, the UART2 baudrate generator generates clocks having a period of $(n+1) \times \frac{32}{3}$ Tcyc.
- <2> When this bit is set to 0, the UART2 baudrate generator generates clocks having a period of (n+1) × $\frac{8}{3}$ Tcyc.
- * "n" represents the value of the UART baudrate generator UBR2 (at FEEAh).

STRDET2 (bit 6): UART2 start bit detection control

- <1> When this bit is set to 1, the start bit detection (falling edge detection) function is enabled.
- <2> When this bit is set to 0, the start bit detection (falling edge detection) function is disabled.
- * This bit must be set to 1 to enable the start bit detection function when UART2 is to be used in continuous reception mode.
- * If this bit is set to 1 when the receive port (P35) is held at a low level, RECRUN2 is automatically set and UART2 starts a receive operation.

RECRUN2 (bit 5): UART2 receive start flag

- <1> This bit is set and a receive operation starts when a falling edge of the signal at the receive port (P35) is detected when the start bit detection function is enabled (STRDET2=1).
- <2> This bit is automatically cleared at the end of the receive operation (If this bit is cleared during the receive operation, the operation is aborted in the middle of the processing).
- * When a receive operation is forced to terminate prematurely, RECEND2 is set to 1 and the contents of the receive shift register are transferred to RBUF2. STPERR2 is set to 1 if the state of the last data bit that is received on the forced termination is low.

STPERR2 (bit 4): UART2 stop bit error flag

- <1> This bit is set at the end of a receive operation if the state of the received stop bit (the last data bit received) is low.
- <2> This bit must be cleared with an instruction.

U2B3 (bit 3): General-purpose flag

<1> This bit can be used as a general-purpose flag. Any attempt to manipulate this bit exerts no influence on the operation of the functional block.

RBIT82 (bit 2): UART2 receive data bit 8 storage bit

- <1> This bit position is loaded with bit 8 of the received data at the end of receive operation when the data length is set to 9 bits (UCON2: 8/9BIT2=1, 8/7BIT2=0). (If the receive operation is ended prematurely, this bit position is loaded with the last received bit but one.)
- <2> This bit must be cleared with an instruction.

RECEND2 (bit 1): UART2 receive end flag

- <1> This bit is set at the end of a receive operation. (When this bit is set, the received data is transferred from the receive shift register (RSFT2) to the receive data register (RBUF2).)
- <2> This bit must be cleared with an instruction.
- * In continuous reception mode, the next receive operation is not carried out even when UART2 detects data that sets the receive start flag (RECRUN2) before this bit is set.

RECIE2 (bit 0): UART2 receive interrupt request enable control

<1> When this bit and RECEND2 are set to 1, an interrupt request to vector address 0033H is generated.

3.18.4.2 UART2 control register 1 (UCON3)

 This register is an 8-bit register that controls the transmit operation, data length, and interrupts of UART?

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FEE9	0000 0000	R/W	UCON3	TRUN2	8/9BIT2	TDDR2	TCMOS2	8/7BIT2	TBIT82	TEPTY2	TRNSIE2

TRUN2 (bit 7): UART2 transmit control

- <1> When this bit is set to 1, UART2 starts a transmit operation.
- <2> This bit is automatically cleared at the end of the transmit operation. (If this bit is cleared in the middle of the transmit operation, the operation is aborted immediately.)
- * In continuous transmission mode, this bit is cleared at the end of a transmit operation, but is automatically set within the same cycle (Tcyc). Consequently, transmit operations occur with intervening 1-Tcyc delays.
- * In continuous transmission mode, TRUN2 will not be set automatically if a bit-manipulation instruction (NOT1, CLR1, or SET1) is executed on the UCON3 register in the same cycle TRUN2 is to be automatically cleared.

8/9 BIT2 (bit 6): UART2 transfer data length control

<1> This bit and 8/7 BIT2 (bit 3) are used to control the transfer data length of UART2.

8/9 BIT2	8/7 BIT2	Data Length (in bits)
1	0	9
0	0	8
0	1	7
1	1	Inhibited

- * UART2 will not run normally if the data length is changed in the middle of a transfer operation. Be sure to manipulate this bit after confirming completion of the transfer operation.
- * The same data length is used when both transmit and receive operations are to be performed at the same time.

TDDR2 (bit 5): UART2 transmit port output control

- <1> When this bit is set to 1, the transmit data is placed at the transmit port (P34). No transmit data is output if bit 4 of P3DDR (FE4D) is set to 1.
- <2> When this bit is set to 0, no transmit data is placed at the transmit port (P34).
- * The transmit port is placed in "high/open (CMOS/N-channel open-drain)" mode if this bit is set to 1 when UART2 has stopped a transmit operation (TRUN2=0).
- * This bit must always be set to 0 when the UART2 transmit function is not to be used.

TCMOS2 (bit 4): UART2 transmit port output type control

- <1> When this bit is set to 1, the output type of the transmit port (P34) is set to CMOS.
- <2> When this bit is set to 0, the output type of the transmit port (P34) is set to N-channel open drain.

8/7 BIT2 (bit 3): UART2 transfer data length control

<1> This bit and 8/9 BIT2 (bit 6) are used to control the transfer data length of UART2.

TBIT82 (bit 2): UART2 transmit data bit 8 storage bit

<1> This bit stores bit 8 of the transmit data when the data length is set to 9 bits (8/9BIT2=1 and 8/7BIT2=0).

TEPTY2 (bit 1): UART2 transmit shift register transfer flag

- <1> This bit is set when the data transfer from the transmit data register (TBUF2) to the transmit shift register (TSFT2) ends at the beginning of the transmit operation. (This bit is set in the cycle (Tcyc) following the one in which the transmit control bit (TRUN2) is set to 1).
- <2> This bit must be cleared with an instruction.
- * When performing a continuous transmit operation, make sure that this bit is set before each loading of the next transmit data into the transmit data register (TBUF2). When this bit is subsequently cleared, the transmit control bit (TRUN2) is automatically set at the end of the transmit operation.

TRNSIE2 (bit 0): UART2 transmit interrupt request enable control

<1> An interrupt request to vector address 003BH is generated when this bit and TEPTY2 are set to 1.

3.18.4.3 UART2 baudrate generator (UBR2)

- 1) This is an 8-bit register that defines the transfer rate of the UART2 transfer.
- 2) The counter for the baudrate generator is initialized when a UART2 transfer operation is suspended or terminated (UCON2:RECRUN2=UCON3:TRUN2=0).
 - * Do not change the transfer rate in the middle of a UART2 transfer operation. UART2 will not run normally if the transfer rate is changed in the middle of the operation. Be sure to stop UART2 before setting a new transfer rate.
 - * The same transfer rate is used when both transmit and receive operations are to be performed at the same time (This also applies when continuous transmit and receive operations are to be performed at the same time).
 - * When (UCON2:UBRSEL2= 0)

TUBR2 = (UBR2 value + 1)
$$\times \frac{8}{3}$$
 Tcyc (value range: $\frac{16}{3}$ to $\frac{2048}{3}$ Tcyc)

* When (UCON2:UBRSEL2= 1)

TUBR2 = (UBR2 value + 1) ×
$$\frac{32}{3}$$
 Tcyc (value range: $\frac{64}{3}$ to $\frac{8192}{3}$ Tcyc)

* Setting the UBR2 to 00[H] is inhibited.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FEEA	0000 0000	R/W	UBR2	U2BRG7	U2BRG6	U2BRG5	U2BRG4	2UBRG3	U2BRG2	U2BRG1	U2BRG0

3.18.4.4 UART2 transmit data register (TBUF2)

- 1) This register is an 8-bit register that stores the data to be transmitted through UART2.
- 2) Data from the TBUF2 is transferred to the transmit shift register (TSFT2) at the beginning of a transmit operation. (Load the next data after checking the transmit shift register transfer flag (UCON3:TEPTY2).)
 - * Bit 8 of the transmit data must be loaded into the transmit data bit 8 storage bit (UCON3:TBIT82).

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FEEB	0000 0000	R/W	TBUF2	T2BUF7	T2BUF6	T2BUF5	T2BUF4	T2BUF3	T2BUF2	T2BUF1	T2BUF0

3.18.4.5 UART2 receive data register (RBUF2)

- 1) This register is an 8-bit register that stores the data that is received through UART2.
- 2) The data from the receive shift register (RSFT2) is transferred to this RBUF2 at the end of a receive operation.
 - * Bit 8 of the receive data is transferred to the receive data bit 8 storage bit (UCON2:RBIT82).
 - * Bit 7 of RBUF2 is set to 0 when the receive data length is 7 bits.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FEEC	0000 0000	R/W	RBUF2	R2BUF7	R2BUF6	R2BUF5	R2BUF4	R2BUF3	R2BUF2	R2BUF1	R2BUF0

3.18.5 UART2 Continuous Communication Examples

3.18.5.1 Continuous 8-bit data reception mode (first receive data = 55H)

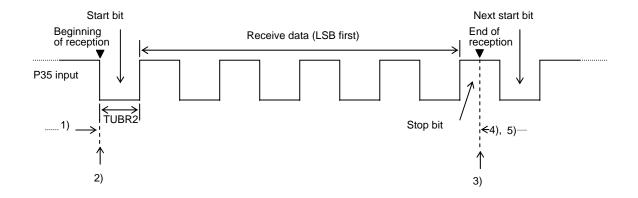


Figure 3.18.3 Example of Continuous 8-bit Data Reception Mode Operation

- 1) Setting the clock
 - Set the transfer rate (UBR2).

Setting the data length

• Clear UCON3:8/9BIT2 and 8/7BIT2.

Configuring UART2 for receive processing and setting up the receive port and interrupts

- Set up the receive control register (UCON2=41H).
- * Set P35DDR (P3DDR:bit 5) to 0 and P35 (P3:bit 5) to 0.
- 2) Starting a receive operation
 - UCON2:RECRUN2 is set when a falling edge of the signal at the receive port (P35) is detected.
- 3) End of a receive operation
 - When the receive operation ends, UCON2:RECRUN2 is automatically cleared and UCON2: RECEND2 is set. UART2 then waits for the start bit of the next receive data.
- 4) Receive interrupt processing
 - Read the receive data (RBUF2).
 - Clear UCON2:RECEND2 and STPERR2 and exit the interrupt routine.
 - * When changing the data length and baudrate for the next receive operation, do so before the start bit (falling edge of the signal) is detected at the receive port (P35).
- 5) Next receive operation
 - Repeat steps 2), 3), and 4) above.
 - To end a continuous receive operation, clear UCON2:STRDET2 during a receive operation, and this receive operation will be the last receive operation that UART2 executes.

3.18.5.2 Continuous 8-bit data transmission mode (first transmit data = 55H)

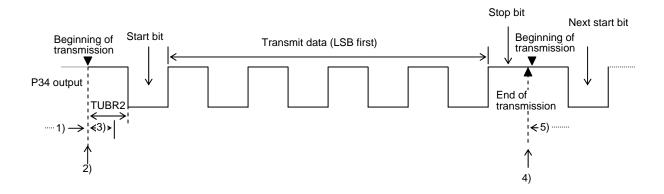


Figure 3.18.4 Example of Continuous 8-bit Data Transmission Mode Operation

- 1) Setting the clock
 - Set the transfer rate (UBR2).

Setting the transmit data

• Set the transmit data (TBUF2=55H).

Setting the data length, transmit port, and interrupts

- Set up the transmit control register (UCON3=31H).
- * Set P34DDR (P3DDR:bit 4) to 0 and P34 (P3:bit 4) to 0.
- 2) Starting a transmit operation
 - Set UCON3:TRUN2.
- 3) Transmit interrupt processing
 - Set the next transmit data (TBUF2=xxH).
 - Clear UCON3:TEPTY2 and exit the interrupt routine.
- 4) End of a transmit operation
 - When the transmit operation ends, UCON3:TRUN2 is automatically cleared and automatically set in the same cycle (Tcyc) (continuous data transmission mode only; this processing takes 1 Tcyc of time). UART2 then starts to transmit the next data.
- 5) Next transmit operation
 - Repeat steps 3) and 4) above.
 - To end a continuous transmit operation, clear UCON3:TRNSIE2 while not clearing UCON3: TEPTY2 and exit the interrupt in the step 3) processing, and the transmit operation that is being performed at that time will be the last transmit operation that UART2 executes.

3.18.5.3 UART2 communication port setting

- (1) When using port 3 as the UART2 port
 - 1) Setting up the receive port (P35)

Regist	er Data	Receive Port (P35)	Internal Pull-up Resistor		
P35	P35DDR	State			
0	0	Input	Off		
1	0	Input	On		

^{*} UART2 cannot receive data normally if P35DDR is set to 1.

2) Setting up the transmit port (P34)

Register Data		Transmit Port (P34) State	Internal Pull-up		
P34	P34DDR	TDDR2	TCMOS2	Transmit Port (P34) State	Resistor
0	0	1	1	CMOS output	Off
0	0	1	0	N-channel open drain output	Off
1	0	1	0	N-channel open drain output	On

^{*} UART2 does not output transmit data if P34DDR is set to 1.

3.18.6 UART2 HALT Mode Operation

3.18.6.1 Reception mode

- 1) A UART2 reception mode operation is enabled in HALT mode. (If UCON2:STRDET2 is set to 1 when the CPU enters HALT mode, the receive processing will be restarted if data that sets UCON2:RECRUN2 is input at the end of a receive operation.)
- 2) HALT mode can be released using UART2 receive interrupt.

3.18.6.2 Transmission mode

- A UART2 transmission mode operation is enabled in HALT mode. (If the continuous transmission
 mode is specified when the CPU enters HALT mode, UART2 will restart transmit processing after
 terminating a transmit operation. Since UCON3:TEPTY2 cannot be cleared in this case, UART2
 stops processing after completing that transmit operation.)
- 2) HALT mode can be released using the UART2 transmit interrupt.

3.19 SMIIC0 (Single Master I²C)

3.19.1 Overview

The I²C-bus module incorporated in this series of microcontrollers has the following two functions:

- 1) I²C communication in the single-master master mode (Note)
- 2) Synchronous 8-bit serial I/O (2- or 3-wire system, data MSB first)

Note: This module does not have an address comparator function. Consequently, it is necessary to perform address comparison and other processing under program control when using this module in the single-master slave mode or performing l^2C communication in the multi-master mode.

3.19.2 Functions

- 1) I²C communication in single-master master mode.
- 2) Synchronous 8-bit serial I/O (2- or 3-wire configuration, data MSB first).
- 3) Interrupt generation

An interrupt request is generated if such a condition that sets an interrupt source flag occurs when the interrupt request enable bit is set.

- 4) It is necessary to manipulate the following special function registers to control SMIICO.
 - SMICOCNT, SMICOSTA, SMICOBRG, SMICOBUF, SMICOPCT, SMICOPSL

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FEA0	0000 0000	R/W	SMIC0CNT	RUN	MST	TRX	SCL8	MKC	BB	END	IE
FEA1	0000 0000	R/W	SMIC0STA	SMD	RQL9	STD	SPD	AL	OVR	TAK	RAK
FEA2	0000 0000	R/W	SMIC0BRG	BRP1	BRP0	BRDQ	BRD4	BRD3	BRD2	BRD1	BRD0
FEA3	0000 0000	R/W	SMIC0BUF	BUFB7	BUFB6	BUFB5	BUFB4	BUFB3	BUFB2	BUFB1	BUFB0
FEA4	НННН 0000	R/W	SMIC0PCT	-	-	-	-	SHDS	PHV	PCLV	PSLW
FEA5	0000 0000	R/W	SMIC0PSL	PSLB7	OPSDO	OPSDA	OPSCL	PSLB3	SDOOSL	SDAOSL	SCLOSL

3.19.3 Circuit Configuration

3.19.3.1 I²C control register 0 (SMICOCNT) (8-bit register)

- 1) This register controls the I^2C -bus mode.
- 2) This register controls interrupts.

3.19.3.2 I²C status register 0 (SMICOSTA) (8-bit register)

- 1) This register is used to provide I^2C -bus event detection flags.
- 2) This register controls the ACK data.

3.19.3.3 I²C baudrate control register 0 (SMIC0BRG) (8-bit register)

- 1) This register is used to control the clock frequency of the noise filter in the SDA and SCL import blocks.
- 2) This register controls the frequency of the SCL clock.

3.19.3.4 I²C data buffer 0 (SMIC0BUF) (8-bit register)

1) The data is transmitted and received through this register.

SMIIC0

3.19.3.5 1²C port control register 0 (SMICOPCNT) (8-bit register)

1) This register controls the I^2C ports.

3.19.3.6 I²C port output type select register 0 (SMICOPSL) (8-bit register)

1) This register is used to select the I²C port output type.

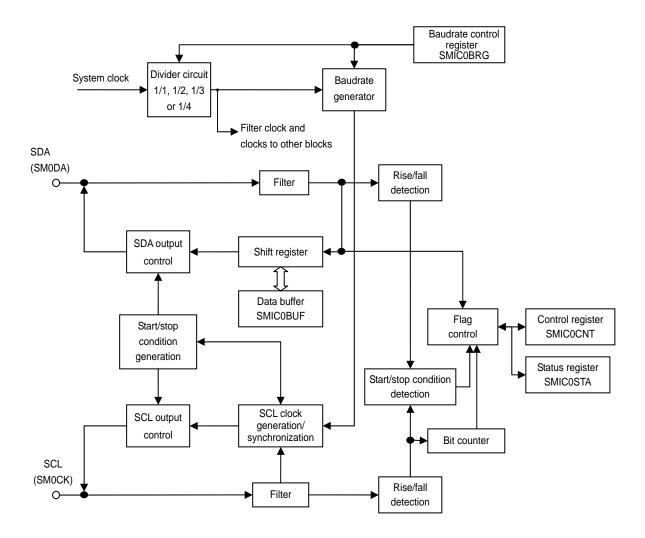


Figure 3.19.1 SMIIC0 Block Diagram

3.19.4 Related Registers

3.19.4.1 I²C control register 0 (SMIC0CNT)

1) This register is an 8-bit register used to control operation of the SMIIC module.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FEA0	0000 0000	R/W	SMIC0CNT	RUN	MST	TRX	SCL8	MKC	BB	END	IE

RUN (bit 7): SMIIC0 operation enable

Setting this bit to 1 activates the SMIIC0 module.

Setting this bit to 0 stops the SMIIC0 module.

MST (bit 6): Master/slave control

• I^2C mode (SMD = 0)

When this bit is set to 1, the SMIIC0 module runs in master mode.

(The module generates start and stop conditions and sends transfer clocks.)

When this bit is set to 0, the SMIIC0 module runs in slave mode.

(The module generates no clocks. It performs data transmission and reception in synchronization with a clock from the master.)

Conditions under which MST is reset:

- <1> A stop condition is detected.
- <2> An arbitration lost is detected.

After an arbitration lost is detected, this bit remains uncleared and the transmission of the clock is continued until the end of the transfer of one byte.

After an arbitration lost, the MST flag is cleared when the interrupt source flag (END) is set.

• Synchronous 8-bit serial mode (SMD = 1)

Setting this bit to 1 starts 8-bit communication.

Conditions under which MST is reset:

<1> MST is reset on the rising edge of the 8th clock.

TRX (bit 5): Transmitter/receiver control

• $I^2C \mod (SMD = 0)$

When this bit is set to 1, the SMIIC0 module serves as a transmitter.

When this bit is set to 0, the SMIIC0 module serves as a receiver.

Conditions under which TRX is reset:

- <1> A stop condition is detected.
- <2> An arbitration lost is detected.
- <3> A start condition is detected in slave mode.

SMIIC0

• Synchronous 8-bit serial mode (SMD = 1)

Setting this bit to 1 places the module into data transmit mode.

Setting this bit to 0 places the module into data receive mode.

SCL8 (bit 4): Interrupt control on falling edge of 8th clock

• I^2C mode (SMD = 0)

When this bit is set to 1, an interrupt request is generated on the falling edge of the 8th clock.

When this bit is set to 0, no interrupt request is generated on the falling edge of the 8th block.

Conditions under which SCL8 is set:

<1> A start condition is detected.

This bit is not cleared automatically. It must be cleared with an instruction.

• Synchronous 8-bit serial mode (SMD = 1)

This bit must always be set to 0.

MKC (bit 3): Start/stop condition generation control

• I^2C mode (SMD = 0)

This bit is a write-only bit and is set to 1 to generate a start or stop condition. (This bit is always read as 0.)

• Synchronous 8-bit serial mode (SMD = 1)

This bit must always be set to 0.

BB (bit 2): Bus busy flag (read-only)

• I^2C mode (SMD = 0)

Bit 2 consists of a read-only BB and write-only BBW.

The read-only BB flag indicates the busy status of the bus. It is set when a start condition is detected and reset when a stop condition is detected.

A 1 in this bit indicates that the I^2C bus is busy.

When generating a start condition, make sure that this bit is set to 0 and that both SDA and SCL are set to high (except when generating a restart condition).

This bit is a read-only bit. It cannot be rewritten directly with an instruction.

Conditions under which BB is set:

<1> A start condition is detected.

Conditions under which BB is reset:

<1> A stop condition is detected.

<2> RUN is set to 0.

BBW (bit 2): Start/stop condition generation control

Bit 2 consists of a read-only BB and write-only BBW.

The write-only BBW is used to control the generation of start/stop conditions by loading its value together with bits 6, 5, and 3 of this register (SMICOCNT: 07F60h) with a MOV instruction.

• If the interrupt request enable control bit IE is set to 1:

Loading SMICOCNT with EDh generates a start condition.

Loading SMICOCNT with E9h generates a stop condition.

• If the interrupt request enable control bit IE is set to 0:

Loading SMICOCNT with ECh generates a start condition.

Loading SMICOCNT with E8h generates a stop condition.

- * See Subsection 3.19.6 "Start Condition and Stop Condition," for details on the generation of start/stop conditions.
- Synchronous 8-bit serial mode (SMD = 1)

This bit is a read-only bit and gives the same value as MST (bit 6) when read.

END (bit 1): Interrupt source flag

• I^2C mode (SMD = 0)

This bit is set at the end of data transfer or on a stop condition.

If this bit is set to 1 and SCL is set to low, this module continuously sends low signals to SCL until this flag is cleared, whether it is in master or slave mode.

Conditions under which END is set:

- <1> The falling edge of the 8th clock if SCL8 is set to 1
- <2> The falling edge of the ACK clock
- <3> A stop condition is detected

This bit is not cleared automatically. It must be cleared with an instruction.

When this bit is cleared, the module stops the continuous transmission of low signals to SCL and continues transfer processing. Data loading into or reading from the buffer SMIC0BUF must be completed before this bit is cleared.

• Synchronous 8-bit serial mode (SMD = 1)

This bit is set at the end of data transfer.

Conditions under which END is set:

<1> The rising edge of the 8th clock

This bit is not cleared automatically. It must be cleared with an instruction.

IE (bit 0): Interrupt request enable control

When this bit and END are set to 1, an interrupt request to vector address 0002BH is generated.

3.19.4.2 I²C status register 0 (SMIC0STA)

1) This register is an 8-bit register used to control the I²C bus and detect each event.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FEA1	0000 0000	R/W	SMIC0STA	SMD	RQL9	STD	SPD	AL	OVR	TAK	RAK

SMD (bit 7): I²C /synchronous 8-bit serial mode select

Setting this bit to 1 runs this module in the synchronous 8-bit serial mode.

When this bit is set to 1, the noise filter function for the clock data input pin is disabled.

Setting this bit to 0 runs this module in the I²C communication mode.

When this bit is set to 0, the noise filter function for the clock data input pin is enabled.

RQL9 (bit 6): ACK clock timing detection flag (read-only)

This flag is set and held at 1 from the falling edge of the 9th clock until the falling edge of the next clock.

This bit is a read-only bit. It cannot be rewritten directly with an instruction.

* This bit is not used in synchronous 8-bit serial mode (SMD = 1). This bit is always read as 0.

STD (bit 5): Start condition detection flag

This flag bit is set when a start condition is detected.

Conditions under which STD is set:

<1> A start condition is detected.

This bit is not cleared automatically. It must be cleared with an instruction.

* This bit is not automatically set in the synchronous 8-bit serial mode (SMD = 1). This bit must always be set to 0.

SPD (bit 4): Stop condition detection flag

This flag is set when a stop condition is detected.

Conditions under which SPD is set:

<1> A stop condition is detected.

This bit is not cleared automatically. It must be cleared with an instruction.

* This bit is not automatically set in the synchronous 8-bit serial mode (SMD = 1). This bit must always be set to 0.

AL (bit 3): Arbitration lost detection flag

This flag is set when an arbitration lost is detected in master mode.

Conditions under which AL is set:

- <1> At the rising timing of the 1st to 8th clocks in master transmitter mode and at the rising timing of the 9th clock in master receiver mode, when the state of the internal SDA is high and the level at the SDA pin is low.
- <2> Generation of start conditions is disabled by the duplicate start condition prevention function.

This bit is not cleared automatically. It must be cleared with an instruction.

* This bit is not automatically set in the synchronous 8-bit serial mode (SMD = 1). This bit must always be set to 0.

OVR (bit 2): Overrun detection flag

• I^2C mode (SMD = 0)

This flag is set if the falling edge of the clock on the SCL line is detected when bus busy flag BB (07F60h, bit 2) is set to 0.

Conditions under which OVR is set:

<1> A falling edge of SCL is detected when BB is set to 0.

This bit is not cleared automatically. It must be cleared with an instruction.

• Synchronous 8-bit serial mode (SMD = 1)

This flag is set if the falling edge of the clock on the SCL line is detected when MST (07F60h, bit 6) is set to 0.

Conditions under which OVR is set:

<1> A falling edge of SCL is detected when MST is set to 0.

This bit is not cleared automatically. It must be cleared with an instruction.

TAK (bit 1): ACK clock time SDA control bit

The value of this bit is placed in SDA at the ACK clock timing in master receiver/slave receiver mode.

In master transmitter/slave transmitter mode, SDA is set to the high level at the ACK clock timing regardless of the value of this bit.

Conditions under which TAK is set:

- <1> A stop condition is detected.
- <2> An arbitration lost is detected.
- <3> A start condition is detected in slave mode.
- * This bit must always be set to 0 in the synchronous 8-bit serial mode (SMD = 1).

RAK (bit 0): Received acknowledge data storage bit (read-only)

This bit stores the ACK receive data.

This bit is loaded with the SDA data at ACK clock time in both transmitter and receiver modes.

Conditions under which RAK is set:

<1> SDA is set to the high level at the rising timing of an ACK clock.

Conditions under which RAK is reset:

<1> SDA is set to the low level at the rising timing of an ACK clock.

This bit is a read-only bit. It cannot be rewritten directly with an instruction.

* This bit is not used in synchronous 8-bit serial mode (SMD = 1). This bit is always read as 0.

3.19.4.3 I²C baudrate control register 0 (SMIC0BRG)

1) This register is an 8-bit register that controls the frequency of the SDA and SCL filter clocks and the frequency of the SCL clocks.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FEA2	0000 0000	R/W	SMIC0BRG	BRP1	BRP0	BRDQ	BRD4	BRD3	BRD2	BRD1	BRD0

BRP (bits 7, 6): Filter clock control

BRP[1, 0]	Filter Clock Period (Tfilt)
00	$\frac{1}{3}$ Teye × 1
01	$\frac{1}{3}$ Tcyc × 2
10	$\frac{1}{3}$ Tcyc × 3
11	$\frac{1}{3}$ Tcyc × 4

^{*} Tcyc denotes the period of the system clock.

BRP must be set so that the filter clock period Tfilt falls within the following value range:

$$250 \operatorname{nsec} \ge \operatorname{Tfilt} > 140 \operatorname{nsec}$$

System Clock Frequencies and BRP Values

System Clock	BRP[1, 0]	Tfilt
4 MHz	00	$250 \text{ ns} \times 1 = 250 \text{ ns}$
6 MHz	00	$166 \text{ ns} \times 1 = 166 \text{ ns}$
7 MHz	00	$143 \text{ ns} \times 1 = 143 \text{ ns}$
8 MHz	01	$125 \text{ ns} \times 2 = 250 \text{ ns}$

BRDQ (bit 5): SCL clock frequency control

This bit must be set to 1 in STANDARD-mode and to 0 in FAST-mode.

BRD 4 to 0 (bits 4 to 0): SCL clock frequency control

Assuming that the 5 bits of BRD are set to n, the SCL clock period Tfsck is calculated as follows:

When BRDQ = 0 (FAST-mode)
Tfsck = Tfilt
$$\times$$
 (n + 1) \times 2

When
$$BRDQ = 1$$
 (STANDARD-mode)

$$Tfsck = Tfilt \times (n+1) \times 8$$

The SCL clock frequency fsck is calculated as follows:

When BRDQ = 0 (FAST-mode)

$$fsck = 1/(Tfilt \times (n + 1) \times 2)$$

When BRDQ = 1 (STANDARD-mode)
 $fsck = 1/(Tfilt \times (n + 1) \times 8)$

- * Tfilt denotes the filter clock period that is determined by the system clock frequency and filter clock control bits BRP (SMIC0BRG, bits 7 and 6).
- * When used in I²C communication mode (SMD=0), the n value set by the 5 bits of BRD must be 4 or greater (setting it to a value of 0 to 3 is inhibited).
- * When used in synchronous 8-bit serial mode (SMD=1), this register must be set as follows:

BRP (SMIC0BRG, bits 7 and 6) =
$$00$$

$$BRDQ = 0 \text{ or } 1$$

The n value set by the 5 bits of BRD must be 1 or greater (setting it to a value of 0 is inhibited).

In this case, the frequency of the output clock fsck can be calculated as follows:

When BRDQ = 0
$$fsck = 1/(\frac{1}{3}Tcyc \times (n+1) \times 2)$$

When BRDQ = 1 $fsck = 1/(\frac{1}{3}Tcyc \times (n+1) \times 8)$

When BRDQ = 1 fsck =
$$1/(\frac{1}{3}\text{Tcyc} \times (n+1) \times 8)$$

SMIIC0

STANDARD-mode: BRDQ = 1 SCL Frequency (kHz)

BBB	Tfilt F	Period		
BRD Value n	250 ns	166 ns		
Value II	(4 MHz)	(6 MHz)		
00h	Inhibited	Inhibited		
01h	Inhibited	Inhibited		
02h	Inhibited	Inhibited		
03h	Inhibited	Inhibited		
04h	100	*		
05h	83.3	*		
06h	71.4	*		
07h	62.5	94.1		
08h	55.6	83.7		
09h	50	75.3		
0Ah	45.5	68.5		
0Bh	41.7	57.9		
0Ch	38.5	53.8		
0Dh	35.7	50.2		
0Eh	33.3	47.1		
0Fh	31.3	44.3		
10h	29.4	41.8		
11h	27.8	39.6		
:	:	:		
1Ch	17.2	25.9		
1Dh	16.7	25.1		
1Eh	16.1	24.3		
1Fh	15.6	23.5		

FAST-mode: BRDQ = 0 SCL Frequency (kHz)

222	Tfilt F	Period		
BRD	250 ns	166 ns		
Value n	(4 MHz)	(6 MHz)		
00h	Inhibited	Inhibited		
01h	Inhibited	Inhibited		
02h	Inhibited	Inhibited		
03h	Inhibited	Inhibited		
04h	400	*		
05h	333.3	*		
06h	328.7	*		
07h	250	376.5		
08h	222.2	334.7		
09h	200	301.2		
0Ah	181.8	273.8		
0Bh	166.7	251		
0Ch	153.8	231.7		
0Dh	142.9	215.1		
0Eh	133.3	200.8		
0Fh	125	188.3		
10h	117.6	177.2		
11h	111.1	167.3		
:	:	:		
1Ch	69	103.9		
1Dh	66.7	100.4		
1Eh	64.5	97.23		
1Fh	62.5	94.1		

^{*} Out of I²C bus specifications

3.19.4.4 I²C data buffer 0 (SMIC0BUF)

1) This buffer is an 8-bit register used to store the receive data or load the transmit data.

	Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
Ī	FEA3	0000 0000	R/W	SMIC0BUF	BUFB7	BUFB6	BUFB5	BUFB4	BUFB3	BUFB2	BUFB1	BUFB0

• Data reception

• I^2C mode (SMD = 0)

The data from the receive shift register is transferred to the SMIC0BUF register at the falling timing of the 8th SCL clock in both transmitter and receiver modes.

• Synchronous 8-bit serial mode (SMD = 1)

The data from the receive shift register is transferred to the SMIC0BUF register at the rising timing of the 8th SCL clock in both transmitter and receiver modes.

• Data transmission

• I^2C mode (SMD = 0)

In the transmitter mode, the contents of the SMIC0BUF register are transferred to the transmit shift register at one of the following timings:

- <1> A start condition is detected.
- <2> Data is loaded into SMIC0BUF when END is set to 1.
- Synchronous 8-bit serial mode (SMD = 1)

In the data transmission mode, the contents of the SMIC0BUF register are transferred to the transmit shift register at the following timing:

<1> Data is loaded into SMIC0BUF when MST is set to 0.

3.19.4.5 I²C port control register 0 (SMIC0PCNT)

1) This register is a 4-bit register used to control the I^2C ports.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FEA4	НННН 0000	R/W	SMIC0PCNT	-	-	-	-	SHDS	PHV	PCLV	PSLW

SHDS (bit 3): SDA internal HOLD time adjustment

This bit must normally be set to 0.

PHV (bit 2): Reserved bit

This bit must always be set to 0.

PCLV (bit 1): Reserved bit

This bit must always be set to 0.

PSLW (bit 0): Reserved bit

This bit must always be set to 0.

SMIIC0

3.19.4.6 I²C port output select register 0 (SMIC0PSL)

1) This is an 8-bit register that is used to select the I²C port output.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FEA5	0000 0000	R/W	SMIC0PSL	PSLB7	OPSDO	OPSDA	OPSCL	PSLB3	SDOOSL	SDAOSL	SCLOSL

PSLB7 (bit 7): Reserved bit.

This bit must always be set to 0.

OPSDO (bit 6): SM0DO pin output type select

OPSDO	Output Type
1	N-channel open drain
0	CMOS

OPSDA (bit 5): SM0DA pin output type select

OPSDA	Output Type
1	N-channel open drain
0	CMOS

OPSCL (bit 4) SM0CK pin output type select

OPSCL	Output Type
1	N-channel open drain
0	CMOS

PSLB3 (bit 3): Reserved bit

This bit must always be set to 0.

SDOOSL (bit 2): SM0DO pin output data control

See 3.19.4.7 for a description of this bit.

SDAOSL (bit 1): SM0DA pin output data control

See 3.19.4.7 for a description of this bit.

SCLOSL (bit 0): SM0CK pin output data control

See 3.19.4.7 for a description of this bit.

3.19.4.7 SMIIC port settings

1) Clock output port (PC0) settings

	Register Data		Port PC0 State
SCLOSL	PC0	PC0DDR	Output
1	0	1	Clock output
1	1	1	High output
0	0	1	Low output
0	1	1	High output

2) Data I/O port (PC1) settings

	Register Data		Port PC1 S	State
SDAOSL	PC1	PC1DDR	Input	Output
1	0	1	Enabled (data receive input)	Data output
1	1	1	Enabled (data receive input)	High output
0	0	1	Enabled (data receive input)	Low output
0	1	1	Enabled (data receive input)	High output

3) Data output port (PC2) settings (Used in the 3-wire synchronous 8-bit serial mode)

	Register Data		Port PC2 State
SDOOSL	PC2	PC2DDR	Output
1	0	1	Data output
1	1	1	High output

^{*} Set the output type of the clock I/O port to open when using an external clock in the synchronous 8-bit serial mode. When receiving data in the synchronous 8-bit serial mode, set the output type of the data I/O port to open.

3.19.5 Waveform of Generated Clocks and SCL Rise Times

3.19.5.1 Waveform of generated clocks

The SCL clock output waveform has a duty cycle of 50% of the clock period Tfsck that is defined by the I²C baudrate control register 0 (SMIC0BRG).

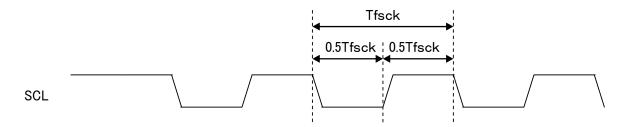


Figure 3.19.2 SCL Clock Waveform

If the clock frequency is set to 400 kHz for processing in FAST-mode, the low period of the SCL is 1.25 μ s (provided that the rise and fall times of the signal are ignored), which does not meet the I²C bus interface specification (1.3 μ s minimum).

To cope with this issue, consider the following countermeasures:

- 1) Reduce the transfer rate so as to meet the specification.
- 2) Adjust the rise and fall times by adjusting the external components such as the resistance of the pull-up resistor.

Also note that the low level period of SCL is further shortened when the I^2C port output characteristics is the slow setting as the interval from the time the output of the low level signal is started until the time the port actually falls down to the low level becomes longer.

3.19.5.2 SCL rise time

This module always monitors the rising timing of the SCL clock line and attempts to establish synchronization to guarantee the predetermined high-level width of the clock output even if the SCL line is set to low by another master or slave in I^2C mode.

The SCL rise time is defined by the I²C bus interface specifications as being within 300 ns in FAST-mode and within 1000 ns in STANDARD-mode.

No problem occurs in FAST-mode because the maximum SCL rise time is 300 ns. If the rise time is longer than (Tfilt \times 2.5) in STANDARD-mode, however, the module's synchronization function is activated, making the transfer rate lower than the preset clock frequency.

System Clock	BRP	Tfilt	Tfilt x 2.5
4 MHz	00	250 ns	625 ns
6 MHz	00	166 ns	415 ns
7 MHz	00	143 ns	357 ns
8 MHz	01	250 ns	625 ns

To run the module at the preset transfer rate, set the resistance of the pull-up resistor and the load capacitance so that the rise time of the SCL line is shorter than the Tfilt \times 2.5 value that is shown above.

3.19.6 Start Condition and Stop Condition

3.19.6.1 Definition of start and stop conditions

SDA must be in a stable state while SCL is high. That is, it is only when SCL is low that the state of SDA can switch between high and low. By making use of this fact, the I²C protocol defines special conditions for signals indicating start and stop of data transfer as follows:

- Start condition (S)
 Data transfer start condition. The state of SDA changes from high to low when SCL is set to high.
- Stop condition (P)
 Data transfer stop condition. The state of SDA changes from low to high when SCL is set to high.

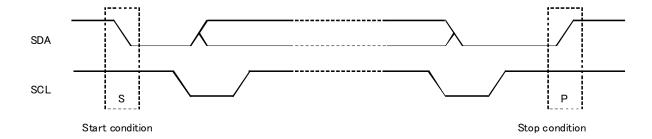


Figure 3.19.3 Start and Stop Conditions

3.19.6.2 Generating a start condition

The process of generating a start condition is initiated by loading the I²C control register SMIC0CNT with the value given below when SMIIC0 operation enable bit RUN (SMIC0CNT, bit 7) is preset to 1.

Since bit 0 of the SMICOCNT register is an interrupt request enable control bit, data to be loaded into the register varies depending on whether interrupts are to be enabled (IE = 1) or disabled (IE = 0).

Methods of generating a start condition:

Loading SMICOCNT with EDh (when enabling interrupts)

Loading SMICOCNT with ECh (when disabling interrupts)

3.19.6.3 Start condition generation timing

Before generating a start condition, make sure that the BB flag (SMICOCNT, bit 2) is set to 0.

Follow the procedure given below when starting this module after a reset.

- <1> Set up the ports (see 3.19.4.7 "SMIIC port settings").
- <2> Set the filter clock and baudrate clock using SMIC0BRG.
- <3> Set RUN (SMICOCNT, bit 7) to 1.
- <4> Insert waits equivalent to several baudrate clock cycles and make sure that both BB (SMICOCNT, bit 2) and OVR (SMICOSTA, bit 2) are set to 0.
- <5> To determine whether SDA and SCL lines are not fixed by another master or slave device, read the SDA and SCL ports and make sure that they are set to high.
- <6> If the result of the check in steps <4> and <5> is OK, it indicates that the start condition instructions can be safely executed.
- <7> If the result of the check in steps <4> and <5> is NG, the module determines that the use of the bus is started by another master before this module starts operation, and waits until a stop condition is received. (It is necessary to perform wait time timeout processing using a timer in a situation in which the bus is locked under an abnormal condition.)
- <8> In a single master configuration or if the wait processing for a stop condition performed in step <7> times out, it is necessary to generate a stop condition by manipulating bits 0 and 1 of PCDDR under program control, considering that the bus is locked by another slave device.
 - Step 1. Set bit 0 of PCDDR to 0 and set SCL to a low level. In this case, if SDA is low, keep supplying clocks to SCL by setting bit 0 of PCDDR to 1 and 0 alternately until SCL becomes low and SDA becomes high.
 - Step 2. Change the state of the SDA and SCL lines as follows:

```
1- SDA = H SCL = L (PCDDR, bit 3=1, PCDDR, bit 2=0)
2- SDA = L SCL = L (PCDDR, bit 3=0, PCDDR, bit 2=0)
3- SDA = L SCL = H (PCDDR, bit 3=0, PCDDR, bit 2=1)
4- SDA = H SCL = H (PCDDR, bit 3=1, PCDDR, bit 2=1)
```

(When the ports are manipulated as indicated above, it is necessary to take the set-up/hold times for the other devices into consideration.)

The figure below shows a timing example for generating a start condition.

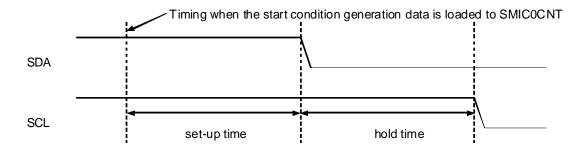


Figure 3.19.4 Start Condition Generation Timing Diagram

3.19.6.4 Restart condition generation timing

Follow the procedure below to generate a restart condition which is required to switch the transmitter/receiver mode or the destination slave device without generating a stop condition after transmitting a start condition and transmitting/receiving data in master communication mode.

- <1> If the module is in master receiver mode, send ACK data = 1 (NACK) to force the slave to release the SDA line.
- <2> Make sure that the falling edge of the clock for the ACK data occurs, END (SMICOCNT, bit 1) is set to 1, and RQL9 (SMICOSTA, bit 6) is set to 1. While END = 1, the low level is kept output to the SCL line.
- <3> Load SMIC0BUF with 7 bits of slave address data and the R/W bit.
- <4> Load SMICOCNT with the data for generating a start condition.
- <5> Loading SMICOCNT with the data for generating a start condition causes END (SMICOCNT, bit 1) to be cleared and, after the elapse of the pre-set-up time for the restart condition, causes the SCL line to be released. Since the END flag is cleared by the start condition instruction, if interrupt processing is being executed as controlled by IE (SMICOCNT, bit 0) set to 1, it is necessary to execute this start condition instruction immediately before exiting that interrupt processing.

The figure below shows a timing example for generating a restart condition.

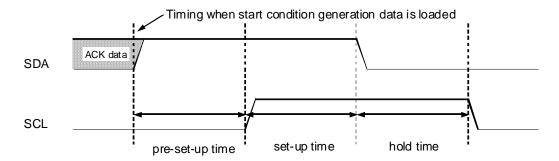


Figure 3.19.5 Restart Condition Generation Timing

3.19.6.5 Generating a stop condition

The process for generating a stop condition begins when END (SMICOCNT, bit 1) is set to 1 on the falling edge of the ACK clock and the I²C control register SMICOCNT is loaded with the data given below while SCL is held low.

Since bit 0 of SMICOCNT is an interrupt request enable control bit, the data to be loaded into the SMICOCNT register varies depending on whether interrupts are to be enabled (IE = 1) or disabled (IE = 0).

Methods of generating a stop condition:

Loading SMICOCNT with E9h (when enabling interrupts)

Loading SMICOCNT with E8h (when disabling interrupts)

3.19.6.6 Stop condition generation timing

Follow the procedure below when generating a stop condition in master communication mode.

- <1> When the module is in master receiver mode, send ACK data = 1 (NACK) to force the slave to release the SDA line.
- <2> Make sure that the falling edge of the clock for the ACK data occurs, END (SMICOCNT, bit 1) is set to 1, and RQL9 (SMICOSTA, bit 6) is set to 1. While END = 1, the low level is kept output to the SCL line.
- <3> Load SMIC0BUF with 0FFh.
- <4> Load SMICOCNT with the data for generating a stop condition.
- <5> Loading SMICOCNT with the data for generating a stop condition causes END (SMICOCNT, bit 1) to be cleared and, after the elapse of the pre-set-up time for a stop condition, causes the SCL line to be released. Since the END flag is cleared by the stop condition instruction, if interrupt processing is being executed as controlled by IE (SMICOCNT, bit 0) set to 1, it is necessary to execute this stop condition instruction immediately before exiting that interrupt processing.

The figure below shows a timing example for generating a stop condition.

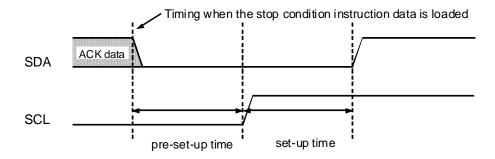


Figure 3.19.6 Stop Condition Generation Timing

3.19.7 Arbitration Lost

3.19.7.1 Arbitration

Arbitration refers to the process of enabling communication or the procedure for enabling a single master to control a bus. Arbitration is implemented by ANDing the SDA lines to the devices (the SDA line being set to low under the influence of a device that generates a low output). In this case, a master whose output does not match the SDA value is disabled for communication. Such a master needs to keep its output high so that it does not affect the SDA line. This state of a master that becomes disabled for communication is called an arbitration lost. The arbitration lost is detected when generating a start condition and when sending data in master mode.

3.19.7.2 Arbitration lost during data transfer

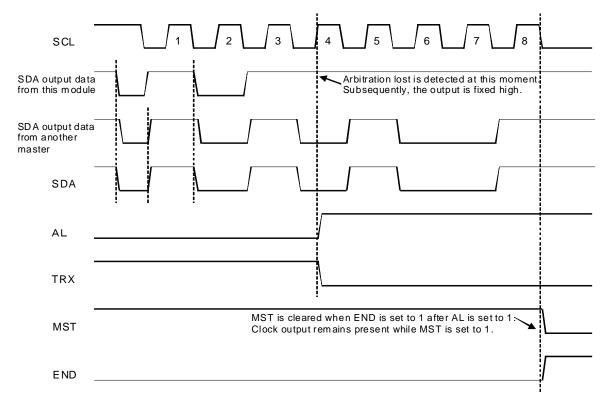


Figure 3.19.7 Arbitration Lost During Data Transfer

An arbitration lost during data transfer is identified by the SDA value that is established on the rising edge of SCL.

In Figure 3.19.8, since the output value of the internal SDA is high and the SDA value is low on the rising edge of the 4th clock, an arbitration lost is detected at this point and AL is set to 1.

Following the detection of an arbitration lost, AL is set, TRX is reset, and the SDA output is fixed at high. MST is not reset at this point and the transmission of SCL clocks is continued.

MST is cleared at the timing when END is set. When SCL8 (SMICOCNT, bit 4) is set to 1, MST is cleared on the falling edge of the 8th clock, and on the falling edge of the 9th clock if SCL8 is set to 0, after which the transmission of clocks is stopped.

The detection of an arbitration lost is attempted in the data block (1st to 8th clocks) in master transmitter mode and in the ACK block (9th clock) in master receiver mode.

A master that has detected an arbitration lost needs to continue its operation as a slave until a stop condition is detected.

3.19.7.3 Arbitration lost while a start condition is being transmitted

An arbitration lost is detected during the period from the execution of a start condition instruction until a start condition is generated under one of the following two conditions:

- <1> The overrun detection flag OVR (SMICOSTA, bit 2) or the start condition detection flag STD (SMICOSTA, bit 5) is set to 1 when the start condition instruction is being executed.
- <2> A change in the state of SDA from high to low is detected earlier than expected during the generation of the start condition due to the influences exerted by another master.

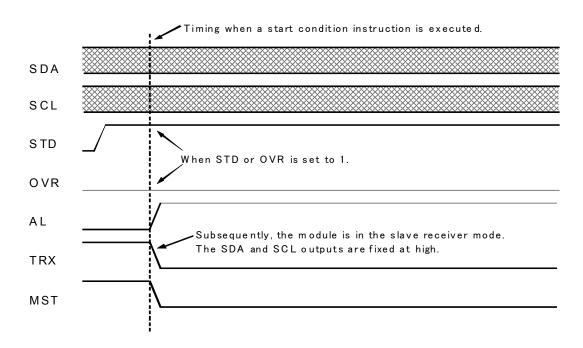


Figure 3.19.8 Arbitration Lost During Start Condition Generation <1>

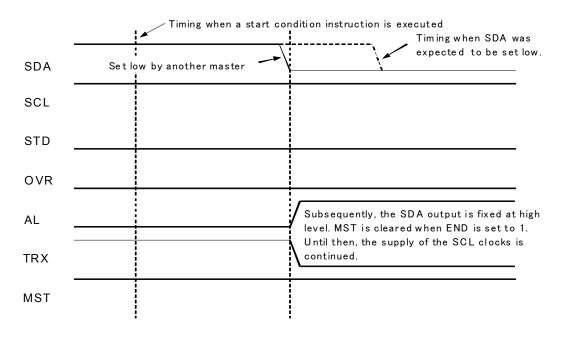
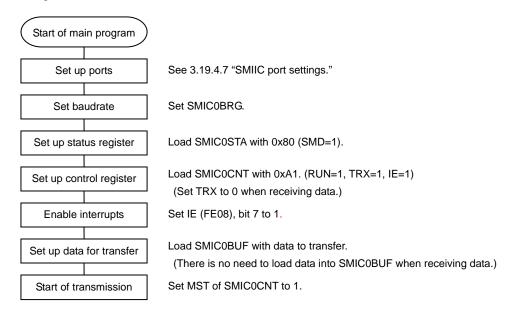
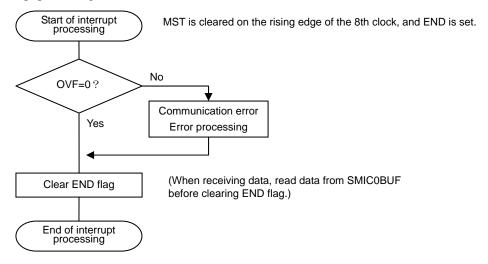


Figure 3.19.9 Arbitration Lost During Start Condition Generation <2>

LC87C000 Chapter 3


If an arbitration lost is detected under the condition <1> above, both MST and TRX are cleared at the timing when AL is set to 1, which causes the module to enter the slave receiver mode and to receive the incoming address.

If an arbitration lost is detected under the condition <2> above, TRX is cleared at the timing when AL is set to 1 but MST is not cleared. As in the case of arbitration lost during data transfer discussed in 3.19.7.2, the transmission of clocks is continued and MST is cleared at the timing when END is set. At this moment, the module enters the slave receiver mode and processes the received address under program control.


3.19.8 Examples of Simple SIO Mode Communication

3.19.8.1 Example of transmitting and receiving 1 byte in simple SIO mode

1. Main Program

2. Interrupt processing

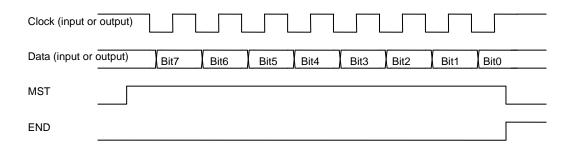
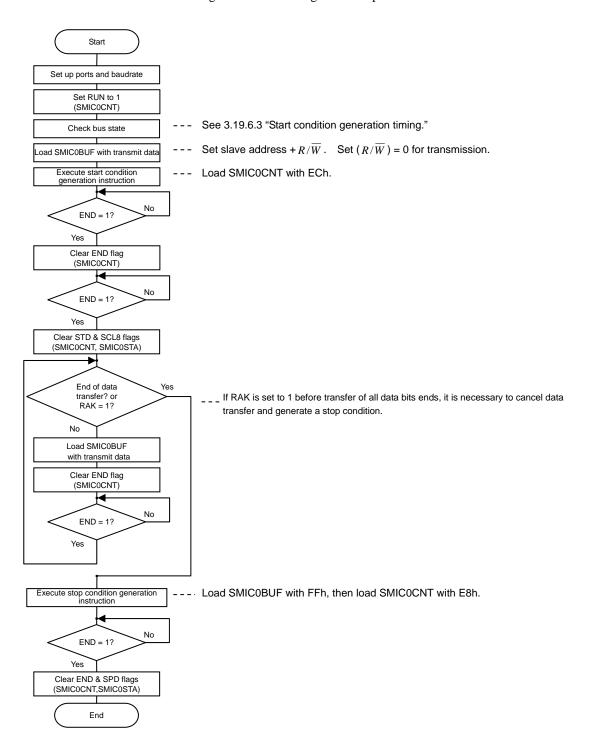
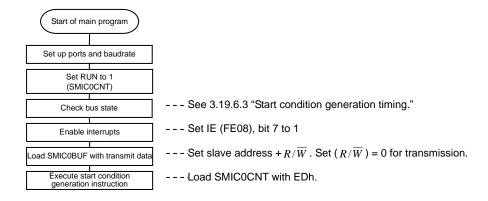


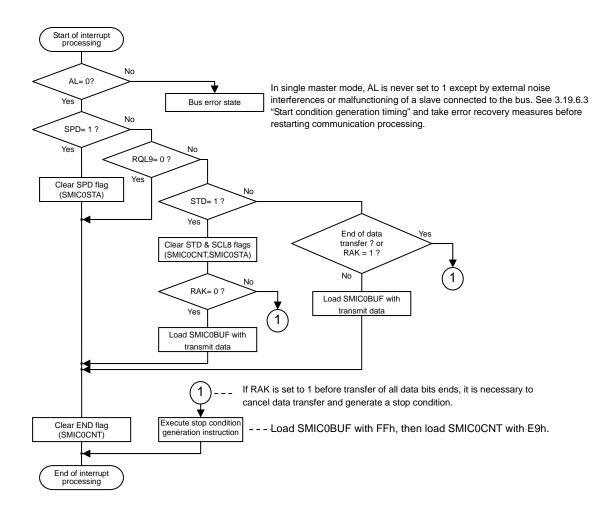
Figure 3.19.10 Waveforms of Simple SIO Mode 1-byte Transmission/Reception


3.19.9 Examples of Single Master I²C Communication

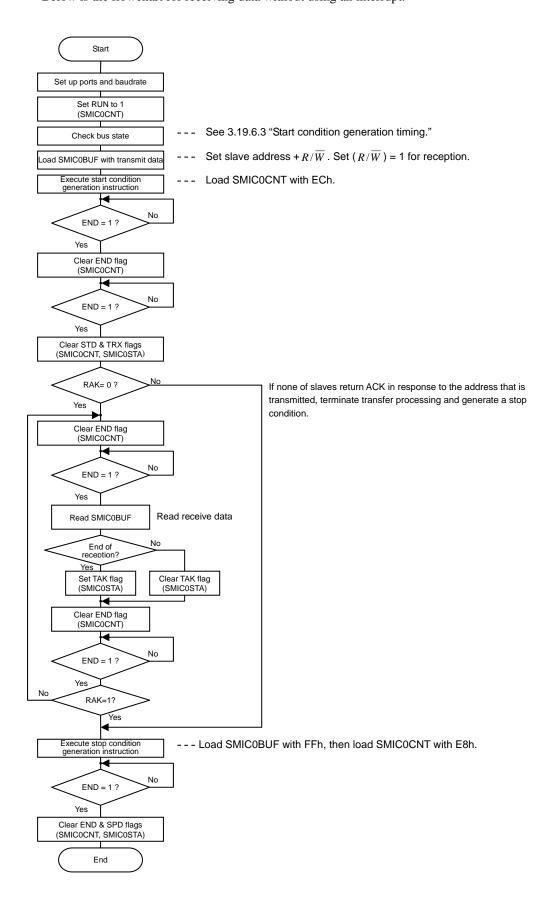
The I²C communication flowcharts of each mode are given below.

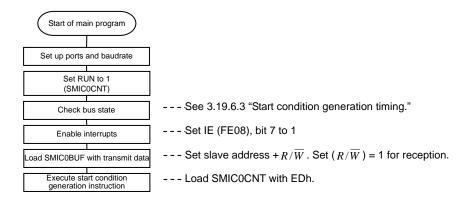
* If abnormal conditions are expected to occur due to noise interferences or malfunctioning of the devices connected to the bus, it is necessary to provide measures to avoid lock conditions by implementing timeout processing using a timer, etc.

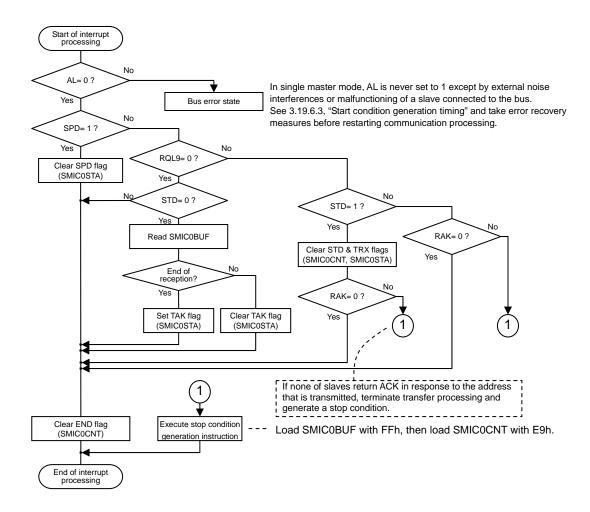

3.19.9.1 Example of transmitting data in single master mode (using no interrupt)


Below is the flowchart for sending data without using an interrupt.

3.19.9.2 Example of transmitting data in single master mode (using interrupts)


Below is the flowchart for sending data using interrupts.


3.19.9.3 Example of receiving data in single master mode (using no interrupt)


Below is the flowchart for receiving data without using an interrupt.

3.19.9.4 Example of receiving data in single master mode (using interrupts)

Below is the flowchart for receiving data using interrupts.

3.20 PWM2/PWM3

3.20.1 Overview

The PWM2 and PWM3 incorporated in this series of microcontrollers are two 12-bit PWMs. Each PWM consists of a multifrequency 8-bit fundamental wave PWM generator circuit and a 4-bit additional pulse generator circuit.

PWM2 and PWM3 have dedicated I/O pins PWM2 and PWM3, respectively.

3.20.2 Functions

- 1) PWM2: Fundamental wave PWM mode (register PWM2L set to 0)
 - Fundamental wave period = $\frac{(16 \text{ to } 256)}{3}$ Tcyc (variable in units of $\frac{16}{3}$ Tcyc, common to PWM3)
 - High-level pulse width = 0 to Fundamental wave period $-\frac{1}{3}$ Tcyc (variable in units of $\frac{1}{3}$ Tcyc)
- 2) PWM2: Fundamental wave + Additional pulse PWM mode
 - Fundamental wave period = $\frac{(16 \text{ to } 256)}{3}$ Tcyc (variable in units of $\frac{16}{3}$ Tcyc, common to PWM3)
 - Overall period = Fundamental wave period × 16
 - High-level pulse width = 0 to Overall period $-\frac{1}{3}$ Tcyc (variable in units of $\frac{1}{3}$ Tcyc)
- 3) PWM3: Fundamental wave PWM mode (register PWM3L set to 0)
 - Fundamental wave period = $\frac{(16 \text{ to } 256)}{3}$ Tcyc (variable in units of $\frac{16}{3}$ Tcyc, common to PWM2)
 - High-level pulse width = 0 to Fundamental wave period $-\frac{1}{3}$ Tcyc (variable in units of $\frac{1}{3}$ Tcyc)
- 4) PWM3: Fundamental wave + Additional pulse PWM mode
 - Fundamental wave period = $\frac{(16 \text{ to } 256)}{3}$ Tcyc (variable in units of $\frac{16}{3}$ Tcyc, common to PWM2)
 - Overall period = Fundamental wave period × 16
 - High-level pulse width = 0 to Overall period $\frac{1}{3}$ Tcyc (variable in units of $\frac{1}{3}$ Tcyc)
- 5) Interrupt generation
 - An interrupt request is generated at intervals equal to the overall PWM period if the interrupt request enable bit is set.
- 6) It is necessary to manipulate the following special function registers to control PWM2 and PWM3.
 - PWM2L, PWM2H, PWM3L, PWM3H, PWM2C, PWM23P

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE50	0000 НННН	R/W	PWM2L	PWM2L3	PWM2L2	PWM2L1	PWM2L0	-	i	i	-
FE51	0000 0000	R/W	PWM2H	PWM2H7	PWM2H6	PWM2H5	PWM2H4	PWM2H3	PWM2H2	PWM2H1	PWM2H0
FE52	0000 НННН	R/W	PWM3L	PWM3L3	PWM3L2	PWM3L1	PWM3L0	ı	ı	i	1
FE53	0000 0000	R/W	PWM3H	PWM3H7	PWM3H6	PWM3H5	PWM3H4	PWM3H3	PWM3H2	PWM3H1	PWM3H0
FE54	0000 0000	R/W	PWM2C	PWM2C7	PWM2C6	PWM2C5	PWM2C4	ENPWM3	ENPWM2	PWM2OV	PWM2IE
FE55	нннн ннхх	R	PWM23P	-	-	-	-	-	-	PWM3IN	PWM2IN

PWM2/PWM3

3.20.3 Circuit Configuration

3.20.3.1 PWM2 and PWM3 control register (PWM2C) (8-bit register)

1) This register controls the operation and interrupts of PWM2 and PWM3.

3.20.3.2 PWM2 compare register L (PWM2L) (4-bit register)

- 1) This 1egister controls the additional pulses of PWM2.
- 2) PWM2L is assigned bits 7 to 4 and all of its low-order 4 bits are set to 1 when read.
- 3) When the PWM2 control bit (PWM2C: FE54, bit 2) is set to 0, the output of PWM2 (ternary) can be controlled using bits 7 to 4 of PWM2L.

3.20.3.3 PWM2 compare register H (PWM2H) (8-bit register)

- 1) This register controls the fundamental wave pulse width of PWM2.
- 2) If bits 7 to 4 of PWM2L are all fixed at 0, PWM2 can be used as a variable period 8-bit PWM that is controlled by PWM2H.

3.20.3.4 PWM3 compare register L (PWM3L) (4-bit register)

- 1) This register controls the additional pulses of PWM3.
- 2) PWM3L is assigned bits 7 to 4 and all of its low-order 4 bits are set to 1 when read.
- 3) When the PWM3 control bit (PWM2C: FE54, bit 3) is set to 0, the output of PWM3 (ternary) can be controlled using bits 7 to 4 of PWM3L.

3.20.3.5 PWM3 compare register H (PWM3H) (8-bit register)

- 1) This register controls the fundamental wave pulse width of PWM3.
- 2) If bits 7 to 4 of PWM3L are all fixed at 0, PWM3 can be used as a variable period 8-bit PWM that is controlled by PWM3H.

3.20.3.6 PWM23 port input register (PWM23P) (2-bit register)

- 1) PWM2 data can be read into this register as bit 0.
- 2) PWM3 data can be read into this register as bit 1.

3.20.4 Related Registers

3.20.4.1 PWM2 and PWM3 control register (PWM2C) (8-bit register)

1) This register controls the operation and interrupts of PWM2 and PWM3.

	Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
ſ	FE54	0000 0000	R/W	PWM2C	PWM2C7	PWM2C6	PWM2C5	PWM2C4	ENPWM3	ENPWM2	PWM2OV	PWM2IE

PWM2C7 to PWM2C4 (bits 7 to 4): PWM2 and PWM3 period control

Fundamental wave period = (Value represented by (PWM2C7 to PWM2C4) + 1) $\times \frac{16}{3}$ Tcyc Overall period = Fundamental wave period \times 16

ENPWM3 (bit 3): PWM3 operation control

When this bit is set to 1, PWM3 is active.

When this bit is set to 0, the PWM3 output (ternary) can be controlled using bits 7 to 4 of PWM3L.

ENPWM2 (bit 2): PWM2 operation control

When this bit is set to 1, PWM2 is active.

When this bit is set to 0, the PWM2 output (ternary) can be controlled using bits 7 to 4 of PWM2L.

PWM2OV (bit 1): PWM2 and PWM3 overflow flag

This bit is set at intervals equal to the overall period of PWM.

This flag must be cleared with an instruction.

PWM2IE (bit 0): PWM2/PWM3 interrupt request enable control

When this bit and PWM2OV are set to 1, an interrupt to vector addresses 004BH is generated.

3.20.4.2 PWM2 compare register L (PWM2L) (4-bit register)

- 1) This register controls the additional pulses of PWM2.
- 2) PWM2L is assigned bits 7 to 4 and all of its low-order 4 bits are set to 1 when read.
- 3) When the PWM2 control bit (PWM2C: FE54, bit 2) is set to 0, the output of PWM2 (ternary) can be controlled using bits 7 to 4 of PWM2L.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE50	0000 НННН	R/W	PWM2L	PWM2L3	PWM2L2	PWM2L1	PWM2L0	1	1	1	-

PWM2 Output	ENPWM2 FE54, bit2	PWM2L3 FE50, bit7	PWM2L2 FE50, bit6	PWM2L1, 0 FE50, bits 5,4
Hi-Z	0	-	0	_
Low	0	0	1	0, 0
High	0	1	1	0, 0

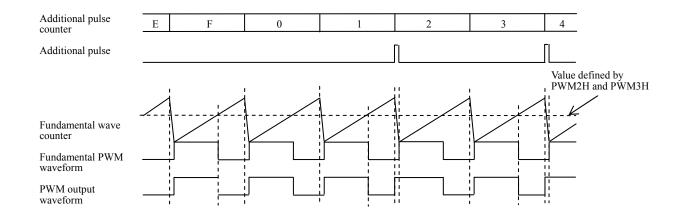
3.20.4.3 PWM2 compare register H (PWM2H) (8-bit register)

- 1) This register controls the fundamental wave pulse width of PWM2.
 - Fundamental wave pulse width = (Value represented by PWM2H7 to PWM2H0) $\times \frac{1}{3}$ Tcyc
- 2) When bits 7 to 4 of PWM2L are all fixed at 0, PWM2 can be used as a variable period 8-bit PWM that is controlled by PWM2H.

	Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
ſ	FE51	0000 0000	R/W	PWM2H	PWM2H7	PWM2H6	PWM2H5	PWM2H4	PWM2H3	PWM2H2	PWM2H1	PWM2H0

3.20.4.4 PWM3 compare register L (PWM3L) (4-bit register)

- 1) This register controls the additional pulses of PWM3.
- 2) PWM3L is assigned bits 7 to 4 and all of its low-order 4 bits are set to 1 when read.
- 3) When the PWM3 control bit (PWM2C: FE54, bit 3) is set to 0, the output of PWM3 (ternary) can be controlled using bits 7 to 4 of PWM3L.


Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE52	0000 НННН	R/W	PWM3L	PWM3L3	PWM3L2	PWM3L1	PWM3L0	-	-	-	-

PWM3 Output	ENPWM3 FE54, bit 3	PWM3L3 FE52, bit 7	PWM3L2 FE52, bit 6	PWM3L1,0 FE52, bits 5, 4
Hi-Z	0	_	0	_
Low	0	0	1	0, 0
High	0	1	1	0, 0

3.20.4.5 PWM3 compare register H (PWM3H) (8-bit register)

- 1) This register controls the fundamental wave pulse width of PWM3.
 - Fundamental wave pulse width = (Value represented by PWM3H7 to PWM3H0) $\times \frac{1}{3}$ Tcyc
- 2) When bits 7 to 4 of PWM3L are all fixed at 0, PWM3 can be used as a variable period 8-bit PWM that is controlled by PWM3H.

Add	dress	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
Fl	E53	0000 0000	R/W	PWM3H	PWM3H7	PWM3H6	PWM3H5	PWM3H4	PWM3H3	PWM3H2	PWM3H1	PWM3H0

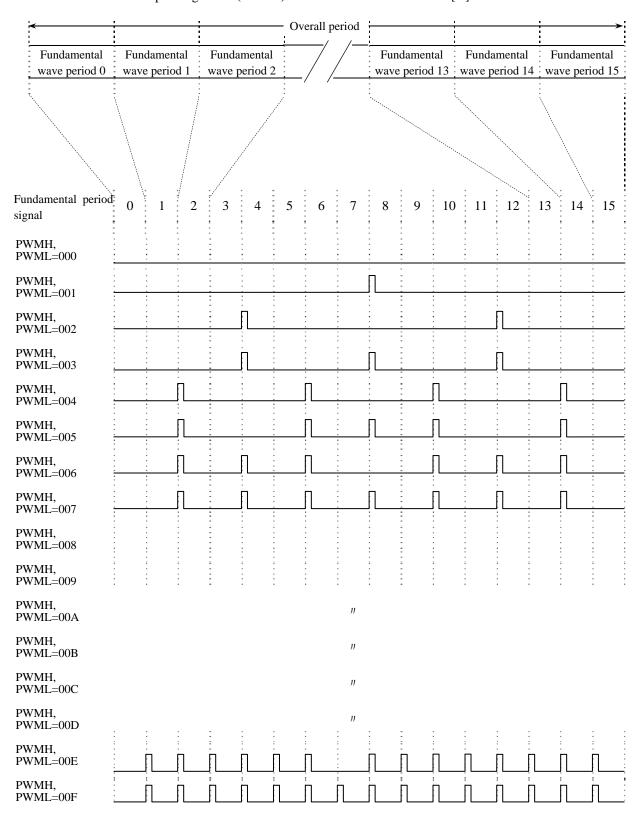
3.20.4.6 PWM23 port input register (PWM23P) (2-bit register)

1) PWM2 data can be read into this register as bit 0.

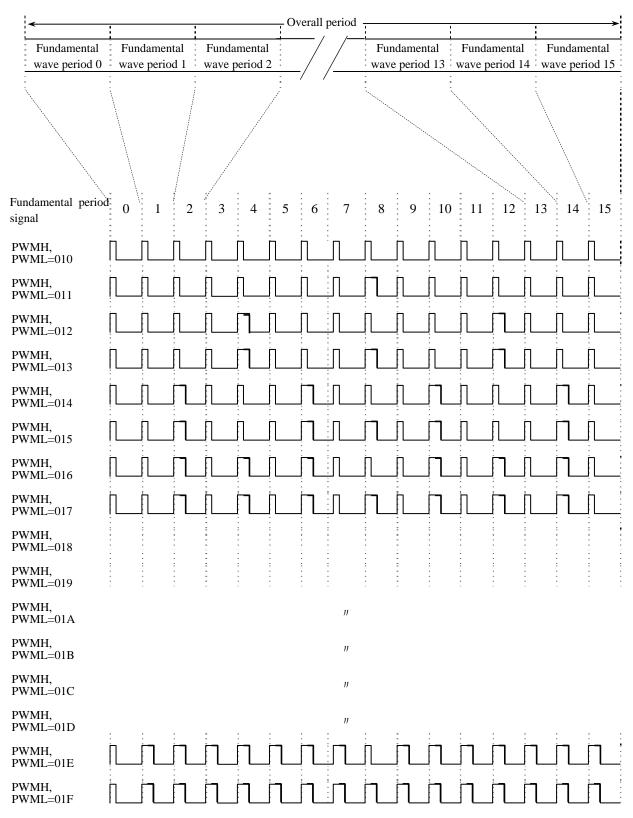
2) PWM3 data can be read into this register as bit 1.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE55	нннн ннхх	R	PWM23P	-	-	-	-	-	-	PWM3IN	PWM2IN

(Bits 7 to 2): These bits do not exist.


They are always read as 1.

PWM3IN (bit 1): PWM3 data (read only)

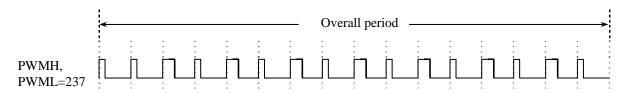

PWM2IN (bit 0): PWM2 data (read only)

PWM2/PWM3

- The 12-bit PWM generates the waveforms of the type shown below.
 - The overall period consists of 16 fundamental wave periods.
 - A fundamental wave period is represented by an 8-bit PWM. (PWM compare register H) (PWMH)
 - 4 bits are used to designate the fundamental wave period to which additional pulses are to be added. (PWM compare match register L) (PWML)
 - 12-bit register configuration → (PWMH), (PWML)=XXXX XXXX, XXXX (12 bits)
- How pulses are added to the fundamental wave periods (Example 1)
 - PWM compare register H (PWMH) = 00 [H]
 - PWM compare register L (PWML) = 0 to F [H]

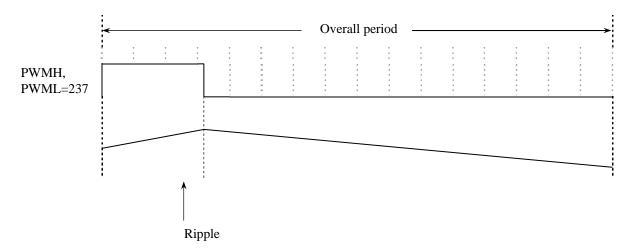
- How pulses are added to fundamental wave periods (Example 2)
 - PWM compare register H (PWMH) = 01 [H]
 - PWM compare register L (PWML) = 0 to F [H]

- The fundamental wave period is variable within the range of $\frac{(16 \text{ to } 256)}{3}$ Tcyc. Fundamental wave period = (Value represented by (PWM2C7 to PWM2C4) + 1) $\times \frac{16}{3}$ Tcyc
 - The overall period can be changed by changing the fundamental wave period.
 - The overall period consists of 16 fundamental wave periods.


PWM2/PWM3

Examples:

• Wave comparison when the 12-bit PWM contains 237[H].


12-bit register configuration \rightarrow (PWMH), (PWML) = 237[H]

1. Pulse added system (this series)

2. Ordinary system

Since the ripple component of the integral output in this system is greater than that of the pulse added system as seen from the figure below, the pulse added system is considered better for motor-controlling uses.

3.21 RMPWM

3.21.1 Overview

The RMPWM0 and RMPWM1 incorporated in this series of microcontrollers are two 12-bit PWMs. Each PWM consists of a multifrequency 8-bit fundamental wave PWM generator circuit and a 4-bit additional pulse generator circuit.

In remote control light receiving element control mode, the module can control the remote control light receiving element in conjunction with the infrared remote control receiver circuit 2.

3.21.2 Functions

- 1) RMPWM0: Fundamental wave PWM mode (register RMPWM0L set to 0)
 - Fundamental wave period = (16 to 256)/3 Tcyc (variable in units of 16/3 Tcyc, common to RMPWM1)
 High-level pulse width= 0 to Fundamental wave period 1/3 Tcyc (variable in units of 1/3 Tcyc)
- RMPWM0: Fundamental wave + Additional pulse PWM mode 2)
 - Fundamental wave period= $\frac{(16 \text{ to } 256)}{3}$ Tcyc (variable in units of $\frac{16}{3}$ Tcyc, common to RMPWM1)
 - Overall period = Fundamental wave period \times 16
 - High-level pulse width = 0 to Overall period $-\frac{1}{3}$ Tcyc (variable in units of $\frac{1}{3}$ Tcyc)
- 3) RMPWM1: Fundamental wave PWM mode (register RMPWM1L set to 0)
 - Fundamental wave period = $\frac{(16 \text{ to } 256)}{3}$ Tcyc (variable in units of $\frac{16}{3}$ Tcyc, common to RMPWM0)
 - High-level pulse width = 0 to Fundamental wave period $-\frac{1}{3}$ Tcyc (variable in units of $\frac{1}{3}$ Tcyc)
- 4) RMPWM1: Fundamental wave + Additional pulse PWM mode
 - Fundamental wave period = $\frac{(16 \text{ to } 256)}{3}$ Tcyc (variable in units of $\frac{16}{3}$ Tcyc, common to RMPWM0)
 - Overall period = Fundamental wave period × 16
 - High-level pulse width = 0 to Overall period $-\frac{1}{3}$ Tcyc (variable in units of $\frac{1}{3}$ Tcyc)
- 5) RMPWM0, RMPWM1: Remote control light receiving element control mode
 - Fundamental wave period = 16 to 256 PWM clocks

(Variable in units of 16 PWM clocks, common to RMPWM0 and RMPWM1)

- * PWM clock = X'tal oscillator clock or 1/2 frequency division of the X'tal oscillator clock
- High-level pulse width = 0 to Overall period 1 PWM clock (variable in units of 1 PWM
- Exercises enable/disable control of the remote control signal input (P73/RMIN) of infrared remote control receiver circuit 2 (enabled with RMPWM0 = RMPWM1 = low).
- 6) Interrupt generation
 - In fundamental wave PWM mode or fundamental wave + additional pulse PWM mode, an interrupt request is generated at intervals equal to the overall PWM period if the RMPWM interrupt request enable bit is set.
 - In remote control light receiving element control mode, an interrupt request is generated on detection of a remote control signal if the remote control receive signal detection interrupt request enable bit is set.

RMPWM

- 7) It is necessary to manipulate the following special function registers to control RMPWM.
 - RMPWM0L, RMPWM0H, RMPWM1L, RMPWM1H, RMPWM0C, RMPWMCR

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FEA8	0000 НННН	R/W	RMPWM0L	RMPWM0L3	RMPWM0L2	RMPWM0L1	RMPWM0L0	-	-	ı	-
FEA9	0000 0000	R/W	RMPWM0H	RMPWM0H7	RMPWM0H6	RMPWM0H5	RMPWM0H4	RMPWM0H3	RMPWM0H2	RMPWM0H1	RMPWM0H0
FEAA	0000 HHHH	R/W	RMPWM1L	RMPWM1L3	RMPWM1L2	RMPWM1L1	RMPWM1L0	-	-	•	-
FEAB	0000 0000	R/W	RMPWM1H	RMPWM1H7	RMPWM1H6	RMPWM1H5	RMPWM1H4	RMPWM1H3	RMPWM1H2	RMPWM1H1	RMPWM1H0
FEAC	0000 0000	R/W	RMPWM0C	RMPWM0C7	RMPWM0C6	RMPWM0C5	RMPWM0C4	ENRMPWM1	ENRMPWM0	RMPWM0OV	RMPWM0IE
FEAD	0000 0000	R/W	RMPWMCR	RMPMOEN	RMPWMODE	RMPWRQ	RMPWIE	RMPWCKDIV	RMPWREV	ENRMPWM10	ENRMPWM0O

3.21.3 Circuit Configuration

3.21.3.1 RMPWM control register (RMPWM0C) (8-bit register)

1) This register controls the operation and interrupts of RMPWM0 and RMPWM1.

3.21.3.2 RMPWM0 compare register L (RMPWM0L) (4-bit register)

- 1) This register controls the additional pulses of RMPWM0.
- 2) RMPWM0L is assigned bits 7 to 4 and all of its low-order 4 bits are set to 1 when read.

3.21.3.3 RMPWM0 compare register H (RMPWM0H) (8-bit register)

- 1) This register controls the fundamental wave pulse width of RMPWM0.
- 2) If bits 7 to 4 of RMPWM0L are all fixed at 0, RMPWM0 can be used as a variable period 8-bit PWM that is controlled by RMPWM0H.

3.21.3.4 RMPWM1 compare register L (RMPWM1L) (4-bit register)

- 1) This register controls the additional pulses of RMPWM1.
- 2) RMPWM1L is assigned bits 7 to 4 and all of its low-order 4 bits are set to 1 when read.

3.21.3.5 RMPWM1 compare register H (RMPWM1H) (8-bit register)

- 1) This register controls the fundamental wave pulse width of RMPWM1.
- 2) If bits 7 to 4 of RMPWM1L are all fixed at 0, RMPWM1 can be used as a variable period 8-bit PWM that is controlled by RMPWM1H.

3.21.3.6 RMPWM mode control register (RMPWMCR) (8-bit register)

- 1) This register configures the outputs to the RMPWM0 and RMPWM1 pins.
- 2) The register sets up the remote control light receiving element control mode of RMPWM.

3.21.4 Related Registers

3.21.4.1 RMPWM control register (RMPWM0C) (8-bit register)

1) This register controls the operation and interrupts of RMPWM.

	Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
ſ	FEAC	0000 0000	R/W	RMPWM0C	RMPWM0C7	RMPWM0C6	RMPWM0C5	RMPWM0C4	ENRMPWM1	ENRMPWM0	RMPWM0OV	RMPWM0IE

RMPWM0C7 to RMPWM0C4 (bits 7 to 4): RMPWM period control

Fundamental wave period = (Value represented by (RMPWM0C7 to RM PWM0C4) + 1) $\times \frac{16}{3}$ Tcyc Overall period = Fundamental wave period \times 16

ENRMPWM1 (bit 3): RMPWM1 operation control

Setting this bit to 1 starts RMPWM1. Setting this bit to 0 stops RMPWM1.

ENRMPWM0 (bit 2): RMPWM0 operation control

Setting this bit to 1 starts RMPWM0. Setting this bit to 0 stops RMPWM0.

RMPWM0OV (bit 1): RMPWM0/RMPWM1 overflow flag

This bit is set at intervals equal to the overall period of PWM.

This flag must be cleared with an instruction.

Note: This bit is not set when RMODE = 0.

RMPWM0IE (bit 0): RMPWM0/RMPWM1 interrupt request enable control

An interrupt to vector addresses 004BH is generated when this bit and RMPWM0OV are set to 1.

3.21.4.2 RMPWM0 compare register L (RMPWM0L) (4-bit register)

- 1) This register controls the additional pulses of RMPWM0.
- 2) RMPWM0L is assigned bits 7 to 4 and all of its low-order 4 bits are set to 1 when read.

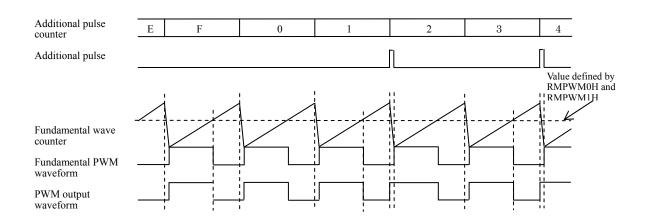
Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FEA8	0000 НННН	R/W	RMPWM0L	RMPWM0L3	RMPWM0L2	RMPWM0L1	RMPWM0L0	-	-	-	-

3.21.4.3 RMPWM0 compare register H (RMPWM0H) (8-bit register)

- 1) This register controls the fundamental wave pulse width of RMPWM0. Fundamental wave pulse width = (Value represented by RMPWM0H7 to RMPWM0H0) $\times \frac{1}{2}$ Tcyc
- 2) When bits 7 to 4 of RMPWM0L are all fixed at 0, RMPWM0 can be used as a variable period 8-bit PWM that is controlled by RMPWM0H.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FEA9	0000 0000	R/W	RMPWM0H	RMPWM0H7	RMPWM0H6	RMPWM0H5	RMPWM0H4	RMPWM0H3	RMPWM0H2	RMPWM0H1	RMPWM0H0

3.21.4.4 RMPWM1 compare register L (RMPWM1L) (4-bit register)


- 1) This register controls the additional pulses of RMPWM1.
- 2) RMPWM1L is assigned bits 7 to 4 and all of its low-order 4 bits are set to 1 when read.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FEAA	0000 НННН	R/W	RMPWM1L	RMPWM1L3	RMPWM1L2	RMPWM1L1	RMPWM1L0	-	-	-	-

3.21.4.5 RMPWM1 compare register H (RMPWM1H) (8-bit register)

- 1) This register controls the fundamental wave pulse width of RMPWM1.
- 2) Fundamental wave pulse width = (Value represented by RMPWM1H7 to RMPWM1H0) $\times \frac{1}{3}$ Tcyc
- 3) If bits 7 to 4 of RMPWM1L are all fixed at 0, RMPWM1 can be used as a variable period 8-bit PWM that is controlled by RMPWM1H.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FEAB	0000 0000	R/W	RMPWM1H	RMPWM1H7	RMPWM1H6	RMPWM1H5	RMPWM1H4	RMPWM1H3	RMPWM1H2	RMPWM1H1	RMPWM1H0

3.21.4.6 RMPWM mode control register (RMPWMCR) (8-bit register)

- 1) This register sets the outputs to the RMPWM0 and RMPWM1 pins.
- 2) The register sets the remote control light receiving element control mode of RMPWM.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FEAD	0000 0000	R/W	RMPWMCR	RMPMOEN	RMPWMODE	RMPWRQ	RMPWIE	RMPWCKDIV	RMPWREV	ENRMPWM10	ENRMPWM0O

RMPWMOEN (bit 7): RMPWM0/RMPWM1 output enable

Setting this bit to 1 enables the PWM waveform to be output while RMPWM0/RMPWM1 are active. The bit is cleared when the remote control signal is detected.

Setting this bit to 0 fixes RMPWM0/RMPWM1 at the low level while RMPWM0/RMPWM1 are active.

Note: This bit is enabled only when RMODE=1.

<Remote control signal detection conditions>

- Remote control receiver noise filter output of infrared remote control receiver circuit 2 = H
- RMPWM0 output = L
- RMPWM1 output = L

RMPWMODE (bit 6): RMPWM0/RMPWM1 mode select

A 1 in this bit places RMPWM0/RMPWM1 into remote control light receiving element control mode. In this mode, the RMPWM clock is set to the X'tal clock or 1/2 frequency division of the X'tal clock (selected by RMPWCKDIV).

The bit is also used to enable or disable the remote control signal input (P73/RMIN) of the infrared remote control receiver circuit 2; the remote control signal input is enabled only when RMPWM0= RMPWM1=L.

A 0 in this bit places RMPWM0/RMPWM1 into fundamental wave PWM mode or fundamental wave + additional pulse PWM mode. In these modes, the PWM clock is set to $\frac{1}{2}$ Tcyc.

Note: For the infrared remote control receiver circuit 2 to be used in the remote control light receiving element control mode, set RM2RUN (remote control receive control register, bit 7) to 1 and RM2DINV (remote control receive control register, bit 3) to 1.

RMPWRQ (bit 5): Remote control receive signal detection flag

This bit is set when a remote control signal is detected.

This flag must be cleared with an instruction.

RMPWIE (bit 4): Remote control receive signal detection interrupt request enable control

When this bit and RMPWRQ are set to 1, an X'tal HOLD mode release signal and an interrupt request to vector address 004BH are generated.

RMPWCKDIV (bit 3): RMPWM clock frequency division control (in remote control light receiving element control mode)

A 1 in this bit sets the RMPWM clock to 1/2 frequency division of the X'tal oscillator clock.

A 0 in this bit sets the RMPWM clock to the X'tal oscillator clock.

Note: This bit is enabled only when RMPWMODE = 1.

RMPWM

RMPWREV (bit 2): RMPWM port output inversion control

When this bit is set to 1, the RMPWM output at PC0 or PC1 is inverted.

When this bit is set to 0, normal RMPWM output is placed at PC0 or PC1.

ENRMPWM1O (bit 1): RMPWM1 port output control

When this bit is set to 1 and PC1DDR to 1, an OR of PC1LAT and RMPWM1 is output. When this bit is set to 0, PC1 is configured as an ordinary port.

ENRMPWM0O (bit 0): RMPWM0 port output control

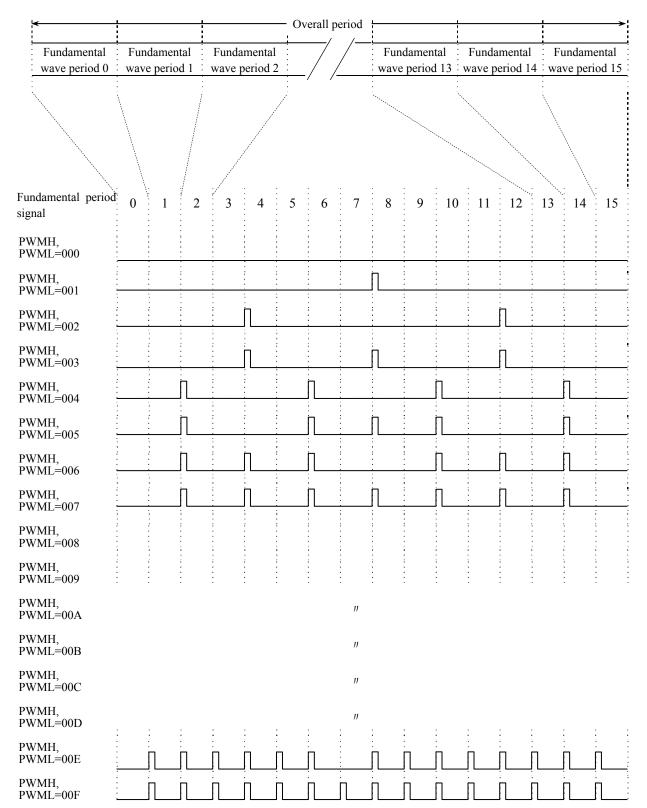
When this bit is set to 1 and PC0DDR to 1, an OR of PC0LAT and RMPWM0 is output.

When this bit is set to 0, PC0 is configured as an ordinary port.

- The 12-bit PWM generates the waveforms of the type shown below.
 - The overall period consists of 16 fundamental wave periods.
 - A fundamental wave period is represented by an 8-bit PWM. (PWM compare register H) (PWMH)
 - 4 bits are used to designate the fundamental wave period to which additional pulses are to be added. (PWM compare match register L) (PWML)

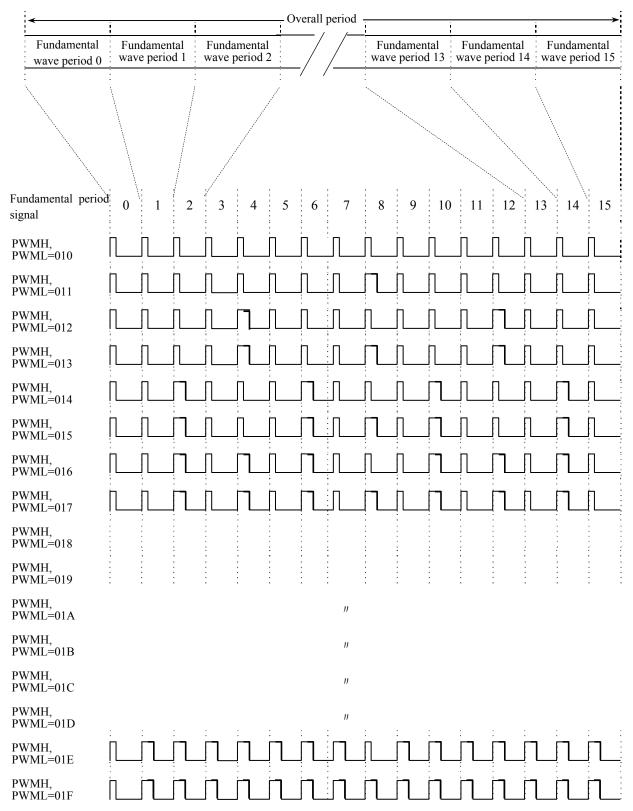
(PWMH), (PWML)=XXXX XXXX, XXXX (12 bits) 12-bit register configuration

- How pulses are added to the fundamental wave periods (Example 1)
 - PWM compare register H (PWMH)


00

[H]

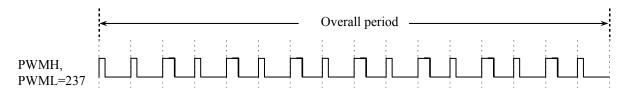
• PWM compare register L (PWML)


0 to F

[H]

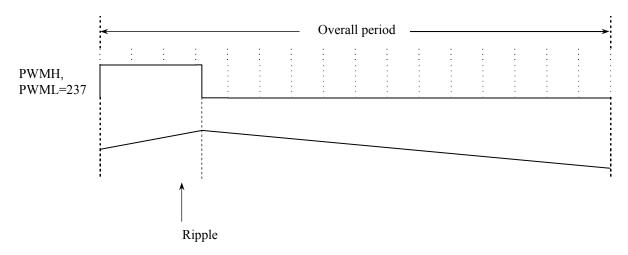
RMPWM

- How pulses are added to fundamental wave periods (Example 2)
 - PWM compare register H (PWMH) = 01 [H]
 - PWM compare register L (PWML) = 0 to F [H]


• The fundamental wave period is variable within the range of $\frac{(16 \text{ to } 256)}{3}$ Tcyc.

Fundamental wave period is variable within the range of $\frac{1}{3}$ reyc. Fundamental wave period = (Value represented by (RMPWM0C7 to RMPWM0C4) + 1) × $\frac{16}{3}$ Tcyc

- The overall period can be changed by changing the fundamental wave period.
- The overall period consists of 16 fundamental wave periods.


Examples:

- Wave comparison when the 12-bit PWM contains 237[H].
 12-bit register configuration → (PWMH), (PWML) = 237[H]
- 1. Pulse added system (this series)

2. Ordinary system

Since the ripple component of the integral output in this system is greater than that of the pulse added system as seen from the figure below, the pulse added system is considered better for motor-controlling uses.

3.22 Infrared Remote Control Receiver Circuit 2 (REMOREC2)

3.22.1 Overview

This series of microcontrollers is equipped with an infrared remote control receiver circuit 2 (REMOREC2) that has the following features and functions:

- 1) Noise filter function
- 2) Supports 5 receive formats.
 - · Receive format A

Guide pulse : Half clock

Data encoding system : PPM (Pulse Position Modulation)

Stop bits : No

• Receive format B (can support repeat code reception)

Guide pulse : Clock
Data encoding system : PPM
Stop bits : Yes

• Receive format C

Guide pulse : No
Data encoding system : PPM
Stop bits : Yes

· Receive format D

Guide pulse : No

Data encoding system : Manchester coding

Stop bits : No

• Receive format E

Guide pulse : Clock

Data encoding system : Manchester coding

Stop bits : No

3) X'tal HOLD mode release function

3.22.2 Functions

1) Remote control receive function

The REMOREC2 tests the pulses of the remote control signal input from the P73/RMIN pin using the clock output from the prescaler (RM2CKPR) which counts 1 to 128 Tcyc or the subclock oscillation source (the RM2CK reference clock is selected from 8 sources) to identify the data as 0, 1, or error. Data that is found normal is loaded in the remote control receive shift register (RM2SFT). Every time 8 bits of data are loaded in the register, they are transferred to the remote control receive data register (RM2RDT). At this moment, the data transfer flag is set. The receive end flag is set when the end of receive format condition is detected.

2) Interrupt generation

An interrupt request to vector address 0013H is generated when an interrupt request occurs in the remote control receiver circuit provided that the interrupt request enable bit is set. The remote control receiver circuit can generate the following four types of interrupt requests:

- <1> Guide pulse detection
- <2> Receive data test error
- <3> RM2SFT-to-RM2RDT data transfer
- <4> End of reception
- 3) X'tal HOLD mode operation and X'tal HOLD mode release function

The remote control receiver circuit is enabled for operation in X'tal HOLD mode by setting bits 2 and 1 of the power control register (PCON) after the circuit is started for receive operation with RM2CK being selected as the subclock oscillation source.

X'tal HOLD mode can be released by making use of the interrupt from the remote control receiver circuit. This function makes it possible to realize low power intermittent current operation.

- 4) It is necessary to manipulate the following special function registers to control the infrared remote control receiver circuit 2 (REMOREC2).
 - RM2CNT, RM2INT, RM2SFT, RM2RDT, RM2CTPR, RM2GPW, RM2DT0W, RM2DT1W, RM2XHW, P7

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FEC7	0000 0000	R/W	RM2CNT	RM2RUN	RM2FMT2	RM2FMT1	RM2FMT0	RM2DINV	RM2CK2	RM2CK1	RM2CK0
FEC8	0000 0000	R/W	RM2INT	RM2GPOK	RM2GPIE	RM2DERR	RM2ERIE	RM2SFUL	RM2SFIE	RM2REND	RM2ENIE
FEC9	0000 0000	R	RM2SFT	RM2SFT7	RM2SFT6	RM2SFT5	RM2SFT4	RM2SFT3	RM2SFT2	RM2SFT1	RM2SFT0
FECA	XXXX XXXX	R	RM2RDT	RM2RDT7	RM2RDT6	RM2RDT5	RM2RDT4	RM2RDT3	RM2RDT2	RM2RDT1	RM2RDT0
FECB	0000 0000	R/W	RM2CTPR	RM2GPR1	RM2GPR0	RM2DPR1	RM2DPR0	RM2HOLD	RM2BCT2	RM2BCT1	RM2BCT0
FECC	0000 0000	R/W	RM2GPW	RM2GPH3	RM2GPH2	RM2GPH1	RM2GPH0	RM2GPL3	RM2GPL2	RM2GPL1	RM2GPL0
FECD	0000 0000	R/W	RM2DT0W	RM2D0H3	RM2D0H2	RM2D0H1	RM2D0H0	RM2D0L3	RM2D0L2	RM2D0L1	RM2D0L0
FECE	0000 0000	R/W	RM2DT1W	RM2D1H3	RM2D1H2	RM2D1H1	RM2D1H0	RM2D1L3	RM2D1L2	RM2D1L1	RM2D1L0
FECF	0H00 0000	R/W	RM2XHW	RM2RDIR	-	RM2D1H4	RM2D1L4	RM2D0H4	RM2D0L4	RM2GPH4	RM2GPL4

3.22.3 Circuit Configuration

3.22.3.1 Remote control receive control register (RM2CNT) (8-bit register)

1) This register controls the remote control receive operation.

3.22.3.2 Remote control receive interrupt control register (RM2INT) (8-bit register)

- 1) This register controls the remote control receive interrupts.
- 2) When the REMOREC2 starts a receive operation with RM2CK selected as the subclock oscillation source, X'tal HOLD mode can be released using the interrupt occurring in the REMOREC2.

3.22.3.3 Remote control receive shift register (RM2SFT) (8-bit shift register)

- 1) This register is an 8-bit shift register used for storing remote control receive data.
- 2) The data loading direction (LSB first or MSB first) is determined by the value of RM2RDIR (RM2XHW, bit 7).
- 3) Data is transferred from RM2SFT to RM2RDT each time this register is loaded with 8 bits of receive data. This register is also used to read the last less-than-8-bit receive data.

REMOREC2

- 4) The RM2SFT is reset when one of the following conditions occurs:
 - <1> The remote control receive operation is stopped (RM2RUN set to 0).
 - <2> A guide pulse is received normally after the beginning or resumption of a receive operation when RM2FMT2 to RM2FMT0 (RM2CNT, bits 6 to 4) are set to 0, 1, or 4.
 - <3> The first rising edge (assuming that the input polarity is set to positive phase) is detected after the beginning or resumption of a receive operation when RM2FMT2 to RM2FMT0 are set to 2, or 3.
 - <4> RM2SFT-to-RM2RDT data transfer occurs.

3.22.3.4 Remote control receive data register (RM2RDT) (8-bit register)

- 1) This register is an 8-bit register that holds the data received from the remote control.
- 2) The initial value of this register is undefined. The contents of the RM2SFT are transferred to this register each time 8 bits of receive data are loaded in the RM2SFT.

3.22.3.5 Remote control receive bit counter and prescaler setting register (RM2CTPR) (3-bit counter + 5-bit register)

- 1) This register consists of a 3-bit up-counter (RM2BCT) that counts the number of data bits received from the remote control, a flag (RM2HOLD) that signals the suspension and resumption of the next receive operation when a receive operation is completed, and the bits (RM2GPR1,0/RM2DPR1,0) that define the count value of RM2CKPR in the guide pulse or data pulse receive mode.
- 2) The RM2BCT starts counting up when the remote control input signal is identified as 0 or 1. When the receive operation is completed, the number of last less-than-8-bit data bits can be obtained by reading the value of RM2BCT.

The RM2BCT is reset when one of the following conditions occurs:

- <1> The remote control receive operation is stopped (RM2RUN set to 0).
- <2> A guide pulse is received normally after the beginning or resumption of a receive operation when RM2FMT2 to RM2FMT0 are set to 0, 1, or 4.
- <3> The first rising edge (assuming that the input polarity is set to positive phase) is detected after the beginning or resumption of a receive operation when RM2FMT2 to RM2FMT0 are set to 2, or 3
- 3) The value set in RM2GPR1 and RM2GPR0 exerts no influence on the receive operation if RM2FMT2 to RM2FMT0 are set to 2 or 3.

3.22.3.6 Remote control receive prescaler (RM2CKPR) (5-bit counter)

- 1) This prescaler is a 5-bit up-counter that generates a count clock to the pulse width measurement counter (RM2MJCT).
- 2) The counter counts up on the RM2CK that is selected by the value of RM2CK2 to RM2CK0 (RM2CNT, bits 2 to 0).
- 3) The RM2CKPR uses different count setting registers when receiving the guide pulse and the data pulse. The count is set up by RM2GPR1 and RM2GPR0 (RM2CTPR, bits 7 and 6), and RM2DPR1 and RM2DPR0 (RM2CTPR, bits 5 and 4).

A count clock to RM2MJCT is generated for every one of the counts listed below.

* Count clock to the RM2MJCT in the guide pulse or data pulse receive mode

When "RM2FMT2 to RM2FMT0 = 0 to 2" is selected.

RM2GPR1/ RM2DPR1	RM2GPR0/ RM2DPR0	RM2CKPR Count Value
0	0	4
0	1	8
1	0	16
1	1	32

When "RM2FMT2 to RM2FMT0 = 3 or 4" is selected.

RM2GPR1/ RM2DPR1	RM2GPR0/ RM2DPR0	RM2CKPR Count Value
0	0	2
0	1	4
1	0	8
1	1	16

3.22.3.7 Remote control receive guide pulse width setting register (RM2GPW) (8-bit register)

- 1) This register is an 8-bit register that defines the width of the guide pulse.
- 2) The value of this register exerts no influence on the receive operation when RM2FMT2 to RM2FMT0 are set to 2 or 3.

3.22.3.8 Remote control receive data 0 pulse width setting register (RM2DT0W) (8-bit register)

1) This register is an 8-bit register that defines the width of the data 0 pulse or timings 1 and 2.

3.22.3.9 Remote control receive data 1 pulse width setting register (RM2DT1W) (8-bit register)

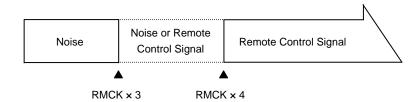
1) This register is an 8-bit register that defines the width of the data 1 pulse or timings 3 and 4.

3.22.3.10 Remote control receive guide pulse and data pulse width high byte setting register (RM2XHW) (7-bit register)

1) This register is a 7-bit register that defines the width of the guide pulse and data pulse and sets the highest bit of timings 1 to 4. It is also used to control the direction in which data is loaded in the RM2SFT.

3.22.3.11 Remote control receive pulse width measurement counter (RM2MJCT) (5-bit counter)

- 1) This counter is a 5-bit up-counter used to measure the pulse width of the remote control input signal and to generate timing signals.
- 2) It counts up on the count clock output from the RM2CKPR.


Note: See Subsection 3.22.5 "Remote Control Receiver Circuit Operation" for the operation of the REMOREC2 in receive formats.

3.22.3.12 Remote control receive noise filter (RM2NFLT)

- 1) This noise filter rejects occurrences of the remote control input signals whose width is less than a predetermined duration as noises.
- 2) When the REMOREC2 is running (RM2RUN set to 1), the remote control input signal is always sampled at RM2CK. The input signal is processed by the circuit as a valid signal if its signal levels remain the same while four samples are obtained. If the input signal width is less than RM2CK×4, the remote control input signal is rejected as noise and the REMOREC2 continues operation while preserving the state of the old signal in the circuit.
 - * Noise cancellation width

Less than RM2CK×4

Note: The noise cancellation width may vary by a maximum factor of -RM2CK×1 depending on the timing at which the remote control input signal is sampled in the circuit.

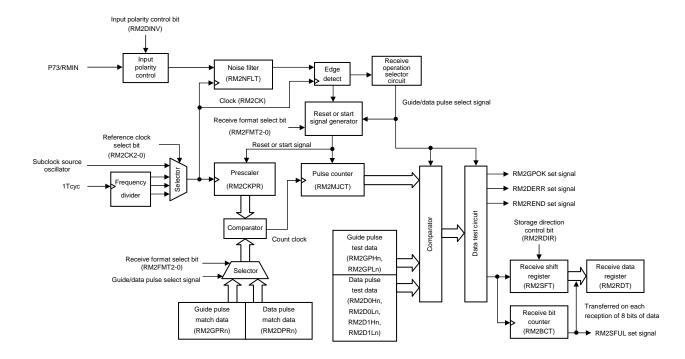


Figure 3.22.1 Infrared Remote Control Receiver Circuit 2 Block Diagram (RM2FMT2 to 0 = 0 to 2 setting)

3.22.4 Related Registers

3.22.4.1 Remote control receive control register (RM2CNT)

1) This register is an 8-bit register that controls the remote control receive operation.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FEC7	0000 0000	R/W	RM2CNT	RM2RUN	RM2FMT2	RM2FMT1	RM2FMT0	RM2DINV	RM2CK2	RM2CK1	RM2CK0

RM2RUN (bit 7): Remote control receive operation control

When this bit is set to 0, the remote control receiver circuit stops operation.

When this bit is set to 1, the remote control receiver circuit starts operation and waits for the remote control input signal.

RM2FMT2 (bit 6): RM2FMT1 (bit 5):

Remote control receive format select

RM2FMT0 (bit 4):

RM2FMT2	RM2FMT1	RM2FMT0	Format
0	0	0	Receive format A • Guide pulse: Half clock • Data encoding system: PPM • Stop bits: No
0	0	1	Receive format B • Guide pulse: Clock • Data encoding system: PPM • Stop bits: Yes
0	1	0	Receive format C • Guide pulse: No • Data encoding system: PPM • Stop bits: Yes
0	1	1	Receive format D Guide pulse: No Data encoding system: Manchester coding Stop bits: No
1	0	0	Receive format E Guide pulse: Clock Data encoding system: Manchester coding Stop bits: No

^{*} Any values other than those listed above are inhibited.

RM2DINV (bit 3): Remote control receive input polarity control

This bit must be set to 0 when the remote control input signal is a positive phase signal.

This bit must be set to 1 when the input signal is a negative phase signal.

* The REMOREC2 starts receive processing assuming the detection of a start edge immediately when it is activated if the positive phase input mode is specified for the high level of the remote control input signal or if the negative phase input mode is specified for the low level of the remote control input signal.

^{*} See Subsection 3.22.5 "Remote Control Receiver Circuit Operation" for the operation of the REMOREC2 in receive formats.

REMOREC2

RM2CK2 (bit 2):

RM2CK1 (bit 1):

Remote control receive reference clock (RM2CK) select

RM2CK0 (bit 0):

RM2CK2	RM2CK1	RM2CK0	Reference Clock (RM2CK)
0	0	0	4 Tcyc
0	0	1	8 Tcyc
0	1	0	16 Teye
0	1	1	32 Teye
1	0	0	64 Tcyc
1	0	1	128 Tcyc
1	1	0	Subclock source oscillation
1	1	1	1 Teye

Note:

- The registers in the remote control receiver circuit must be set up when RM2RUN is set to 0 (receive operation stopped).
- When releasing X'tal HOLD mode, set the RM2CK to subclock source oscillation. The REMOREC2 will not run with any other RM2CK setting mode since the cycle clock is stopped in X'tal HOLD mode.

3.22.4.2 Remote control receive interrupt control register (RM2INT)

- 1) This register is an 8-bit register that controls the remote control receive interrupts.
- 2) This register allows X'tal HOLD mode to be released by an interrupt occurring in the remote control receiver circuit, provided that the REMOREC2 receive operation is started with the RM2CK set to subclock source oscillation.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FEC8	0000 0000	R/W	RM2INT	RM2GPOK	RM2GPIE	RM2DERR	RM2ERIE	RM2SFUL	RM2SFIE	RM2REND	RM2ENIE

RM2GPOK (bit 7): Guide pulse receive flag

This bit is set when the REMOREC2 receives a guide pulse normally in a receive format when RM2FMT2 to RM2FMT0 are set to 0, 1, or 4.

This flag must be cleared with an instruction.

RM2GPIE (bit 6): Guide pulse receive interrupt request enable control

When this bit and RM2GPOK are set to 1, an X'tal HOLD mode release signal and an interrupt request to vector address 0013H are generated.

RM2DERR(bit 5): Receive data error flag

This bit is set when an error is detected while testing the receive data.

This flag must be cleared with an instruction.

RM2ERIE (bit 4): Receive data error interrupt request enable control

When this bit and RM2DERR are set to 1, an X'tal HOLD mode release signal and an interrupt request to vector address 0013H are generated.

RM2SFUL (bit 3): Receive shift register FULL flag

This bit is set when the 8 data bits loaded in the RM2SFT are transferred from RM2SFT to RM2RDT.

This flag must be cleared with an instruction.

RM2SFIE (bit 2): Receive shift register FULL interrupt request enable control

When this bit and RM2SFUL are set to 1, an X'tal HOLD mode release signal and an interrupt request to vector address 0013H are generated.

RM2REND (bit 1): Receive end flag

This bit is set when the receive format end condition is detected.

This flag must be cleared with an instruction.

RM2ENIE (bit 0): Receive end interrupt request enable control

When this bit and RM2REND are set to 1, an X'tal HOLD mode release signal and an interrupt request to vector address 0013H are generated.

Note:

• RM2GPOK is not set when RM2FMT2 to RM2FMT0 are set to 2 or 3.

3.22.4.3 Remote control receive shift register (RM2SFT)

- 1) This register is an 8-bit shift register used to receive data from the remote control.
- 2) The data loading direction (LSB first or MSB first) is determined by the value of RM2RDIR.
- 3) Since the contents of this register are transferred to RM2RDT from RM2SFT each time 8 bits of receive data are loaded in the RM2SFT, this register is also used to read the last less-than-8-bit receive data.
- 4) The RM2SFT is reset when one of the following conditions occurs:
 - <1> The remote control receive operation is stopped (RM2RUN set to 0).
 - <2> A guide pulse is received normally after the beginning or resumption of a receive operation when RM2FMT2 to RM2FMT0 are set to 0, 1, or 4.
 - <3> The first rising edge (assuming that the input polarity is set to positive phase) is detected after the beginning or resumption of a receive operation when RM2FMT2 to RM2FMT0 are set to 2, or 3.
 - <4> RM2SFT-to-RM2RDT data transfer occurs.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FEC9	0000 0000	R	RM2SFT	RM2SFT7	RM2SFT6	RM2SFT5	RM2SFT4	RM2SFT3	RM2SFT2	RM2SFT1	RM2SFT0

Note:

• Before reading this register, make sure that the value of RM2REND is set to 1 (end of reception).

3.22.4.4 Remote control receive data register (RM2RDT)

- 1) This register is an 8-bit register that holds the data received from the remote control.
- 2) The initial value of this register is undefined. Each received data block of 8 bits is transferred from RM2SFT to RM2RDT.

	Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
Ī	FECA	XXXX XXXX	R	RM2RDT	RM2RDT7	RM2RDT6	RM2RDT5	RM2RDT4	RM2RDT3	RM2RDT2	RM2RDT1	RM2RDT0

Note:

Before reading this register, make sure that the value of RM2SFUL is set to 1 (data transfer detected).

3.22.4.5 Remote control receive bit counter and prescaler setting register (RM2CTPR)

- 1) This register consists of a 3-bit up-counter (RM2BCT) that counts the number of data bits received from the remote control, a flag (RM2HOLD) that signals the suspension and resumption of the next receive operation at the end of reception, and the bits (RM2GPR1, 0/RM2DPR1, 0) that define the count value of RM2CKPR in guide pulse or data pulse receive mode.
- 2) The RM2BCT starts counting up when the remote control input signal is identified as 0 or 1. When the receive operation is completed, the number of last less-than-8-bit data bits can be obtained by reading the value of the RM2BCT.

The RM2BCT is reset when one of the following conditions occurs:

- <1> The remote control receive operation is stopped (RM2RUN set to 0).
- <2> A guide pulse is received normally after the beginning or resumption of a receive operation when RM2FMT2 to RM2FMT0 are set to 0, 1, or 4.
- <3> The first rising edge (assuming that the input polarity is set to positive phase) is detected after the beginning or resumption of a receive operation when RM2FMT2 to RM2FMT0 are set to 2, or 3.
- 3) Bits 3 to 0 of this register are read-only.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FECB	0000 0000	R/W	RM2CTPR	RM2GPR1	RM2GPR0	RM2DPR1	RM2DPR0	RM2HOLD	RM2BCT2	RM2BCT1	RM2BCT0

RM2GPR1 (bit 7): RM2GPR0 (bit 6):

Guide pulse receive mode RM2CKPR count select

RM2DPR1 (bit 5):

Data pulse receive mode RM2CKPR count select

RM2DPR0 (bit 4):

* When "RM2FMT2 to RM2FMT0 = 0 to 2" is selected.

RM2GPR1/ RM2DPR1	RM2GPR0/ RM2DPR0	RM2CKPR Count Value
0	0	4
0	1	8
1	0	16
1	1	32

^{*} When "RM2FMT2 to RM2FMT0 = 3 or 4" is selected.

RM2GPR1/ RM2DPR1	RM2GPR0/ RM2DPR0	RM2CKPR Count Value
0	0	2
0	1	4
1	0	8
1	1	16

RM2HOLD (bit 3): Receive operation suspend/resume flag

This bit is set and the REMOREC2 suspends the receive operation at the end of a receive operation. Then, the REMOREC2 does not perform another receive operation even when a next remote control signal is input.

This bit is cleared and the REMOREC2 resumes the receive operation when the RM2SFT is read.

This bit is also cleared when the receive operation is suspended (RM2RUN set to 0).

RM2BCT2 (bit 2):

RM2BCT1 (bit 1):

Receive data counter

RM2BCT0 (bit 0):

The REMOREC2 allows the number of last less-than-8-bit data to be read at the end of a receive operation. From this value, the user can identify the number of valid received data bits that are left in the RM2SFT.

Note:

• The value set in RM2GPR1 and RM2GPR0 exerts no influence on the receive operation if RM2FMT2 to RM2FMT0 are set to 2 or 3.

3.22.4.6 Remote control receive guide pulse width setting register (RM2GPW)

1) This register is an 8-bit register that defines the width of the guide pulse.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FECC	0000 0000	R/W	RM2GPW	RM2GPH3	RM2GPH2	RM2GPH1	RM2GPH0	RM2GPL3	RM2GPL2	RM2GPL1	RM2GPL0

Note:

• The value set in this register exerts no influence on the receive operation if RM2FMT2 to RM2FMT0 are set to 2 or 3.

3.22.4.7 Remote control receive data 0 pulse width setting register (RM2DT0W)

1) This register is an 8-bit register that defines the width of the data 0 pulse or timings 1 and 2.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FECD	0000 0000	R/W	RM2DT0W	RM2D0H3	RM2D0H2	RM2D0H1	RM2D0H0	RM2D0L3	RM2D0L2	RM2D0L1	RM2D0L0

3.22.4.8 Remote control receive data 1 pulse width setting register (RM2DT1W)

1) This register is an 8-bit register that defines the width of the data 1 pulse or timings 3 and 4.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FECE	0000 0000	R/W	RM2DT1W	RM2D1H3	RM2D1H2	RM2D1H1	RM2D1H0	RM2D1L3	RM2D1L2	RM2D1L1	RM2D1L0

3.22.4.9 Remote control receive guide pulse and data pulse width high byte setting register (RM2XHW)

1) This register is a 7-bit register that defines the width of the guide pulse and data pulse or sets the highest bit of timings 1 to 4. It is also used to control the direction in which data is loaded in the RM2SFT.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FECF	0H00 0000	R/W	RM2XHW	RM2RDIR	-	RM2D1H4	RM2D1L4	RM2D0H4	RM2D0L4	RM2GPH4	RM2GPL4

RM2RDIR (bit 7): Remote control receive shift register loading data direction control

When this bit is set to 0, the data received from the remote control is loaded into the RM2SFT register LSB first.

When this bit is set to 1, the data received from the remote control is loaded into the RM2SFT register MSB first.

RM2D1H4 to RM2D1H0 (RM2XHW, bit 5 and RM2DT1W, bits 7 to 4)

These bits are used to define the upper limit side of the data 1 pulse value or to generate timing 4.

REMOREC2

RM2D1L4 to RM2D1L0 (RM2XHW, bit 4 and RM2DT1W, bits 3 to 0)

These bits are used to define the lower limit side of the data 1 pulse width or to generate timing 3.

RM2D0H4 to RM2D0H0 (RM2XHW, bit 3 and RM2DT0W, bits 7 to 4)

These bits are used to define the upper limit side of the data 0 pulse width or to generate timing 2.

RM2D0L4 to RM2D0L0 (RM2XHW, bit 2 and RM2DT0W, bits 3 to 0)

These bits are used to define the lower limit side of the data 0 pulse width or to generate timing 1.

RM2GPH4 to RM2GPH0 (RM2XHW, bit 1 and RM2GPW, bits 7 to 4)

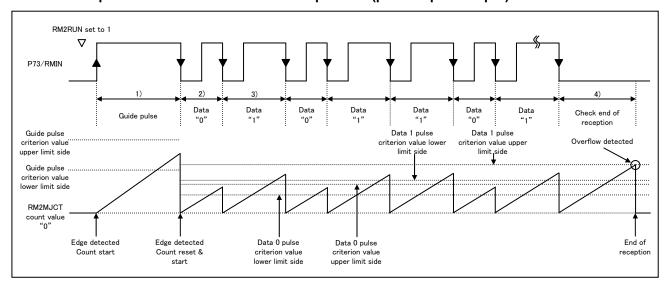
These bits are used to define the upper limit side of the guide pulse width.

RM2GPL4 to RM2GPL0 (RM2XHW, bit 0 and RM2GPW, bits 3 to 0)

These bits are used to define the lower limit side of the guide pulse width.

Note:

• See Subsection 3.22.5 "Remote Control Receiver Circuit Operation" for the operation of the REMOREC2 in receive formats.


3.22.5 Remote Control Receiver Circuit Operation

3.22.5.1 Receive operation when "receive format A" is specified

• Receive format A outline

Guide pulse : Half clock
Data encoding system : PPM
Stop bits : No

* Example of a receive format A receive operation (positive phase input)

* Setting up the receive format A criterion values

1) Check the pulse width (from rising edge to falling edge) of the guide pulse.

RM2CK in guide pulse receive mode =

(Period selected by RM2CK2 to RM2CK0) × (Count value selected by RM2GPR1, RM2GPR0)

Guide pulse criterion value =

(Value given by RM2GPL4 to RM2GPL0 + 1) \times RM2CK or greater to (Value given by RM2GPH4 to RM2GPH0 + 1) \times Less than RM2CK

Note: The register values must be such that the value given by RM2GPL4 to RM2GPL0 < the value given by RM2GPH4 to RM2GPH0.

2, 3) Check the pulse width (from falling edge to falling edge) of data 0 and 1.

RM2CK in data pulse receive mode =

(Period selected by RM2CK2 to RM2CK0) × (Count value selected by RM2DPR1, RM2DPR0)

Data 0 criterion value =

(Value given by RM2D0L4 to RM2D0L0 + 1) \times RM2CK or greater to (Value given by RM2D0H4 to RM2D0H0 + 1) \times Less than RM2CK

Data 1 criterion value=

(Value given by RM2D1L4 to RM2D1L0 + 1) \times RM2CK or greater to (Value given by RM2D1H4 to RM2D1H0 + 1) \times Less than RM2CK

Note: The register values must be such that the value given by RM2D0L4 to RM2D0L0 < the value given by RM2D0H4 to RM2D0H0 ≤ the value given by RM2D1L4 to RM2D1L0 < the value given by RM2D1H4 to RM2D1H0.

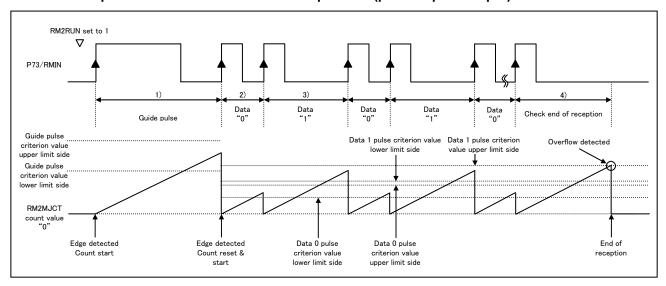
4) Detect an end of reception condition (from falling edge to overflow of data 1 criterion value).

End of reception detection = $(Value given by RM2D1H4 to RM2D1H0 + 1) \times RM2CK or greater$

Note: The minimum criterion value is $RM2CK \times 8$. The interval between the lower limit and upper limit of guide and data pulses must be set up at intervals of $RM2CK \times 8$ or greater.

REMOREC2

* Receive format A receive operation


- (1) The REMOREC2 remains idle in the wait state until it receives a guide pulse normally. When the guide pulse falls within the valid criterion value range, the REMOREC2 resets the RM2MJCT and sets the RM2GPOK flag, then starts checking for the next data pulse. At this time, the RM2SFT and RM2BCT are reset.
- (2) When the data pulse falls within the valid criterion value range, the REMOREC2 resets the RM2MJCT and loads the data (0/1) into the RM2SFT. The data from the RM2SFT is transferred to the RM2RDT every time the REMOREC2 receives 8 bits of data. At this moment, the REMOREC2 sets the RM2SFUL flag and resets the RM2SFT.
- (3) If the data pulse falls outside the valid criterion value range, the REMOREC2 sets the RM2DERR flag and returns to the idle state, waiting for a guide pulse.
- (4) The number of received data bits is counted by the RM2BCT. When receiving a number of data bits that is not an integral multiple of 8, the REMOREC2 references this value at the end of reception to determine the number of valid data bits in the RM2SFT.
- (5) When the REMOREC2 detects the end of reception condition, it sets the RM2REND and RM2HOLD flags and suspends operation. Subsequently, when the RM2SFT is read, the REMOREC2 clears the RM2HOLD flag and enters the idle state, waiting for a guide pulse (resuming the receive operation).

3.22.5.2 Receive operation when "receive format B" is specified

• Receive format B outline

Guide pulse : Clock
Data encoding system : PPM
Stop bits : Yes

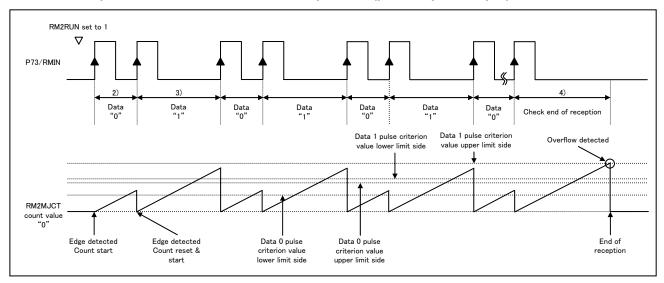
* Example of a receive format B receive operation (positive phase input)

* Setting up the receive format B criterion values

- 1) Check the pulse width (from rising edge to rising edge) of the guide pulse.
- 2, 3) Check the pulse width (from rising edge to rising edge) of data 0 and 1.
- 4) Detect an end of reception condition (from rising edge to overflow of data 1 criterion value).

 The criterion values are the same as those for receive format A. Refer to "Setting up the receive format A criterion values."

* Receive format B receive operation


The REMOREC2 takes the same actions for receive format B as for receive format A. Refer to "Receive format A receive operation."

3.22.5.3 Receive operation when "receive format C" is specified

• Receive format C outline

Guide pulse : No
Data encoding system : PPM
Stop bits : Yes

* Example of a receive format C receive operation (positive phase input)

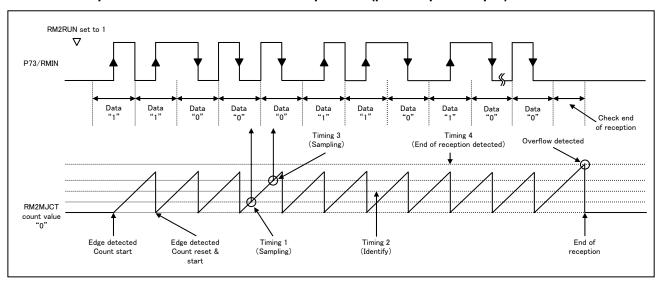
* Setting up the receive format C criterion values

- 2, 3) Check the pulse width (from rising edge to rising edge) of data 0 and 1.
- 4) Detect an end of reception condition (from rising edge to overflow of data 1 criterion value). The criterion values are the same as those for receive format A. Refer to "Setting up the receive format A criterion values."

* Receive format C receive operation

- (1) When the REMOREC2 detects the first rising edge at the beginning or resumption of a receive operation, it resets the RM2SFT and RM2BCT.
- (2) When the data pulse falls within the valid criterion value range, the REMOREC2 resets the RM2MJCT and loads the data (0/1) into the RM2SFT. The data from the RM2SFT is transferred to the RM2RDT every time the REMOREC2 receives 8 bits of data. At this moment, the REMOREC2 sets the RM2SFUL flag and resets the RM2SFT.
- (3) If the data pulse falls outside the valid criterion value range, the REMOREC2 sets the RM2DERR flag and returns to the idle state, waiting for the next rising edge.
- (4) The number of received data bits is counted by the RM2BCT. When receiving a number of data bits that is not an integral multiple of 8, the REMOREC2 references this value at the end of reception to determine the number of valid data bits in the RM2SFT.
- (5) When the REMOREC2 detects the end of reception condition, it sets the RM2REND and RM2HOLD flags and suspends operation. Subsequently, when the RM2SFT is read, the REMOREC2 clears the RM2HOLD flag and enters the idle state, waiting for the next rising edge (resuming the receive operation).

3.22.5.4 Receive operation when "receive format D" is specified


• Receive format D outline

Guide pulse : No

Data encoding system : Manchester coding

Stop bits : No

* Example of a receive format D receive operation (positive phase input)

* Setting up the receive format D timings

The REMOREC2 generates four timing signals to check for the reception of a remote control signal.

greater

The remote control signal is sampled at timings 1 and 3. The resultant two data bits are tested for 0, 1, and error conditions.

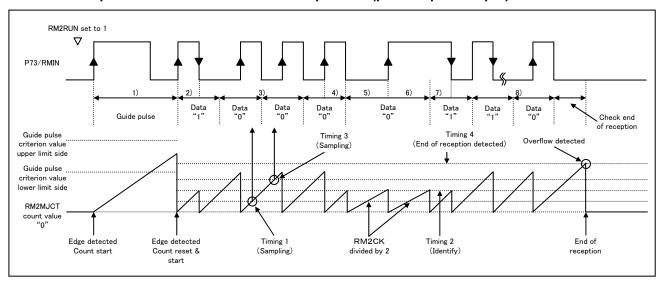
Note: The register values must be such that the value given by RM2D0L4 to RM2D0L0 < the value given by RM2D0H4 to RM2D0H0 < the value given by RM2D1L4 to RM2D1L0 < the value given by RM2D1H4 to RM2D1H0.

Note: The minimum criterion value is $RM2CK \times 4$. The interval between timings 1 to 4 must be set up at intervals of $RM2CK \times 4$ or greater.

* Receive format D receive operation

- (1) When the REMOREC2 detects the first rising edge at the beginning or resumption of a receive operation, it resets the RM2SFT and RM2BCT.
- (2) At timing 1, the REMOREC2 samples the remote control signal.
- (3) At timing 2, the REMOREC2 tests and identifies the data that are sampled in steps (2) and (6). When identifying the first data, the REMOREC2 identifies it as data 1 if an H is sampled at timing 1 (a data error is identified if an L is sampled).
- (4) If identified as 0 or 1, the data (0/1) is loaded into the RM2SFT. The data from the RM2SFT is transferred to the RM2RDT every time the REMOREC2 receives 8 bits of data. At this moment, the REMOREC2 sets the RM2SFUL flag and resets the RM2SFT.
- (5) If the data is identified as an error, the REMOREC2 sets the RM2DERR flag and returns to the idle state, waiting for the next rising edge.
- (6) At timing 3, the REMOREC2 samples the remote control signal. If the REMOREC2 detects an edge after starting the detection of an edge at this timing and before timing 4, it resets the RM2MJCT and returns to step (2).
- (7) When the REMOREC2 detects the end of reception condition, it sets the RM2REND and RM2HOLD flags and suspends operation. Subsequently, when the RM2SFT is read, the REMOREC2 clears the RM2HOLD flag and enters the idle state, waiting for the next rising edge (resuming the receive operation).

3.22.5.5 Receive operation when "receive format E" is specified


• Receive format E outline

Guide pulse : Yes

Data encoding system : Manchester coding

Stop bits : No

* Example of a receive format E receive operation (positive phase input)

* Setting up the receive format E criterion values / timings

The procedure for setting up the guide pulse criterion values for receive format E is identical to that for receive format B. Refer to "Setting up the receive format B criterion values."

The procedure for setting up the data pulse receive timings for receive format E is identical to that for receive format D. Refer to "Setting up the receive format D timings."

Note: The minimum criterion value is $RM2CK \times 4$. The interval between the lower limit and upper limit of the guide pulse must be set up at intervals of $RM2CK \times 4$ or greater.

* Receive format E receive operation

- (1) The REMOREC2 remains in the idle state until it receives a guide pulse normally. When the guide pulse falls within the valid criterion value range, the REMOREC2 resets the RM2MJCT and sets the RM2GPOK flag, and tests the next data pulse. At this moment, the RM2SFT and RM2BCT are reset.
- (2) At timing 1 in step 2), the REMOREC2 samples the remote control signal. If the REMOREC2 detects an edge after starting the detection of an edge at this timing and before timing 3, it resets the RM2MJCT and proceeds with the next step (a data error is identified if no edge is detected).
- (3) At timing 1 in step 3) or 8), the REMOREC2 samples the remote control signal.
- (4) At timing 2 in step 3) or 8), the REMOREC2 tests the data that is sampled in step (2), (7) or (3).
- (5) If identified as 0 or 1, the data (0/1) is loaded into the RM2SFT. The data from the RM2SFT is transferred to the RM2RDT every time the REMOREC2 receives 8 bits of data. At this moment, the REMOREC2 sets the RM2SFUL flag and resets the RM2SFT.
- (6) If the data is identified as error, the REMOREC2 sets the RM2DERR flag and returns to the idle state, waiting for a guide pulse.
- (7) At timing 3 in step 3) or 8), the REMOREC2 samples the remote control signal. If the REMOREC2 detects an edge after starting the detection of an edge at this timing and before timing 4, it resets the RM2MJCT and returns to the operation in step (3).

REMOREC2

- (8) When the REMOREC2 detects the end of reception condition, it sets the RM2REND and RM2HOLD flags and suspends operation. Subsequently, when the RM2SFT is read, the REMOREC2 clears the RM2HOLD flag and enters the idle state, waiting for a guide pulse (resuming the receive operation).
- (9) After three cycles of steps (3) to (7), the REMOREC2 samples the remote control signal at timing 1 in step 4).
- (10) At timing 2 in step 4), the REMOREC2 tests the data that is sampled in step (7) or (9). If the data is identified as 0 or 1, the REMOREC2 performs the same processing as in step (5). It also resets the RM2MJCT and divides the frequency of RM2CK by 2. If the data is identified as an error, the REMOREC2 performs the same processing as in step (6).
- (11) At timing 1 in step 5), the REMOREC2 samples the remote control signal. If the REMOREC2 detects an edge after starting the detection of an edge at this timing and before timing 3, it resets the RM2MJCT and proceeds with the next step (a data error is identified if no edge is detected).
- (12) At timing 1 in step 6), the REMOREC2 samples the remote control signal.
- (13) At timing 2 in step 6), the REMOREC2 tests the data that is sampled in step (11) or (12). If the data is identified as 0 or 1, the REMOREC2 performs the same processing as in step (5). It also resets the RM2MJCT and resets RM2CK to the 1/1 frequency. If the data is identified as an error, the REMOREC2 performs the same processing as in step (6).
- (14) At timing 1 in step 7), the REMOREC2 samples the remote control signal. If the REMOREC2 detects an edge after starting the detection of an edge at this timing and before timing 3, it resets the RM2MJCT and proceeds with the next step (a data error is identified if no edge is detected).
- (15) In subsequent step 8), the REMOREC2 repeats steps (3) to (7). It performs step (8) processing when it detects the end of reception condition.

3.23 AD Converter (ADC12)

3.23.1 Overview

This series of microcontrollers incorporates a 12-bit resolution AD converter that has the features listed below. It allows the microcontroller to capture analog signals easily.

- 1) 12-bit resolution
- 2) Successive approximation
- 3) AD conversion mode selection (resolution switching)
- 4) 11-channel analog input
- 5) Conversion time selection

3.23.2 Functions

1) Successive approximation

The AD converter has a resolution of 12 bits.

Some conversion time is required after starting conversion processing.

The conversion results are transferred to the AD conversion result registers (ADRLC, ADRHC).

2) AD conversion mode selection (resolution switching)

The AD converter supports two AD conversion modes (12- and 8-bit conversion modes), so that the appropriate conversion resolution can be selected according to the operating conditions of the application. The AD mode register (ADMRC) is used to select the AD conversion mode.

3) 11-channel analog input

The signal to be converted is selected using the AD control register (ADCRC) from 11 types of analog signals that are supplied from pins P80 to P86 and pins P70, P71, XT1, and XT2.

4) Conversion time selection

The AD conversion time can be set from 1/1 to 1/128 (frequency division ratio). The AD mode register (ADMRC) and AD conversion result register low byte (ADRLC) are used to select the conversion time for appropriate AD conversion.

- 5) It is necessary to manipulate the following special function registers to control the AD converter.
 - ADCRC, ADMRC, ADRLC, ADRHC

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE58	0000 0000	R/W	ADCRC	AD	AD	AD	AD	ADCR3	AD	AD	ADIE
TES	0000 0000	IX/ VV	ADCKC	CHSEL3	CHSEL2	CHSEL1	CHSEL0	ADCKS	START	ENDF	ADIL
FE59	0000 0000	R/W	ADMRC	ADMD4	ADMD3	ADMD2	ADMD1	ADMD0	ADMR2	ADTM1	ADTM0
FE5A	0000 0000	R/W	ADRLC	DATAL3	DATAL2	DATAL1	DATAL0	ADRL3	ADRL2	ADRL1	ADTM2
FE5B	0000 0000	R/W	ADRHC	DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0

3.23.3 Circuit Configuration

3.23.3.1 AD conversion control circuit

1) This circuit runs in two modes: 12- and 8-bit AD conversion modes.

3.23.3.2 Comparator circuit

The comparator circuit consists of a comparator that compares the analog input with the reference voltage and a control circuit that controls the reference voltage generator circuit and the conversion results. The conversion end flag (ADENDF) of the AD control register (ADCRC) is set when an analog input channel is selected and the AD conversion terminates in the conversion time designated by the conversion time control register. The conversion results are stored in the AD conversion result registers (ADRHC, ADRLC).

3.23.3.3 Multiplexer 1 (MPX1)

1) Multiplexer 1 is used to select the analog signal to be subject to AD conversion from 11 channels.

3.23.3.4 Automatic reference voltage generator circuit

1) The reference voltage generator circuit consists of a network of ladder resistors and a multiplexer (MPX2) and generates the reference voltage that is supplied to the comparator circuit. Generation of the reference voltage is automatically started when an AD conversion starts and stopped when the conversion ends. The reference voltage output ranges from VDD to VSS.

3.23.4 Related Registers

3.23.4.1 AD control register (ADCRC)

1) This register is an 8-bit register that controls the operation of the AD converter.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE58	0000 0000	R/W	ADCRC	AD CHSEL3	AD CHSEL2	AD CHSEL1	AD CHSEL0	ADCR3	AD START	AD ENDF	ADIE

ADCHSEL3 (bit 7):
ADCHSEL2 (bit 6):
ADCHSEL1 (bit 5):
ADCHSEL0 (bit 4):

ADCHSEL0 (bit 4):

These 4 bits are used to select the signal to be subject to AD conversion.

AD CHSEL3	AD CHSEL2	AD CHSEL1	AD CHSEL0	Signal Input Pin
0	0	0	0	P80/AN0
0	0	0	1	P81/AN1
0	0	1	0	P82/AN2
0	0	1	1	P83/AN3
0	1	0	0	P84/AN4
0	1	0	1	P85/AN5
0	1	1	0	P86/AN6
0	1	1	1	-
1	0	0	0	P70/AN8
1	0	0	1	P71/AN9
1	0	1	0	XT1/AN10
1	0	1	1	XT2/AN11
1	1	0	0	-
1	1	0	1	-

ADCR3 (bit 3): Fixed bit

This bit must always be set to 0.

ADSTART (bit 2): AD conversion operation control

This bit starts (1) or stops (0) AD conversion operation. Setting this bit to 1 starts AD conversion. The bit is automatically reset when the AD conversion ends. The amount of time specified by the conversion time control register is required to complete the conversion. The conversion time is defined using three bits, i.e., the ADTM2 (bit 0) of the AD conversion result register low byte (ADRLC) and the ADTM1 (bit 1) and ADTM0 (bit 0) of the AD mode register (ADMRC).

Setting this bit to 0 stops the AD conversion. No correct conversion results can be obtained if this bit is cleared when AD conversion is in progress.

Never clear this bit while AD conversion is in progress.

ADENDF (bit 1): AD conversion end flag

This bit identifies the end of AD conversion. It is set (1) when AD conversion is completed. Then an interrupt request to vector address 0043H is generated if ADIE is set to 1. If ADIE is set to 0, it indicates that no AD conversion is in progress.

This flag must be cleared with an instruction.

ADIE (bit 0): AD conversion interrupt request enable control

An interrupt request to vector address 0043H is generated when this bit and ADENDF are set to 1.

Notes:

- Setting ADCHSEL3 to ADCHSEL0 to any value between '1110' and '1111' is prohibited.
- Do not place the microcontroller in HOLD mode with ADSTART set to 1. Make sure that ADSTART is set to 0 before putting the microcontroller in HOLD mode.

3.23.4.2 AD mode register (ADMRC)

1) This register is an 8-bit register that controls the operating mode of the AD converter.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE59	0000 0000	R/W	ADMRC	ADMD4	ADMD3	ADMD2	ADMD1	ADMD0	ADMR2	ADTM1	ADTM0

ADMD4 (bit 7): Fixed bit

This bit must always be set to 0.

ADMD3 (bit 6): AD conversion mode control (resolution select)

This bit selects the AD converter resolution between 12-bit AD conversion mode (0) and 8-bit AD conversion mode (1).

When this bit is set to 1, the AD converter operates as an 8-bit AD converter. The conversion results are placed only in the AD conversion result register high byte (ADRHC) and the contents of the AD conversion result register low byte (ADRLC) remain unchanged.

When this bit is set to 0, the AD converter operates as a 12-bit AD converter. The conversion results are placed in the AD conversion result register high byte (ADRHC) and in the high-order 4 bits of the AD conversion result register low byte (ADRLC).

ADMD2 (bit 5): Fixed bit

This bit must always be set to 0.

ADMD1 (bit 4): Fixed bit

This bit must always be set to 0.

ADMD0 (bit 3): Fixed bit

This bit must always be set to 0.

ADMR2 (bit 2): Fixed bit

This bit must always be set to 0.

ADTM1 (bit 1): ADTM0 (bit 0): AD conversion time control

These bits and ADTM2 (bit 0) of the AD conversion result register low byte (ADRLC) define the conversion time.

ADRLC Register	ADMRC	Register	AD Frequency Division Ratio
ADTM2	ADTM1	ADTM0	
0	0	0	1/1
0	0	1	1/2
0	1	0	1/4
0	1	1	1/8
1	0	0	1/16
1	0	1	1/32
1	1	0	1/64
1	1	1	1/128

Conversion time calculation formulas

12-bit AD conversion mode: Conversion time = ((52/(AD division ratio)) + 2) × (1/3) × Tcyc
 8-bit AD conversion mode: Conversion time = ((32/(AD division ratio)) + 2) × (1/3) × Tcyc

Notes:

- The conversion time is doubled in the following cases:
 - <1>The AD conversion is carried out in the 12-bit AD conversion mode for the first time after a system reset.
 - <2>The AD conversion is carried out for the first time after the AD conversion mode is switched from 8-bit to 12-bit AD conversion mode.
- The conversion time determined by the above formula is required in the second and subsequent conversions or in AD conversions that are carried out in the 8-bit AD conversion mode.

3.23.4.3 AD conversion result register low byte (ADRLC)

- 1) This register is used to hold the low-order 4 bits of the results of an AD conversion carried out in the 12-bit AD conversion mode and to control the conversion time.
- 2) Since the data in this register is not established during an AD conversion, the conversion results must be read out only after the AD conversion is completed.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE5A	0000 0000	R/W	ADRLC	DATAL3	DATAL2	DATAL1	DATAL0	ADRL3	ADRL2	ADRL1	ADTM2

DATAL3 (bit 7):
DATAL2 (bit 6):
DATAL1 (bit 5):
DATAL0 (bit 4):

Low-order 4 bits of AD conversion results

ADRL3 (bit 3): Fixed bit

This bit must always be set to 0.

ADRL2 (bit 2): Fixed bit

This bit must always be set to 0.

ADRL1 (bit 1): Fixed bit

This bit must always be set to 0.

ADTM2 (bit 0): AD conversion time control

This bit and ADTM1 (bit 1) and ADTM0 (bit 0) of the AD mode register (ADMRC) are used to control the conversion time. See Subsection on the AD mode register for the procedure to set up the conversion time.

Note:

The conversion result data contains errors (quantization error + combination error). Be sure to use only the valid conversion results based on the specifications provided in the latest "SANYO Semiconductors Data Sheet."

3.23.4.4 AD conversion result register high byte (ADRHC)

- 1) This register is used to hold the high-order 8 bits of the results of an AD conversion that is carried out in the 12-bit AD conversion mode. The register holds the entire 8 bits of an AD conversion that is carried out in 8-bit AD conversion mode.
- 2) Since the data in this register is not established during an AD conversion, the conversion results must be read out only after the AD conversion is completed.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE5B	0000 0000	R/W	ADRHC	DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0

3.23.5 AD Conversion Example

3.23.5.1 12-bit AD conversion mode

- 1) Setting up the 12-bit AD conversion mode
 - Set ADMD3 (bit 6) of the AD mode register (ADMRC) to 0.
- 2) Setting up the conversion time
 - To set the conversion time to 1/32 frequency division ratio, set ADTM2 (bit 0) of the AD conversion result register low byte (ADRLC) to 1, ADTM1 (bit 1) of the AD mode register (ADMRC) to 0, and ADTM0 (bit 0) of the AD mode register (ADMRC) to 1.
- 3) Setting up the input channel
 - When using AD channel input AN5, set the AD control register (ADCRC): ADCHSEL3 (bit 7) to 0, ADCHSEL2 (bit 6) to 1, ADCHSEL1 (bit 5) to 0, and ADCHSEL0 (bit 4) to 1.
- 4) Starting AD conversion
 - Set ADSTART (bit 2) of the AD control register (ADCRC) to 1.
 - The conversion time is doubled when the AD conversion is carried out for the first time after a system reset or after the AD conversion mode is switched from 8-bit to 12-bit AD conversion mode. The conversion time determined by the formula is required in the second and subsequent conversions.
- 5) Checking the AD conversion end flag
 - Monitor ADENDF (bit 1) of the AD control register (ADCRC) until it is set to 1.
 - Clear the conversion end flag (ADENDF) to 0 after confirming that ADENDF (bit 1) is set to 1.
- 6) Reading the AD conversion results
 - Read the AD conversion result register high byte (ADRHC) and AD conversion result register low byte (ADRLC). Since the conversion result data contains errors (quantization error + combination error), use only the valid conversion results based on the specifications provided in the latest "SANYO Semiconductors Data Sheet."
 - Send the above read data to application software processing.
 - Return to step 4) to repeat conversion processing.

3.23.6 Hints on the Use of the ADC

- The conversion time that the user can select varies depending on the frequency of the cycle clock.
 When preparing a program, refer to the latest edition of "SANYO Semiconductors Data Sheet" to
 select an appropriate conversion time.
- 2) Setting ADSTART to 0 while conversion is in progress will stop the conversion function.
- 3) Do not place the microcontroller in HOLD mode while AD conversion processing is in progress. Make sure that ADSTART is set to 0 before putting the microcontroller into HOLD mode.
- 4) ADSTART is automatically reset and the AD converter stops operation if a reset is triggered while AD conversion processing is in progress.
- 5) When conversion is finished, the AD conversion end flag (ADENDF) is set and, at the same time, the AD conversion operation control bit (ADSTART) is reset. The end of conversion processing can be identified by monitoring ADENDF. Setting ADIE causes an interrupt request to vector address 0043H to be generated at the end of conversion.
- 6) The conversion time is doubled in the following cases:
 - The AD conversion is carried out in the 12-bit AD conversion mode for the first time after a system reset.
 - The AD conversion is carried out for the first time after the AD conversion mode is switched from 8-bit to 12-bit AD conversion mode.

The conversion time determined by "Conversion time calculation formulas" is required in the second and subsequent conversions or in AD conversions that are carried out in the 8-bit AD conversion mode.

- 7) The conversion result data contains some errors (quantization error + combination error). Be sure to use only valid conversion results based on the specifications provided in the latest "SANYO Semiconductors Data Sheet."
- 8) Make sure that only input voltages that fall within the specified range are supplied to P80/AN0 to P86/AN6, P70/AN8, P71/AN9, XT1/AN10, and XT2/AN11. Application of a voltage higher than VDD or lower than VSS to an input pin may exert an adverse influence on the conversion value of the channel in question or of other channels.
- 9) Take the following measures to prevent a reduction in conversion accuracy due to noise interferences, etc.:
 - Add external bypass capacitors (several μF + thousands of pF) near the VDD1 and VSS1 pins (as close as possible, desirably 5 mm or less).
 - Add external low-pass filters (RC) or capacitors, most suitable for noise reduction, very close to the analog input pins. To avoid any adverse coupling influence, use a ground that is free of noise interference as the ground for the capacitors (rough standard values are: R=less than $5k\,\Omega$, C=1000 pF to $0.1\mu F$).
 - Do not lay analog signal lines close to, in parallel with, or in a crossed arrangement with digital pulse signal lines or signal lines in which large current changes can occur. Shield both ends of analog signal lines with noise-free ground.
 - Make sure that no digital pulses are applied to or generated from the pins adjacent to the analog input pin that is being subject to conversion.

ADC12

- Correct conversion results may not be obtained because of noise interference if the state of port outputs is changing. To minimize the adverse influences of noise interference, it is necessary to keep line resistance across the power supply and the VDD pins of the microcontroller at a minimum. This should be kept in mind when designing an application circuit.
- Adjust the amplitudes of the voltage at the oscillator pin and the I/O voltages at the other pins so that they fall within the voltage range between VDD and VSS.
- 10) To obtain valid conversion data, perform conversion operations several times, discard the maximum and minimum values of the conversion results, and use an average of the remaining data.

4. Control Functions

4.1 Interrupt Function

4.1.1 Overview

This series of microcontrollers has the capability to control three levels of multiple interrupts, i.e., low level (L), high level (H), and highest level (X). The master interrupt enable register and interrupt priority control register are used to enable or disable interrupts and determine the priority of interrupts.

The interrupt source flag register is used to indicate the list of interrupt source flags related to the vector address that is used in an interrupt state.

4.1.2 Functions

- 1) Interrupt processing
 - Peripheral modules generate an interrupt request to the predetermined vector address when the interrupt request flag and interrupt request enable flag are set to 1.
 - When the CPU receives an interrupt request from a peripheral module, it determines the
 interrupt level, priority and interrupt enable status. If the interrupt request is legitimate for
 processing, the CPU saves the value of PC in the stack and causes a branch to the
 predetermined vector address.
 - The return from the interrupt routine is accomplished by the RETI instruction, which restores the old state of the PC and interrupt level.

2) Multilevel interrupt control

• The interrupt function supports three levels of interrupts, that is, the low level (L), high level (H), and highest level (X). The interrupt function will not accept any interrupt requests of the same level or lower level than that of the interrupt that is currently being processed.

3) Interrupt priority

• When interrupt requests to two or more vector addresses occur at the same time, the interrupt request of the highest level takes precedence over the other interrupt requests. Among the interrupt requests of the same level, the one whose vector address is the lowest has priority.

4) Interrupt request enable control

- The master interrupt enable register can be used to control the enabling/disabling of H- and L-level interrupt requests.
- Interrupt requests of the X level cannot be disabled.

5) Interrupt disable period

- Interrupts are held disabled for a period of 2Tcyc after a write is made to the IE (FE08) or IP (FE09) register, or HOLD mode is released.
- No interrupt can occur during the interval between the execution of an instruction that loads the PCON (FE07) register and the execution of the next instruction.
- No interrupt can occur during the interval between the execution of a RETI instruction and the
 execution of the next instruction.

Interrupts

6) Interrupt level control

• Interrupt levels can be selected on a vector address basis.

Table of Interrupts

No.	Vector	Level	Interrupt Source
1	00003H	X or L	INT0
2	0000BH	X or L	INT1
3	00013H	H or L	INT2/T0L/INT4/TAL/infrared remote control receiver
4	0001BH	H or L	INT3 /INT5/base timer 0/base timer 1
5	00023H	H or L	T0H/INT6/TAH
6	0002BH	H or L	T1L/T1H/INT7/SMIIC0
7	00033Н	H or L	SIO0/UART1 receive/UART2 receive
8	0003BH	H or L	SIO1/UART1 transmit/UART2 transmit
9	00043H	H or L	ADC/T6/T7
10	0004BH	H or L	Port 0/T4/T5/PWM2, 3/RMPWM

- Priority level: X > H > L
- When interrupts of the same level occur at the same time, the interrupt with the lowest vector address is given priority.

7) Interrupt source list

- The IFLGR register (FE05) is used to indicate the list of interrupt source flags related to the vector address that is used in an interrupt state.
- 8) It is necessary to manipulate the following special function registers to show a list of interrupt sources, to enable interrupts and to specify their priority.
 - · IFLGR, IE, IP

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE05	1111 1111	R	IFLGR	IFLGR7	IFLGR6	IFLGR5	IFLGR4	IFLGR3	IFLGR2	IFLGR1	IFLGR0
FE08	0000 HH00	R/W	IE	IE7	XFLG	HFLG	LFLG	-	-	XCNT1	XCNT0
FE09	0000 0000	R/W	IP	IP4B	IP43	IP3B	IP33	IP2B	IP23	IP1B	IP13

4.1.3 Circuit Configuration

4.1.3.1 Master interrupt enable control register (IE) (6-bit register)

- 1) This register enables and disables H- and L-level interrupts.
- 2) The interrupt level flag of the register can be read.
- 3) This register selects the level (L or X) of interrupts to vector addresses 00003H and 0000BH.

4.1.3.2 Interrupt priority control register (IP) (8-bit register)

1) This register selects the level (H or L) of interrupts to vector addresses 00013H to 0004BH.

4.1.3.3 Interrupt source flag register (IFLGR) (8-bit register)

1) This register is used to indicate the list of interrupt source flags related to the vector address that is used in an interrupt state.

4.1.4 Related Registers

4.1.4.1 Master interrupt enable control register (IE)

1) This register is a 6-bit register for controlling the interrupts. Bits 6 to 4 of this register are read only.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE08	0000 HH00	R/W	IE	IE7	XFLG	HFLG	LFLG	-	-	XCNT1	XCNT0

IE7 (bit 7): H-/L-level interrupts enable/disable control

A 1 in this bit enables H- and L-level interrupt requests to be accepted.

A 0 in this bit disables H- and L-level interrupt requests to be accepted.

X-level interrupt requests are always enabled regardless of the state of this bit.

XFLG (bit 6): X-level interrupt flag (read only)

This bit is set when an X-level interrupt is accepted and reset when execution returns from the processing of the X-level interrupt.

This bit is read only. No instruction can rewrite the value of this bit directly.

HFLG (bit 5): H-level interrupt flag (read only)

This bit is set when an H-level interrupt is accepted and reset when execution returns from the processing of the H-level interrupt.

This bit is read only. No instruction can rewrite the value of this bit directly.

LFLG (bit 4): L-level interrupt flag (read only)

This bit is set when an L-level interrupt is accepted and reset when execution returns from the processing of the L-level interrupt.

This bit is read only. No instruction can rewrite the value of this bit directly.

(Bits 3, 2): These bits do not exist.

They are always read as 1.

XCNT1 (bit 1): 0000BH interrupt level control flag

A 1 in this bit sets all interrupts to vector address 0000BH to the L-level.

A 0 in this bit sets all interrupts to vector address 0000BH to the X-level.

XCNT0 (bit 0): 00003H interrupt level control flag

A 1 in this bit sets all interrupts to vector address 00003H to the L-level.

A 0 in this bit sets all interrupts to vector address 00003H to the X-level.

4.1.4.2 Interrupt priority control register (IP)

1) This register is an 8-bit register that selects the interrupt level (H/L) to vector addresses 00013H to 0004BH.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE09	0000 0000	R/W	IP	IP4B	IP43	IP3B	IP33	IP2B	IIP23	IP1B	IP13

	Interrupt	IP Bit		Interrupt Level
	Vector Address		Value	
7	0004BH	IP4B	0	L
/	0004BH	IF4D	1	Н
6	00043H	IP43	0	L
U	0004311	11 43	1	Н
5	0003BH	IP3B	0	L
3	0003B11	11 3D	1	Н
4	00033Н	IP33	0	L
4	0005511	11 33	1	Н
3	0002BH	IP2B	0	L
3	0002BII	II 2D	1	Н
2	00023Н	IP23	0	L
2	00023H	117.23	1	Н
1	0001BH	IP1B	0	L
1	UUUIDII	IFID	1	Н
0	00013H	IP13	0	L
U	0001311	11.13	1	Н

4.1.4.3 Interrupt source flag register (IFLGR)

- 1) This register is an 8-bit register that is used to indicate the list of interrupt source flags related to the vector address that is used in an interrupt state. The interrupt state is a microcontroller state in which either bit 4, 5, or 6 of the IE register (FE08H) is set.
- 2) Reading this register when the microcontroller is not in the interrupt state returns all 1's.
- 3) The interrupt source flag bit assignments are listed in Table 4.1.1. Bits to which no interrupt source flag is assigned returns a 1 when read.
- 4) When the microcontroller is placed into interrupt mode, the bit that is associated with the interrupt source is set to 1 and the bits that are not associated with the interrupt source are set to 0. (See the example shown on the next page for details.)

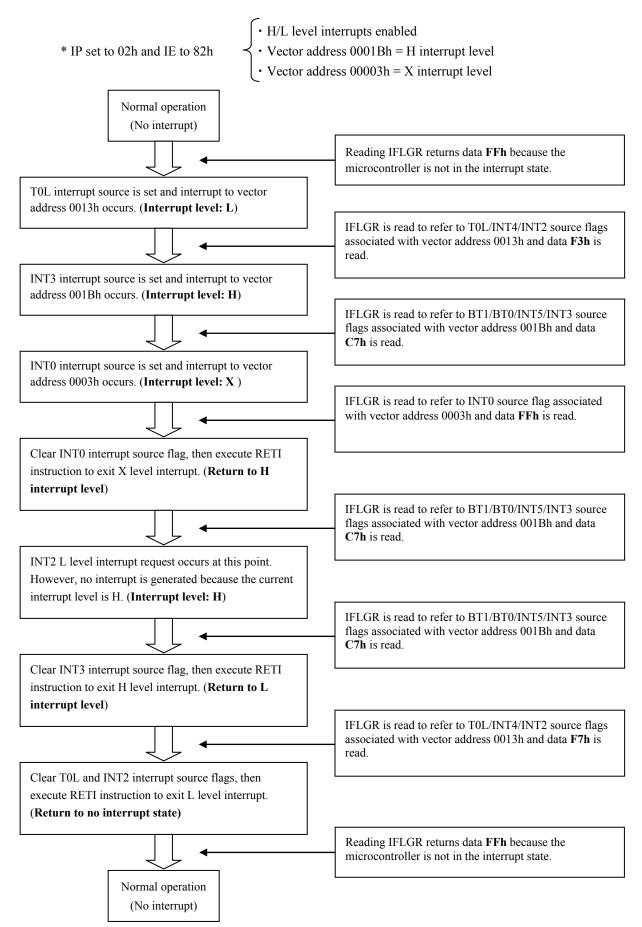

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE05	1111 1111	R	IFLGR	IFLGR7	IFLGR6	IFLGR5	IFLGR4	IFLGR3	IFLGR2	IFLGR1	IFLGR0

Table 4.1.1 Interrupt Source Flag Bit Assignments

			10.9 = 117 1001911					
Vector Address	ВІТ7	ВІТ6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
00003H	-	-	-	-	-	INT0	-	-
0000BH	-	-	-	-	-	INT1	-	1
00013H	REMOREC2	-	TAL	T0L	INT4	INT2	-	1
0001BH	-	ı	Base timer 1	Base timer 0	INT5	INT3	ı	1
00023H	-	-	TAH	-	INT6	ТОН	-	-
0002BH	-	SMIIC0	-	INT7	T1H	T1L	-	-
00033H	-	ı	-	UART2 receive	UART1 receive	SIO0	1	1
0003BH	-	-	UART2 transmit	UART1 transmit	-	SIO1	-	-
00043H	-	- 1	-	Т7	Т6	ADC	1	•
0004BH	RMPWM	-	PWM2, 3	T5	T4	Port 0	-	-

Interrupt Source Flag Register (IFLGR) Processing Example

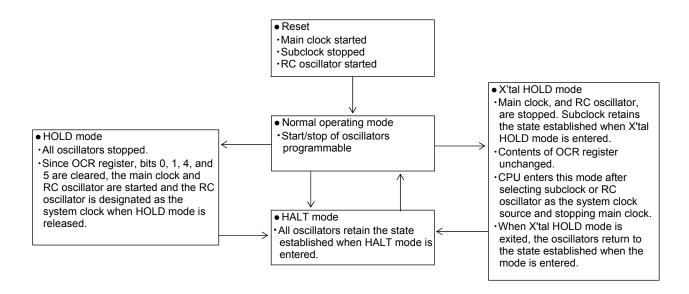
• Example when interrupts INT0, INT2, T0L, and INT3 occurred

4.2 System Clock Generator Function

4.2.1 Overview

This series of microcontrollers incorporates three systems of oscillator circuits, i.e., a main clock oscillator, a subclock oscillator, and an RC oscillator, as system clock generator circuits. The RC oscillator circuits have internal resistors and capacitors, so that no external circuit is required.

The system clock can be selected from these three types of clock sources under program control.


4.2.2 Functions

- 1) System clock select
 - Allows the system clock to be selected under program control from three types of clocks generated by the main clock oscillator, subclock oscillator, and RC oscillator.
- 2) System clock frequency division
 - Divides frequency of the oscillator clock selected as the system clock and supplies the resultant clock to the system as the system clock.
 - The frequency divider circuit has two stages:
 The first stage allows the selection of division ratios of \$\frac{1}{1}\$ and \$\frac{1}{2}\$.

 The second stage allows the selection of division ratios of \$\frac{1}{1}\$, \$\frac{1}{2}\$, \$\frac{1}{4}\$, \$\frac{1}{8}\$, \$\frac{1}{16}\$, \$\frac{1}{32}\$, \$\frac{1}{64}\$, and
- 3) Oscillator circuit control
 - Allows the start/stop control of the three systems of oscillators to be executed independently through instructions.
- 4) Multiplexed input pin function
 - The crystal oscillator pins (XT1 and XT2) can also be used as input ports.
- 5) Oscillator circuit states and operating modes

Mode/Clock	Main Clock	Subclock	RC Oscillator	System Clock
Reset	Running	Stopped	Running	RC oscillator
Normal mode	Programmable	Programmable	Programmable	Programmable
HALT	State established at entry time			
HOLD	Stopped	Stopped	Stopped	Stopped
Immediately after exit from HOLD mode	Running	State established at entry time	Running	RC oscillator
X'tal HOLD	Stopped	State established at entry time	Stopped	Stopped
Immediately after exit from X'tal HOLD mode	State established at entry time			

See Section 4.3," Standby Function," for the procedures to enter and exit microcontroller operating modes.

- 6) It is necessary to manipulate the following special function registers to control the system clock.
 - PCON, OCR, CLKDIV, XT2PC

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE07	нннн нооо	R/W	PCON	-	-	-	-	-	XTIDLE	PDN	IDLE
FE0C	нннн нооо	R/W	CLKDIV	ı	ı	ı	ı	-	CLKDV2	CLKDV1	CLKDV0
FE0E	0000 XX00	R/W	OCR	CLKSGL	EXTOSC	CLKCB5	CLKCB4	XT2IN	XT1IN	RCSTOP	CFSTOP
FE43	0000 0000	R/W	XT2PC	XT2PCB7	XT2PCB6	XT2PCB5	XT2PCB4	XT2PCB3	XT2PCB2	XT2DR	XT2DT

4.2.3 Circuit Configuration

4.2.3.1 Main clock oscillator circuit

- This circuit is prepared for oscillation by connecting a ceramic resonator and a capacitor to the CF1 and CF2 pins.
- 2) If the main clock is not to be used, connect CF1 to VDD and release the CF2 pin.

4.2.3.2 Subclock oscillator circuit

- 1) This circuit is prepared for oscillation by connecting a crystal resonator (32.768 kHz typ), a capacitor, a feedback resistor, and a damping resistor to the XT1 and XT2 pins.
- 2) The data at the XT1 and XT2 pins can be read as bits 2 and 3 of the OCR register.
- 3) The XT2 pin can be used as a general-purpose output (N-channel open drain) port.
- 4) If the XT1 and XT2 pins are not to be used, connect XT1 to VDD, release the XT2 pin, and set bit 6 of the OCR register.

4.2.3.3 Internal RC oscillator circuit

- 1) This circuit oscillates according to the internal resistor and capacitor.
- 2) The clock from the RC oscillator is designated as the system clock after the reset or HOLD mode is released.
- 3) Unlike the main clock and subclock oscillators, the RC oscillator begins oscillation at a normal frequency immediately after start-up.

4.2.3.4 Power control register (PCON) (3-bit register)

1) This register specifies the operating mode (normal/HALT/HOLD/X'tal HOLD).

4.2.3.5 Oscillation control register (OCR) (8-bit register)

- 1) This register controls the start/stop operation of the oscillator circuits.
- 2) This register selects the system clock.
- This register sets the division ratio of the oscillator clock to be used as the system clock to $\frac{1}{1}$ or $\frac{1}{2}$.
- 4) The data at the XT1 and XT2 pins can be read as bits 2 and 3 of this register.

4.2.3.6 XT2 general-purpose port output control register (XT2PC) (8-bit register)

1) This register controls the general-purpose output (N-channel open drain type) of the XT2 pin.

4.2.3.7 System clock division control register (CLKDIV) (3-bit register)

1) This register controls the operation of the system clock divider circuit. The division ratios of $\frac{1}{1}$, $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$, $\frac{1}{32}$, $\frac{1}{64}$, and $\frac{1}{128}$ are available.

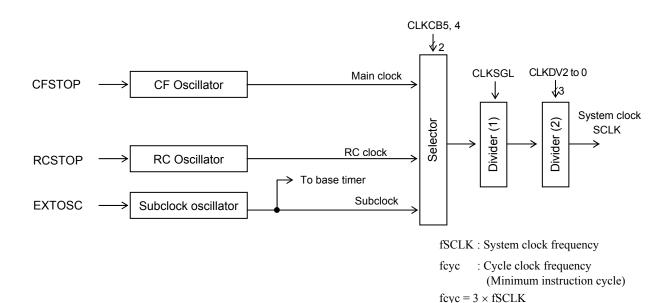


Figure 4.2.1 System Clock Generator Block Diagram

4.2.4 Related Registers

4.2.4.1 Power control register (PCON) (3-bit register)

- 1) This register is a 3-bit register used to specify the operating mode (normal/HALT/HOLD/X'tal HOLD).
 - See Section 4.3, "Standby Function," for the procedures to enter and exit the microcontroller operating modes.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE07	НННН Н000	R/W	PCON	-	-	-	-	-	XTIDLE	PDN	IDLE

(Bits 7 to 3): These bits do not exist.

They are always read as 1.

XTIDLE (bit 2): X'tal HOLD mode setting flag

PDN (bit 1): HOLD mode setting flag

XTIDLE	PDN	Operating Mode
_	0	Normal or HALT mode
0	1	HOLD mode
1	1	X'tal HOLD mode

- <1> These bits must be set with an instruction.
 - When the microcontroller enters HOLD mode, all oscillations (main clock, subclock, and RC) are suspended and bits 0, 1, 4, and 5 of the OCR are set to 0.
 - When the microcontroller exits HOLD mode, the main clock and RC oscillators start oscillation. The subclock restores the state that is established before HOLD mode is entered and the system clock is set to RC.
 - When the microcontroller enters X'tal HOLD mode, all oscillations except XT (i.e., main clock and RC) are suspended but the state of the OCR register remains unchanged.
 - When the microcontroller exits X'tal HOLD mode, the system clock to be used when X'tal HOLD mode is entered needs to be set to either subclock or RC because it is impossible to secure the oscillation stabilization time for the main clock.
 - Since X'tal HOLD mode is used usually for low-current clock counting, less current will be consumed if the system clock is switched to the subclock and the main clock and the RC oscillator are suspended before X'tal HOLD mode is entered.
- <2> XTIDLE must be cleared with an instruction.
- <3> PDN is cleared when a HOLD mode release signal (INT0, INT1, INT2, INT4, INT5, or P0INT) is generated or a reset signal occurs.
- <4> Bit 0 is automatically set when PDN is set.

IDLE (bit 0): HALT mode setting flag

- <1> Setting this bit places the microcontroller into HALT mode.
- <2> This bit is automatically set when bit 1 is set.
- <3> This bit is cleared on acceptance of an interrupt request or on receipt of a reset signal.

4.2.4.2 Oscillation control register (OCR) (8-bit register)

1) This register is an 8-bit register that controls the operation of the oscillator circuits, selects the system clock, and read data from the XT1 and XT2 pins. Except for read-only bits 3 and 2, all bits of this register can be read or written.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE0E	0000 XX00	R/W	OCR	CLKSGL	EXTOSC	CLKCB5	CLKCB4	XT2IN	XT1IN	RCSTOP	CFSTOP

CLKSGL (bit 7): Clock division ratio select

- <1> When this bit is set to 1, the clock selected by bits 4 and 5 is used as the system clock as is.
- When this bit is set to 0, the clock having a clock rate of $\frac{1}{2}$ of the clock selected by bits 4 and 5 is used as the system clock.

EXTOSC (bit 6): XT1/XT2 function control

- <1> When this bit is set to 1, the XT1 and XT 2 pins serve as the pins for subclock oscillation and prepare for oscillation when a crystal resonator (32.768 kHz typ), capacitors, feedback resistors, and damping resistors are connected. When the OCR register is read in this case, bit 3 reads the data at the XT2 pin and bit 2 reads 0.
- When this bit is set to 0, the XT1 and XT2 pins serve as input pins. When the OCR register is read in this case, bit 3 reads the data at the XT2 pin and bit 2 reads the data at the XT1 pin.

CLKCB5 (bit 5): System clock select

CLKCB4 (bit 4): System clock select

- <1> CLKCB5 and CLKCB4 are used to select the system clock.
- <2> CLKCB5 and CLKCB4 are cleared at reset time or when HOLD mode is entered.

CLKCB5	CLKCB4	System Clock			
0	0	Internal RC oscillator			
0	1	Main clock			
1	0	Subclock			
1	1	Main clock			

XT2IN (bit 3): XT2 data (read only)

XT1IN (bit 2): XT1 data (read only)

<1> Data that can be read via XT1IN varies according to the value of EXTOSC (bit 6) as shown in the table below.

EXTOSC	XT2IN	XT1IN		
0	XT2 pin data	XT1 pin data		
1	XT2 pin data	0 is read.		

RCSTOP (bit 1): Internal RC oscillator circuit control

- <1> Setting this bit to 1 stops the oscillation of the internal RC oscillator circuit.
- <2> Setting this bit to 0 starts the oscillation of the internal RC oscillator circuit.
- <3> When a reset occurs, this bit is cleared and the internal RC oscillator circuit is enabled for oscillation.
- <4> This bit is cleared when the microcontroller enters HOLD mode (internal RC oscillator is stopped). Immediately after HOLD mode is released, the internal RC oscillator circuit is activated and designated as the system clock source.
- <5> The state of this bit remains unchanged when the microcontroller enters X'tal HOLD mode (internal RC oscillator is stopped). The state of the internal RC oscillator circuit immediately after X'tal HOLD mode is released is determined by the state of this bit.
- <6> This bit is not cleared when the microcontroller enters HALT mode. The state of the internal RC oscillator circuit is determined by the state of this bit.

CFSTOP (bit 0): Main clock oscillator circuit control

- <1> Setting this bit to 1 stops the oscillation of the main clock oscillator circuit.
- <2> Setting this bit to 0 starts the oscillation of the main clock oscillator circuit.
- <3> When a reset occurs or HOLD mode is entered, this bit is cleared and the main clock oscillator circuit is enabled for oscillation.
- <4> This bit is cleared when the microcontroller enters HOLD mode (main clock oscillator is stopped). Immediately after the microcontroller exits HOLD mode, the main clock oscillator circuit is activated.
- <5> The state of this bit remains unchanged when the microcontroller enters X'tal HOLD mode (main clock oscillator is stopped). The state of the main clock oscillator circuit immediately after the X'tal HOLD mode is released is determined by the state of this bit.
- <6> This bit is not cleared when the microcontroller enters HALT mode. The state of the main clock oscillator circuit is determined by the state of this bit.

4.2.4.3 XT2 general-purpose port output control register (XT2PC) (8-bit register)

1) This register is an 8-bit register that controls the general-purpose output (N-channel open drain type) at the XT2 pin.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE43	0000 0000	R/W	XT2PC	XT2PCB7	XT2PCB6	XT2PCB5	XT2PCB4	XT2PCB3	XT2PCB2	XT2DR	XT2DT

XT2PCB7 to XT2PCB2 (bits 7 to 2): General-purpose flag

These bits can be used as general-purpose flag bits. Manipulating these bits exerts no influence on the operation of this functional block.

XT2DR (bit1): XT2 input/output control

XT2DT (bit 0): XT2 output data

Regist	er Data	Port XT2 State				
XT2DT	XT2DT XT2DR		Output			
0	0	Enabled	Open			
1	0	Enabled	Open			
0	1	Enabled	Low			
1	1	Enabled	Open			

Note: The XT2 general-purpose output port function is disabled when EXTOSC (OCR register:FE0EH, bit 6) is set to 1. To enable this port as a general-purpose output port, set EXTOSC to 0.

4.2.4.4 System clock divider control register (CLKDIV) (3-bit register)

1) This register controls the frequency division processing of the system clock.

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE0C	НННН Н000	R/W	CLKDIV	-	-	-	-	-	CLKDV2	CLKDV1	CLKDV0

(Bits 7 to 3): These bits do not exist.

They are always read as 1.

CLKDV2 (bit 2):

CLKDV1 (bit 1):

These bits define the division ratio of the system clock.

CLKDV0 (bit 0): _

CLKDV2	CLKDV1	CLKDV0	Division Ratio
0	0	0	$\frac{1}{1}$
0	0	1	$\frac{1}{2}$
0	1	0	$\frac{1}{4}$
0	1	1	$\frac{1}{8}$
1	0	0	1 16
1	0	1	1/32
1	1	0	$\frac{1}{64}$
1	1	1	1 128

4.3 Standby Function

4.3.1 Overview

This series of microcontrollers supports three standby modes, i.e., HALT, HOLD, and X'tal HOLD modes, which are used to reduce current consumption at power-failure time or in program standby mode. In a standby mode, the execution of all instructions is suspended.

4.3.2 Functions

- 1) HALT mode
 - Suspends the execution of instructions but its peripheral circuits continue processing.
 - HALT mode is entered by setting bit 0 of the PCON register.
 - Bit 0 of the PCON register is cleared and the microcontroller returns to the normal operating mode when a reset occurs or an interrupt request is accepted.

2) HOLD mode

- Suspends all oscillators. Microcontroller suspends the execution of instructions and its peripheral circuits stop processing.
- HOLD mode is entered by setting bit 1 of the PCON register to 1 when bit 2 is set to 0. In this case, bit 0 of the PCON register (HALT mode setting flag) is automatically set.
- When a reset or a HOLD mode release signal (INT0, INT1, INT2, INT4, INT5, or P0INT) occurs, bit 1 of the PCON register is cleared and the microcontroller switches to HALT mode.

3) X'tal HOLD mode

- Suspends all oscillators except the subclock. The microcontroller suspends the execution of
 instructions and all the peripheral circuits except the base timer and the infrared remote control
 receiver circuit are suspended.
- X'tal HOLD mode is entered by setting bit 1 of the PCON register to 1 when bit 2 is set to 1. In this case, bit 0 of the PCON register (HALT mode setting flag) is automatically set.
- When a reset or a HOLD mode release signal (base timer interrupt, infrared remote control receive interrupt, INT0, INT1, INT2, INT4, INT5, or P0INT) occurs, bit 1 of the PCON register is cleared and the CPU switches to HALT mode.

4.3.3 Related Registers

4.3.3.1 Power control register (PCON) (3-bit register)

1) This register is a 3-bit register that specifies the operating mode (normal/HALT/HOLD/X'tal HOLD).

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE07	НННН Н000	R/W	PCON	-	-	-	-	-	XTIDLE	PDN	IDLE

(Bits 7 to 3): These bits do not exist.

They are always read as 1.

XTIDLE (bit 2): X'tal HOLD mode setting flag

PDN (bit 1): HOLD mode setting flag

XTIDLE	PDN	Operating Mode
_	0	Normal or HALT mode
0	1	HOLD mode
1	1	X'tal HOLD mode

- <1> These bits must be set with an instruction.
 - When the microcontroller enters HOLD mode, all oscillations (main clock, subclock, and RC) are suspended and bits 0, 1, 4, and 5 of the OCR are set to 0.
 - When the microcontroller exits HOLD mode, the main clock and RC oscillators start oscillation.
 The subclock oscillator restores the state that is established before HOLD mode is entered and the system clock is set to RC.
 - When the microcontroller enters X'tal HOLD mode, all oscillations except XT (main clock and RC) are suspended but the contents of the OCR register remain unchanged.
 - When the microcontroller exists X'tal HOLD mode, the system clock to be used when X'tal HOLD mode is entered needs to be set to either subclock or RC because it is impossible to secure the oscillation stabilization time for the main clock.
 - Since X'tal HOLD mode is used usually for low-current clock counting, less current will be consumed if the system clock is switched to the subclock, and the main clock and RC oscillators are suspended before X'tal HOLD mode is entered.
- <2> XTIDLE must be cleared with an instruction.
- <3> PDN is cleared when a HOLD mode release signal (INT0, INT1, INT2, INT4, INT5, or P0INT) is generated or a reset signal occurs.

IDLE (bit 0): HALT mode setting flag

- <1> Setting this bit places the microcontroller into HALT mode.
- <2> This bit is cleared on acceptance of an interrupt request or on receipt of a reset signal.

Standby

Table 4.3.1 Standby Mode Operations

Item/Mode	Reset State	HALT Mode	HOLD Mode	X'tal HOLD Mode
Entry conditions	RES applied Reset from watchdog timer	PCON register Bit 1=0 Bit 0=1	PCON register Bit 2=0 Bit 1=1	PCON register Bit 2=1 Bit 1=1
Data changed on entry	Initialized as shown in separate table.	WDT bits 2 to 0 are cleared if WDT register (FE0F), bit 4 is set.	• WDT bits 2 to 0 are cleared if WDT register (FE0F), bit 4 is set. • PCON, bit 0 turns to 1. • OCR register (FE0E), bits 5, 4, 1, and 0 are cleared.	• WDT bits 2 to 0 are cleared if WDT register (FE0F), bit 4 is set. • PCON, bit 0 turns to 1.
Main clock oscillation	Running	State established at entry time	Stopped	Stopped
Internal RC oscillation	Running	State established at entry time	Stopped	Stopped
Subclock oscillation	Stopped	State established at entry time	Stopped	State established at entry time
CPU	Initialized	Stopped	Stopped	Stopped
I/O pin state	See Table 4.3.2.	←	←	←
RAM	• RES: Undefined • When watchdog timer reset: Data retained	Data retained	Data retained	Data retained
Base timer	Stopped	State established at entry time	Stopped	State established at entry time
Peripheral modules except base timer	Stopped	State established at entry time	Stopped	Stopped
Exit conditions	Entry conditions cancelled.	Interrupt request accepted. Reset/entry conditions established	Interrupt request from INT0 to INT2, INT4, INT5 or P0INT Reset/entry conditions established	Interrupt request from INT0 to INT2, INT4, INT5, P0INT, base timer or REMOREC2. Reset/entry conditions established
Returned mode	Normal mode	Normal mode (Note1)	HALT (Note1)	HALT (Note1)
Data changed on exit	None	PCON register, bit 0=0	PCON register, bit 1=0	PCON register, bit 1=0

Note 1: The microcontroller switches to the reset state if it exits the current mode on the establishment of reset/entry conditions.

Table 4.3.2 Pin States and Operating Modes (This series)

Pin Name	Reset Time	Normal Mode	HALT Mode	HOLD Mode	On Exit from HOLD
RES	• Input	←	←	←	←
XT1	Input X'tal oscillator will not start. Feedback resistor between XT1 and XT2 is turned off.	Controlled by register OCR (FE0EH) as X'tal oscillator input XT1 data can be read through a register OCR (FE0EH) (0 is always read in oscillation mode.) Feedback resistor between XT1 and XT2 is controlled by a program.	←	Oscillation suspended when used as X'tal oscillator input pin * Oscillation state maintained in X'tal HOLD mode Feedback resistor between XT1 and XT2 is in the state established at entry time.	HOLD mode established at entry time
XT2	Input X'tal oscillator will not start Feedback resistor between XT1 and XT2 is turned off.	Controlled by register OCR (FE0EH) as X'tal oscillator output XT2 data can be read through a register OCR (FE0EH). Input/output controlled by a program. Feedback resistor between XT1 and XT2 is controlled by a program.	~	Oscillation suspended when used as X'tal oscillator input pin. Always set to VDD level regardless of XT1 state * Oscillation state maintained in X'tal HOLD mode Feedback resistor between XT1 and XT2 is in the state established at entry time.	HOLD mode established at entry time
CF1	CF oscillator inverter input Feedback resistor present between CF1 and CF2.	CF oscillator inverter input Enabled/disabled by register OCR (FE0EH) Feedback resistor present between CF1 and CF2.	←	Oscillation suspended Feedback resistor present between CF1 and CF2.	* Entry-time state when X'tal HOLD state is released
CF2	CF oscillator inverter output Oscillation enabled	 CF oscillator inverter output Enabled/disabled by register OCR (FE0EH) Always set to VDD level regardless of CF1 state when oscillation is suspended. 	←	Oscillation suspended Always set to VDD level regardless of CF1 state	* Entry-time state when X'tal HOLD state is released

(Continued on next page)

Standby

Pin States and Operating Modes (continued)

Pin Name	Reset Time	Normal Mode	HALT Mode	HOLD Mode	On Exit from HOLD
P00 to P07	• Input mode • Pull-up resistor off	Input/output/pull-up resistor is controlled by a program	 Low-level output retained but high-level output turned off Pull-up resistor off 	←	Same as in normal mode
P10 to P17	• Input mode • Pull-up resistor off	• Input/output/pull-up resistor is controlled by a program.	←	←	←
P20 to P27	• Input mode • Pull-up resistor off	• Input/output/pull-up resistor is controlled by a program.	←	←	←
P30 to P37	• Input mode • Pull-up resistor off	• Input/output/pull-up resistor is controlled by a program.	←	←	←
P70	• Input mode • Pull-up resistor off	Input/output/pull-up resistor is controlled by a program. N-channel output transistor for watchdog timer is controlled by a program (on time is automatic).	Input/output is in the state established at entry time Pull-up resistor off N-channel output transistor for watchdog timer is off (automatic on-time extension function reset).	←	• Same as in normal mode
P71 to P73	• Input mode • Pull-up resistor off	• Input/output/pull-up resistor is controlled by a program.	←	←	←
P80 to P86	N-channel open drain N-channel transistor off.	N-channel open drain N-channel transistor is turned on/off under program control.	←	←	←
PC0 to PC4 PC6 to PC7	• Input mode • Pull-up resistor off	• Input/output/pull-up resistor is controlled by a program.	←	←	←
PC5	Output mode N-channel transistor on. Pull-up resistor off	Input/output/pull-up resistor is controlled by a program.	←	←	←
PWM2, PWM3	• Input mode	• Input/output is controlled by a program.	←	←	←

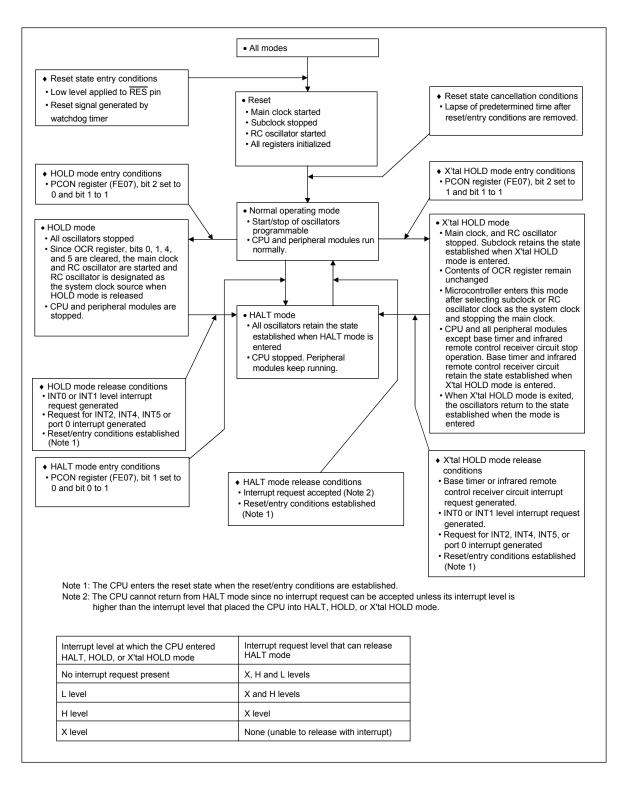


Fig. 4.3.1 Standby Mode State Transition Diagram

4.4 Reset Function

4.4.1 Overview

The reset function initializes the microcontroller when it is powered on or while it is running.

4.4.2 Functions

This series of microcontrollers has the following two types of reset functions:

• External reset via the \overline{RES} pin

The microcontroller is reset without fail by applying and holding a low level to the RES pin for 200 μ s or longer. Note, however, that a low level of a small duration (less than 200 μ s) is likely to trigger a reset.

The RES pin can serve as a power-on reset pin when it is provided with an appropriate external time constant.

• Runaway detection/reset function using a watchdog timer

The watchdog timer of this series of microcontrollers can be used to detect and reset runaway conditions by connecting a resistor and a capacitor to its external interrupt pin (P70/INT0/T0LCP) and making an appropriate time constant element.

An example of a reset circuit is shown in Figure 4.4.1.

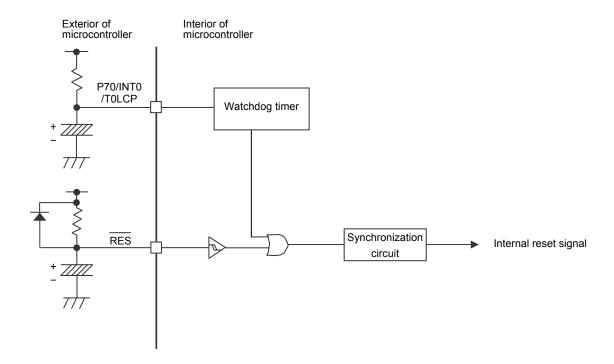


Fig. 4.4.1 Reset Circuit Block Diagram

4.4.3 Reset State

When a reset is generated by the \overline{RES} pin or watchdog timer, the hardware functional blocks of the microcontroller are initialized by a reset signal that is in synchronization with the system clock.

Since the system clock is switched to the internal RC oscillator clock when a reset occurs, hardware initialization is also carried out immediately even at power-on time. The system clock must be switched to the main clock after the main clock oscillation is stabilized. The program counter is initialized to 0000H on a reset. The special function registers (SFRs) are initialized to the values that are listed in Appendix (A-I), Special Function Register (SFR) Map.

<Notes and precautions>

- The stack pointer is initialized to 0000H.
- Data RAM is never initialized by a reset. Consequently, note that the contents of RAM are undefined when power is turned on.
- Be sure to set the \overline{RES} pin to the low level when power is turned on. Otherwise, the microcontroller will be out of control during the period from power-on until the time the \overline{RES} pin goes to the low level.

4.5 Watchdog Timer Function

4.5.1 Overview

This series of microcontrollers incorporates a watchdog timer that, with an external RC circuit, detects program runaway conditions.

The watchdog timer charges the external RC circuit that is connected to the P70/INT0/T0LCP pin and, when the level at the pin reaches the high level, triggers a reset or interrupt, regarding that a program runaway occurred.

4.5.2 Functions

1) Detection of a runaway condition

A program that discharges the RC circuit periodically needs to be prepared. If a program runaway occurs, no instruction for discharging the RC circuit can be executed, so that the voltage at the P70/INT0/T0LCP pin goes up to the high level and the watchdog timer detects a program runaway.

2) Actions to be taken following the detection of a runaway condition

The CPU takes one of the following actions when the watchdog timer detects a program runaway condition:

- Reset (program reexecution)
- External interrupt INT0 generation (program continuation)
 The priority of the external interrupt INT0 can be changed using the master interrupt enable control register (IE).

4.5.3 Circuit Configuration

The watchdog timer consists of a high-threshold buffer, a pulse stretcher circuit, and a watchdog timer control register. Its configuration diagram is shown in Figure 4.5.1.

· High-threshold buffer

This buffer detects the charging voltage of the external capacitor.

· Pulse stretcher circuit

This circuit discharges the external capacitor for longer than the specified time to ensure reliable discharging. The stretching time is from 1920 to 2048 Tcyc.

• Watchdog timer control register (WDT)

This register controls the operation of the watchdog timer.

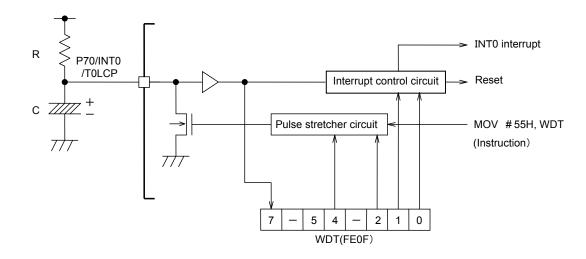


Figure 4.5.1 Watchdog Timer Circuit

4.5.4 Related Registers

4.5.4.1 Watchdog timer control register (WDT)

Address	Initial Value	R/W	Name	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE0F	0H00 H000	R/W	WDT	WDTFLG	-	WDTB5	WDTHLT	-	WDTCLR	WDTRST	WDTRUN

Bit Name	Function
WDTFLG (bit 7)	Runaway detection flag
	0: No runaway 1: Runaway
WDTB5 (bit 5)	General-purpose flag
	Can be used as a general-purpose flag.
WDTHLT (bit 4)	HALT/HOLD mode function control
	0: Enables the watchdog timer.1: Disables the watchdog timer.
WDTCLR (bit 2)	Watchdog timer clear control
	0: Disables the watchdog timer for clearing.1: Enables the watchdog timer for clearing.
WDTRST (bit 1)	Runaway-time reset control
	0: Suppresses resetting on a runaway condition.1: Triggers a reset on a runaway condition.
WDTRUN (bit 0)	Watchdog timer operation control
	0: Maintains watchdog timer operating state.1: Starts watchdog timer operation.

WDTFLG (bit 7): Runaway detection flag

This bit is set when a program runaway condition is detected by the watchdog timer. The application can identify the occurrence of a program runaway condition by monitoring this bit (provided that WDTRST is set to 1).

This bit is not reset automatically. It must be reset with an instruction.

Watchdog Timer

WDTB5 (bit 5): General-purpose flag

This bit can be used as a general-purpose flag.

Manipulating this bit exerts no influence on the operation of the functional block.

WDTHLT (bit 4): HALT/HOLD mode function control

This bit enables (0) or disables (1) the watchdog timer when the microcontroller is in HALT or HOLD state. When this bit is set to 1 in HALT or HOLD state, WDTCLR, WDTRST and WDTRUN are reset and the watchdog timer is stopped. When this bit is set to 0, WDTCLR, WDTRST and WDTRUN remain unchanged and the watchdog timer continues operation even when the microcontroller enters HALT or HOLD state.

To use the watchdog timer function after the microcontroller returns to the normal operating mode from HALT/HOLD mode with this bit set to 1, initialize and set up the watchdog timer for operation again.

WDTCLR (bit 2): Watchdog timer clear control

This bit enables (1) or disables (0) the external capacitor to be discharged while the watchdog timer is running (WDTRUN=1). If the instruction for clearing the watchdog timer is executed when this bit is set to 1, the N-channel transistor of the P70/INT0/T0LCP pin turns on, the external capacitor is discharged, and the watchdog timer is cleared. The pulse stretcher also functions during this process. Setting this bit to 0 disables turning on the N-channel transistors and clearing the watchdog timer.

Also, if this bit is set to 1 when the watchdog timer is stopped (WDTRUN=0), the N-channel transistor of the P70/INT0/T0LCP pin turns on, the external capacitor is discharged, and watchdog timer is cleared.

WDTRST (bit 1): Runaway-time reset control

This bit enables (1) or disables (0) the reset sequence that is to be executed when the watchdog timer detects a program runaway. When this bit set to 1, a reset is generated and execution restarts at program address 0000H when a program runaway is detected. When the bit is set to 0, no reset occurs when a program runaway is detected. Instead, an external interrupt INT0 is generated and a call is made to vector address 0003H.

WDTRUN (bit 0): Watchdog timer operation control

This bit starts (1) or maintains (0) the state of the watchdog timer. A 1 in this bit starts the watchdog timer function and a 0 exerts no influence on the operation of the watchdog timer. This means that once the watchdog timer is started, a program will not be able to stop the watchdog timer (stopped by a reset).

Caution

A reset will be triggered when the P70/INT0/T0LCP pin goes up to the high level with WDTRST set to 1, even when the watchdog timer is not running. The N-channel transistor of the P70/INT0/T0LCP pin turns on if the watchdog timer clear control bit (WDTCLR) is set to 1 when the watchdog timer is stopped (WDTRUN=0). Keep this in mind when programming if the watchdog timer function is not to be used. More current than usual may be consumed depending on the program or application circuit.

4.5.4.2 Master interrupt enable control register (IE)

See Subsubsection 4.1.4.1, "Master interrupt enable control register," for details.

4.5.4.3 Port 7 control register (P7)

See Subsubsection 3.5.3.1, "Port 7 control register," for details.

4.5.5 Using the Watchdog Timer

Code a program so that instructions for clearing the watchdog timer periodically are executed. Select the resistance R and the capacitance C such that the time constant of the external RC circuit is greater than the time interval required to clear the watchdog timer.

1) Initializing the watchdog timer

 $\overline{\text{All b}}$ its of the watchdog timer control register (WDT) are reset when an external reset occurs via the $\overline{\text{RES}}$ pin. If the P70/INT0/T0LCP pin has been charged up to the high level, discharge it down to the low level before starting the watchdog timer. The internal N-channel transistor is used for discharging. Since it has an on-resistance, a discharging time equal to the time constant of the external capacitance is required.

Set bits 0 and 4 of the port 7 control register P7 (FE5C) to 0, 0 or 1, 1 to make the P70 pin port output open.

· Starting discharge

Load WDT with "04H" to turn on the N-channel transistor of the P70/INT0/T0LCP pin and start discharging the capacitor.

· Checking the low level

Check for data at the P70/INT0/T0LCP pin.

Read the data at the P70/INT0/T0LCP pin with an LD or similar instruction. A 0 indicates that the P70/INT0/T0LCP pin is at the low level.

- 2) Starting the watchdog timer
 - <1> Set bit 2(WDTCLR) and bit 0 (WDTRUN) to 1.
 - <2> Also set bit 1 (WDTRST) to 1 at the same time when a reset is to be triggered when a runaway condition is detected.
 - <3> To suspend the operation of the watchdog timer in HOLD or HALT mode, set bit 4 (WDTHLT) at the same time.

The watchdog timer starts functioning when bit 0 (WDTRUN) is set to 1. Once the watchdog timer starts operation, the watchdog timer control register (WDT) is disabled for write; it is only possible to clear the watchdog timer and read the watchdog timer control register (WDT). Consequently, the watchdog timer can never be stopped with an instruction. The function of the watchdog timer is stopped only when a reset occurs or when the microcontroller enters HALT or HOLD mode with WDTHLT being set. In this case, WDTCLR, WDTRST and WDTRUN are reset.

Watchdog Timer

3) Clearing the watchdog timer

The external RC circuit that is connected to the P70/INT0/T0LCP pin starts charging immediately when power is turned on. When voltage at this pin reaches the high level, a reset or interrupt is generated as specified in the watchdog timer control register (WDT). To run the program in the normal mode, it is necessary to periodically discharge the RC circuit before the voltage at the P70/INT0/T0LCP pin reaches the high level (clearing the watchdog timer). Execute the following instruction to clear the watchdog timer while it is running:

MOV #55H,WDT

This instruction turns on the N-channel transistor of the P70/INT0/T0LCP pin. Owing to the pulse stretcher function (keeps the transistor on after the MOV instruction is executed), the capacitor keeps discharging for a period from a minimum of 1920 cycle times to a maximum of 2048 cycle times.

4) Detecting a runaway condition

Unless the above mentioned instruction is executed periodically, the RC circuit keeps charging because the watchdog timer is not cleared. As charging proceeds and the voltage at the P70/INT0/T0LCP pin reaches the high level, the watchdog timer considers that a program runaway has occurred and triggers a reset or interrupt. At this time, the runaway detection flag WDTFLG is set. (only when WDTRST=1).

If WDTRST is found to be 1 in this case, a reset occurs and execution restarts at address 0000H. If WDTRST is 0, an external interrupt (INT0) is generated and control is transferred to vector address 0003H.

• Hints on Use

- 1) To realize ultra-low-power operation using HOLD mode, it is necessary not to use the watchdog timer at all or to disable the watchdog timer from running in HOLD mode by setting WDTHLT to 1. Be sure to set WDTCLR to 0 when the watchdog timer is not to be used.
- 2) The P70/INT0/T0LCP pin has two input levels. The threshold level of the input pins of the watchdog timer circuit is higher than that of the port inputs and the interrupt detection level.

Refer to the latest "SANYO Semiconductors Data Sheet" for the input levels.

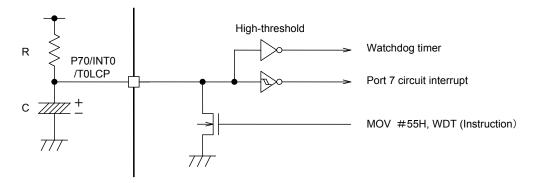


Figure 4.5.2 P70/INT0/T0LCP Pin (Option: Without a Pull-up Resistor)

3) The external resistor to be connected to the watchdog timer can be omitted by setting bits 4 and 0 of the port 7 control register P7 (FE5C) to 0, 1 and connecting a <u>pull-up resistor</u> to the P70/INT0/T0LCP pin (see Figure 4.5.3).

The resistance of the pull-up resistor to be adopted in this case varies according to the power source voltage VDD. Check the pull-up resistance value by referring to the latest "SANYO Semiconductors Data Sheet" and calculate the time constant of the watchdog timer.

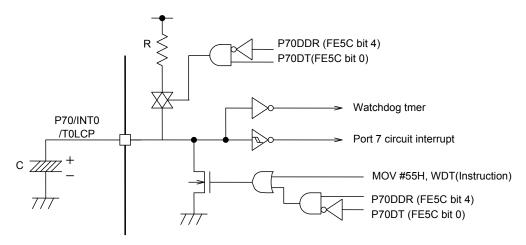


Figure 4.5.3 Sample Application Circuit with a Pull-up Resistor

4) WDTCLR, WDTRST, and WDTRUN are reset when the microcontroller enters HALT/HOLD mode with WDTHLT set to 1. To use the watchdog timer function when the microcontroller returns to the normal operating mode from HALT/HOLD mode, initialize and set up the watchdog timer for operation again.

Watchdog Timer

Appendixes

Table of Contents

Appendix-I

• Special Functions Register (SFR) Map

Appendix-II

- Port 0 Block Diagram
- Port 1 Block Diagram
- Port 2 Block Diagram
- Port 3 Block Diagram
- Port 7 Block Diagram
- Port 8 Block Diagram
- Port C Block Diagram
- PWM2, 3(Pin) Block Diagram

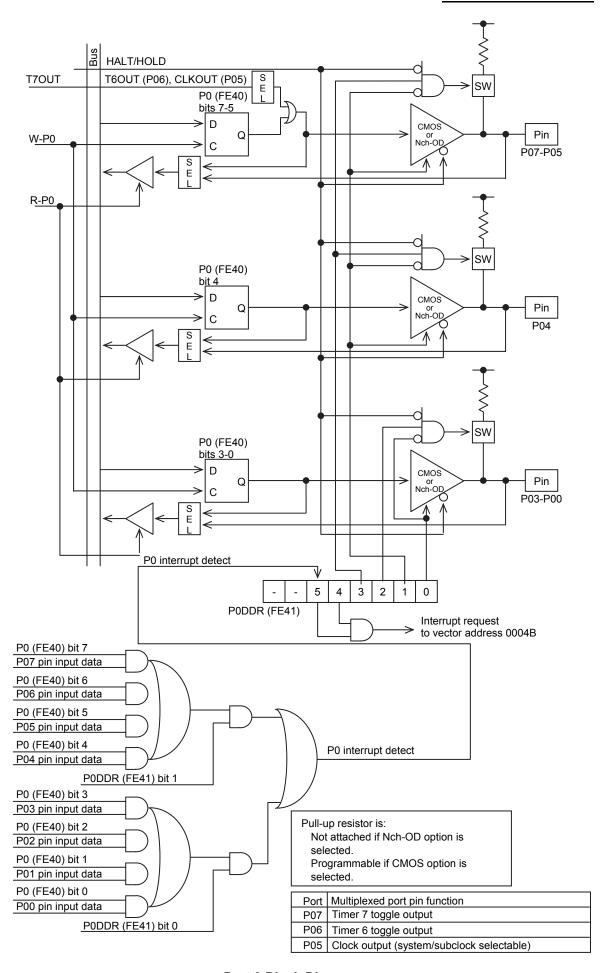
Address	Initial Value	R/W	LC87C000	Remarks	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO
0-FFF	XXXX XXXX	R/W	RAM4KB	9-bit long									
FE00	0000 0000	R/W	AREG		-	AREG7	AREG6	AREG5	AREG4	AREG3	AREG2	AREG1	AREG0
FE01	0000 0000	R/W	BREG		-	BREG7	BREG6	BREG5	BREG4	BREG3	BREG2	BREG1	BREG0
FE02	0000 0000	R/W	CREG		-	CREG7	CREG6	CREG5	CREG4	CREG3	CREG2	CREG1	CREG0
FE03													
FE04													
FE05	1111 1111	R	IFLGR		-	IFLGR7	IFLGR6	IFLGR5	IFLGR4	IFLGR3	IFLGR2	IFLGR1	IFLGR0
FE06	0000 0000	R/W	PSW		-	CY	AC	PSWB5	PSWB4	LDCBNK	OV	R8	PARITY
FE07	нннн нооо	R/W	PCON		-	-	-	-	-	-	XTIDLE	PDN	IDLE
FE08	0000 HH00	R/W	ΙE		-	IE7	XFLG	HFLG	LFLG	-	-	XCNT1	XCNTO
FE09	0000 0000	R/W	IP		-	IP4B	IP43	IP3B	IP33	IP2B	IP23	IP1B	IP13
FE0A	0000 0000	R/W	SPL		-	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0
FE0B	0000 0000	R/W	SPH		-	SP15	SP14	SP13	SP12	SP11	SP10	SP9	SP
FE0C	нннн нооо	R/W	CLKDV		-	_	-	-	-	-	CLKDV2	CLKDV1	CLKDV0
FEOD													
FE0E	0000 XX00	R/W	OCR		-	CLKSGL	EXTOSC	CLKCB5	CLKCB4	XT2IN	XT1 I N	RCSTOP	CFST0P
FE0F	0H00 H000	R/W	WDT		-	WDTFLG	-	WDTB5	WDTHLT	-	WDTCLR	WDTRST	WDTRUN
FE10	0000 0000	R/W	TOCNT		-	TOHRUN	TOLRUN	TOLONG	TOLEXT	TOHCMP	TOHIE	TOLCMP	TOLIE
FE11	0000 0000	R/W	TOPRR		-	TOPRR7	TOPRR6	TOPRR5	TOPRR4	TOPRR3	TOPRR2	T0PRR1	T0PRR0
FE12	0000 0000	R	T0L		-	T0L7	T0L6	T0L5	T0L4	T0L3	T0L2	T0L1	T0L0
FE13	0000 0000	R	TOH		-	T0H7	TOH6	TOH5	T0H4	TOH3	T0H2	T0H1	ТОНО
FE14	0000 0000	R/W	TOLR		_	TOLR7	TOLR6	T0LR5	T0LR4	T0LR3	T0LR2	T0LR1	T0LR0
FE15	0000 0000	R/W	TOHR		-	TOHR7	TOHR6	TOHR5	T0HR4	TOHR3	TOHR2	TOHR1	T0HR0
FE16	XXXX XXXX	R	TOCAL		-	TOCAL7	TOCAL6	TOCAL5	TOCAL4	TOCAL3	TOCAL2	TOCAL1	TOCAL0
FE17	XXXX XXXX	R	TOCAH		_	TOCAH7	TOCAH6	TOCAH5	TOCAH4	TOCAH3	TOCAH2	TOCAH1	TOCAHO
FE18	0000 0000	R/W	T1CNT		-	T1HRUN	T1LRUN	T1L0NG	T1PWM	T1HCMP	T1HIE	T1LCMP	T1LIE
FE19	0000 0000	R/W	T1PRR		-	T1HPRE	T1HPRC2	T1HPRC1	T1HPRC0	T1LPRE	T1LPRC2	T1LPRC1	T1LPRC0
FE1A	0000 0000	R	T1L		-	T1L7	T1L6	T1L5	T1L4	T1L3	T1L2	T1L1	T1L0
FE1B	0000 0000	R	T1H		-	T1H7	T1H6	T1H5	T1H4	T1H3	T1H2	T1H1	T1H0
FE1C	0000 0000	R/W	T1LR		-	T1LR7	T1LR6	T1LR5	T1LR4	T1LR3	T1LR2	T1LR1	T1LR0
FE1D	0000 0000	R/W	T1HR		-	T1HR7	T1HR6	T1HR5	T1HR4	T1HR3	T1HR2	T1HR1	T1HR0

Address	Initial Value	R/W	LC87C000	Remarks	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO
FE1E	XXXX XXXX	R	T0CA1L		-	TOCA1L7	TOCA1L6	TOCA1L5	TOCA1L4	TOCA1L3	TOCA1L2	TOCA1L1	T0CA1L0
FE1F	XXXX XXXX	R	TOCA1H		-	TOCA1H7	TOCA1H6	TOCA1H5	TOCA1H4	TOCA1H3	TOCA1H2	TOCA1H1	TOCA1H0
FE20													
FE21													
FE22													
FE23													
FE24													
FE25													
FE26													
FE27													
FE28													
FE29													
FE2A													
FE2B													
FE2C													
FE2D													
FE2E													
FE2F													
FE30	0000 0000	R/W	SCONO		-	SIOBNK	SIOWRT	SIORUN	SIOCTR	SIODIR	SIOOVR	SIOEND	SIOIE
FE31	0000 0000	R/W	SBUF0		_	SBUF07	SBUF06	SBUF05	SBUF04	SBUF03	SBUF02	SBUF01	SBUF00
FE32	0000 0000	R/W	SBR0		_	SBRG07	SBRG06	SBRG05	SBRG04	SBRG03	SBRG02	SBRG01	SBRG00
FE33	0000 0000	R/W	SCTR0		_	SCTR07	SCTR06	SCTR05	SCTR04	SCTR03	SCTR02	SCTR01	SCTR00
FE34	0000 0000	R/W	SCON1		_	SI1M1	SI1MO	SI1RUN	SI1REC	SI1DIR	SI10VR	SI1END	SIIIE
FE35	00000 00000	R/W	SBUF1	9-bit long	SBUF18	SBUF17	SBUF16	SBUF15	SBUF14	SBUF13	SBUF12	SBUF11	SBUF10
FE36	0000 0000	R/W	SBR1		_	SBRG17	SBRG16	SBRG15	SBRG14	SBRG13	SBRG12	SBRG11	SBRG10
FE37	0000 0000	R/W	SWCONO		-	SOWSTP	SWCONB6	SWCONB5	S0XBYT4	S0XBYT3	S0XBYT2	S0XBYT1	S0XBYT0
FE38													
FE39													
FE3A													
FE3B													
FE3C	0000 0000	R/W	T45CNT		-	T5C1	T5C0	T4C1	T4C0	T50V	T51E	T40V	T4IE
FE3D													

Address	Initial Value	R/W	LC87C000	Remarks	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO
FE3E	0000 0000	R/W	T4R		-	T4R7	T4R6	T4R5	T4R4	T4R3	T4R2	T4R1	T4R0
FE3F	0000 0000	R/W	T5R		-	T5R7	T5R6	T5R5	T5R4	T5R3	T5R2	T5R1	T5R0
FE40	0000 0000	R/W	P0		-	P07	P06	P05	P04	P03	P02	P01	P00
FE41	HH00 0000	R/W	PODDR		-	-	-	POFLG	POIE	POHPU	POLPU	POHDDR	POLDDR
FE42	00HH 0000	R/W	POFCR		-	T70E	T60E	-	_	CLKOEN	CKODV2	CKODV1	CKODVO
FE43	0000 0000	R/W	XT2PC		-	XT2PCB7	XT2PCB6	XT2PCB5	XT2PCB4	XT2PCB3	XT2PCB2	XT2DR	XT2DT
FE44	0000 0000	R/W	P1		-	P17	P16	P15	P14	P13	P12	P11	P10
FE45	0000 0000	R/W	P1DDR		ı	P17DDR	P16DDR	P15DDR	P14DDR	P13DDR	P12DDR	P11DDR	P10DDR
FE46	0000 0000	R/W	P1FCR		ı	P17FCR	P16FCR	P15FCR	P14FCR	P13FCR	P12FCR	P11FCR	P10FCR
FE47	оннн ноно	R/W	P1TST		ı	FIXO	_	_	_	ı	DSNKOT	_	FIXO
FE48	0000 0000	R/W	P2		1	P27	P26	P25	P24	P23	P22	P21	P20
FE49	0000 0000	R/W	P2DDR		-	P27DDR	P26DDR	P25DDR	P24DDR	P23DDR	P22DDR	P21DDR	P20DDR
FE4A	0000 0000	R/W	I 45CR		-	INT5HEG	INT5LEG	INT51F	INT51E	INT4HEG	INT4LEG	INT4IF	INT4IE
FE4B	0000 0000	R/W	I 45SL		ı	I5SL3	I5SL2	I5SL1	I5SL0	I4SL3	I4SL2	I4SL1	I4SL0
FE4C	0000 0000	R/W	P3		ı	P37	P36	P35	P34	P33	P32	P31	P30
FE4D	0000 0000	R/W	P3DDR		ı	P37DDR	P36DDR	P35DDR	P34DDR	P33DDR	P32DDR	P31DDR	P30DDR
FE4E	0000 0000	R/W	I 67CR		-	INT7HEG	INT7LEG	INT71F	INT7IE	INT6HEG	INT6LEG	INT61F	INT6IE
FE4F													
FE50	0000 НННН	R/W	PWM2L		ı	PWM2L3	PWM2L2	PWM2L1	PWM2L0	ı	-	-	-
FE51	0000 0000	R/W	PWM2H		ı	PWM2H7	PWM2H6	PWM2H5	PWM2H4	PWM2H3	PWM2H2	PWM2H1	PWM2H0
FE52	0000 НННН	R/W	PWM3L		ı	PWM3L3	PWM3L2	PWM3L1	PWM3L0	ı	_	_	_
FE53	0000 0000	R/W	PWM3H		1	PWM3H7	PWM3H6	PWM3H5	PWM3H4	PWM3H3	PWM3H2	PWM3H1	PWM3H0
FE54	0000 0000	R/W	PWM2C		1	PWM2C7	PWM2C6	PWM2C5	PWM2C4	ENPWM3	ENPWM2	PWM20V	PWM2IE
FE55	нннн ннхх	R	PWM23P		1	1	_	_	-	İ	_	PWM3IN	PWM2IN
FE56													
FE57													
FE58	0000 0000	R/W	ADCRC		-	ADCHSEL3	ADCHSEL2	ADCHSEL1	ADCHSELO	ADCR3	ADSTART	ADENDF	ADIE
FE59	0000 0000	R/W	ADMRC		1	ADMD4	ADMD3	ADMD2	ADMD1	ADMDO	ADMR2	ADTM1	ADTMO
FE5A	0000 0000	R/W	ADRLC		1	DATAL3	DATAL2	DATAL1	DATALO	ADRL3	ADRL2	ADRL1	ADTM2
FE5B	0000 0000	R/W	ADRHC		-	DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATAO
FE5C	0000 0000	R/W	P7		-	P73DDR	P72DDR	P71DDR	P70DDR	P73DT	P72DT	P71DT	P70DT
FE5D	0000 0000	R/W	I01CR		1	INT1LH	INT1LV	INT1IF	INT1IE	INTOLH	INTOLV	INTOIF	INTOIE

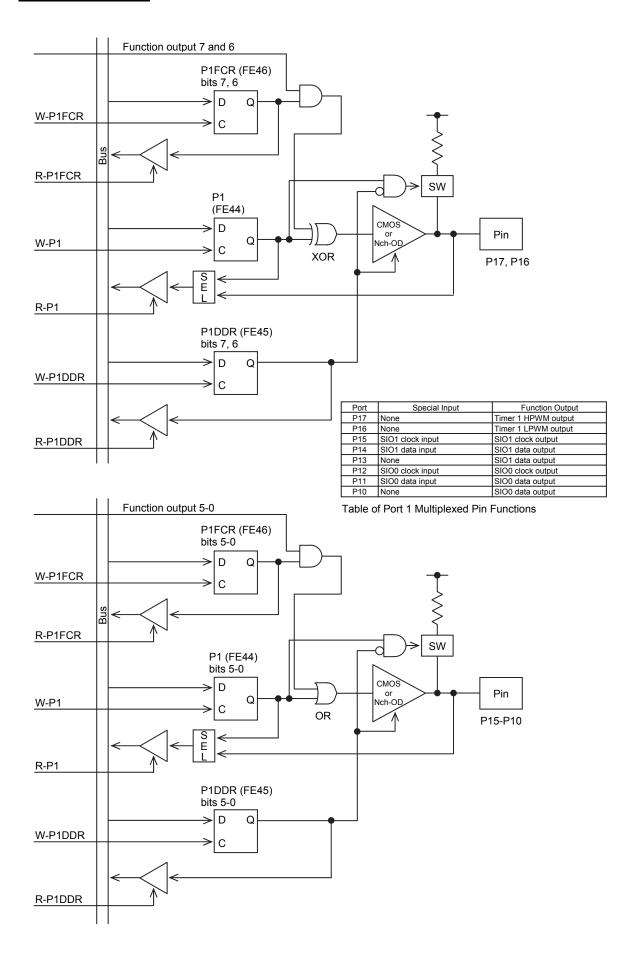
Address	Initial Value	R/W	LC87C000	Remarks	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE5E	0000 0000	R/W	I 23CR		-	INT3HEG	INT3LEG	INT3IF	INT3IE	INT2HEG	INT2LEG	INT2IF	INT2IE
FE5F	0000 0000	R/W	ISL		-	STOHCP	STOLCP	BTIMC1	BTIMCO	BUZON	NFSEL	NFON	STOIN
FE60													
FE61													
FE62													
FE63	H111 1111	R/W	P8		-	-	P86	P85	P84	P83	P82	P81	P80
FE64													
FE65													
FE66													
FE67													
FE68													
FE69													
FE6A													
FE6B													
FE6C													
FE6D													
FE6E													
FE6F													
FE70	0000 0000	R/W	PC		-	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
FE71	0000 0000	R/W	PCDDR		-	PC7DDR	PC6DDR	PC5DDR	PC4DDR	PC3DDR	PC2DDR	PC1DDR	PCODDR
FE72													
FE73													
FE74													
FE75													
FE76													
FE77													
FE78	0000 0000	R/W	T67CNT		-	T7C1	T7C0	T6C1	T6C0	T70V	T7IE	T60V	T6IE
FE79													
FE7A	0000 0000	R/W	T6R		-	T6R7	T6R6	T6R5	T6R4	T6R3	T6R2	T6R1	T6R0
FE7B	0000 0000	R/W	T7R		-	T7R7	T7R6	T7R5	T7R4	T7R3	T7R2	T7R1	T7R0
FE7C		·											

Address	Initial Value	R/W	LC87C000	Remarks	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE7D	0000 0000	R/W	NKREG		-	NKEN	NKCMP2	NKCMP1	NKCMP0	NKCOV	NKCAP2	NKCAP1	NKCAP0
FE7E	0000 0000	R/W	FSR0		-	FSR0B7	FSR0B6	FSAERR	FSWOK	INTHIGH	FSLDAT	FSPGL	FSWREQ
FE7F	0000 0000	R/W	BTCR		-	BTFST	BTON	BTC11	BTC10	BTIF1	BT IE1	BTIF0	BT1E0
FE80													
FE81													
FE82													
FE83													
FE84													
FE85													
FE86													
FE87													
FE88													
FE89													
FE8A													
FE8B													
FE8C													
FE8D													
FE8E													
FE8F													
FE90													
FE91													
FE92													
FE93													
FE94													
FE95													
FE96													
FE97													
FE98													
FE99													
FE9A													
FE9B													

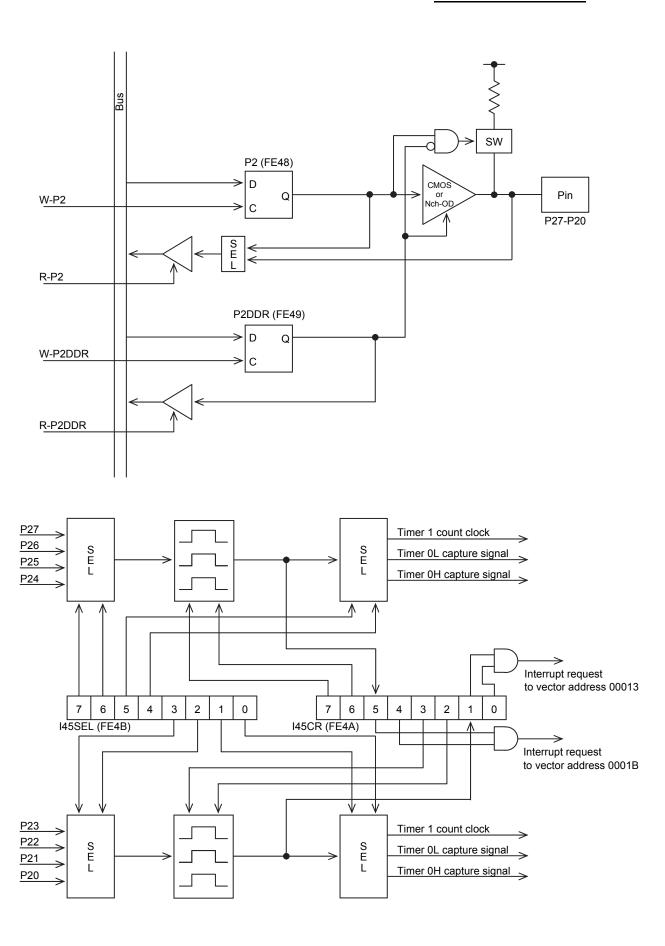

Address	Initial Value	R/W	LC87C000	Remarks	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FE9C													
FE9D													
FE9E													
FE9F													
FEA0	0000 0000	R/W	SMICOCNT		-	RUN	MST	TRX	SCL8	MKC	BB	END	ΙE
FEA1	0000 0000	R/W	SMICOSTA		-	SMD	RQL9	STD	SPD	AL	OVR	TAK	RAK
FEA2	0000 0000	R/W	SMICOBRG		-	BRP1	BRP0	BRDQ	BRD4	BRD3	BRD2	BRD1	BRD0
FEA3	0000 0000	R/W	SMICOBUF		-	BUF7	BUF6	BUF5	BUF4	BUF3	BUF2	BUF1	BUF0
FEA4	НННН 0000	R/W	SMICOPCT		-	_	_	_	_	SHDS	P5V	PCLV	PSLW
FEA5	0000 0000	R/W	SMICOPSL		-	PSLB7	OPSD0	OPSDA	OPSCL	PSLB3	SD00SL	SDAOSL	SCLOSL
FEA6													
FEA7													
FEA8	0000 НННН	R/W	RMPWMOL		-	RMPWMOL3	RMPWM0L2	RMPWMOL1	RMPWMOLO	-	-	-	_
FEA9	0000 0000	R/W	RMPWMOH		-	RMPWMOH7	RMPWMOH6	RMPWM0H5	RMPWMOH4	RMPWM0H3	RMPWM0H2	RMPWM0H1	RMPWM0H0
FEAA	0000 НННН	R/W	RMPWM1L		-	RMPWM1L3	RMPWM1L2	RMPWM1L1	RMPWM1L0	-	_	_	_
FEAB	0000 0000	R/W	RMPWM1H		-	RMPWM1H7	RMPWM1H6	RMPWM1H5	RMPWM1H4	RMPWM1H3	RMPWM1H2	RMPWM1H1	RMPWM1H0
FEAC	0000 0000	R/W	RMPWMOC		-	RMPWM0C7	RMPWM0C6	RMPWM0C5	RMPWM0C4	ENRMPWM1	ENRMPWMO	RMPWMOOV	RMPWMOIE
FEAD	0000 0000	R/W	RMPWMCR		-	RMPWMOEN	RMPWMODE	RMPWRQ	RMPWIE	RMPWCKDIV	RMPWREV	ENRMPW10	ENRMPW00
FEAE													
FEAF													
FEB0													
FEB1													
FEB2													
FEB3													
FEB4													
FEB5													
FEB6													
FEB7													
FEB8													
FEB9													
FEBA													
FEBB													

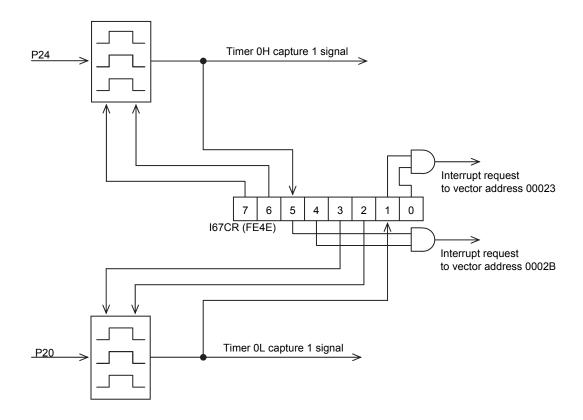
Address	Initial Value	R/W	LC87C000	Remarks	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FEBC													
FEBD													
FEBE													
FEBF													
FEC0													
FEC1													
FEC2													
FEC3													
FEC4													
FEC5													
FEC6													
FEC7	0000 0000	R/W	RM2CNT		-	RM2RUN	RM2FMT2	RM2FMT1	RM2FMT0	RM2DINV	RM2CK2	RM2CK1	RM2CK0
FEC8	0000 0000	R/W	RM2INT		-	RM2GPOK	RM2GPIE	RM2DERR	RM2ERIE	RM2SFUL	RM2SFIF	RM2END	RM2ENIE
FEC9	0000 0000	R	RM2SFT		-	RM2SFT7	RM2SFT6	RM2SFT5	RM2SFT4	RM2SFT3	RM2SFT2	RM2SFT1	RM2SFT0
FECA	XXXX XXXX	R	RM2RDT		-	RM2RDT7	RM2RDT6	RM2RDT5	RM2RDT4	RM2RDT3	RM2RDT2	RM2RDT1	RM2RDT0
FECB	0000 0000	R/W	RM2CTPR		-	RM2GPR1	RM2GPR0	RM2DPR1	RM2DPR0	RM2H0LD	RM2BCT2	RM2BCT1	RM2BCT0
FECC	0000 0000	R/W	RM2GPW		-	RM2GPH3	RM2GPH2	RM2GPH1	RM2GPH0	RM2GPL3	RM2GPL2	RM2GPL1	RM2GPL0
FECD	0000 0000	R/W	RM2DTOW		-	RM2D0H3	RM2D0H2	RM2D0H1	RM2D0H0	RM2D0L3	RM2D0L2	RM2D0L1	RM2D0L0
FECE	0000 0000	R/W	RM21DT1W		-	RM2D1H3	RM2D1H2	RM2D1H1	RM2D1H0	RM2D1L3	RM2D1L2	RM2D1L1	RM2D1L0
FECF	0H00 0000	R/W	RM2XHW		-	RM2RDIR	-	RM2D1H4	RM2D1L4	RM2D0H4	RM2D0L4	RM2GPH4	RM2GPL4
FED0	0000 0000	R/W	UCONO		-	UBRSEL	STRDET	RECRUN	STPERR	U0B3	RBIT8	RECEND	RECIE
FED1	0000 0000	R/W	UCON1		_	TRUN	8/9BIT	TDDR	TCMOS	8/7BIT	TBIT8	TEPTY	TRNSIE
FED2	0000 0000	R/W	UBR		-	UBRG7	UBRG6	UBRG5	UBRG4	UBRG3	UBRG2	UBRG1	UBRG0
FED3	0000 0000	R/W	TBUF		-	TBUF7	TBUF6	TBUF5	TBUF4	TBUF3	TBUF2	TBUF1	TBUF0
FED4	0000 0000	R/W	RBUF		-	RBUF7	RBUF6	RBUF5	RBUF4	RBUF3	RBUF2	RBUF1	RBUF0
FED5													
FED6													
FED7													
FED8													
FED9													
FEDA													
FEDB													

Address	Initial Value	R/W	LC87C000	Remarks	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
FEDC													
FEDD													
FEDE													
FEDF													
FEE0													
FEE1													
FEE2													
FEE3													
FEE4													
FEE5													
FEE6													
FEE7													
FEE8	0000 0000	R/W	UCON2		-	UBRSEL2	STRDET2	RECRUN2	STPERR2	U2B3	RBIT82	RECEND2	RECIE2
FEE9	0000 0000	R/W	UCON3		ı	TRUN2	8/9BIT2	TDDR2	TCMOS2	8/7BIT2	TBIT82	TEPTY2	TRNSIE2
FEEA	0000 0000	R/W	UBR2		ı	U2BRG7	U2BRG6	U2BRG5	U2BRG4	U2BRG3	U2BRG2	U2BRG1	U2BRG0
FEEB	0000 0000	R/W	TBUF2		ı	T2BUF7	T2BUF6	T2BUF5	T2BUF4	T2BUF3	T2BUF2	T2BUF1	T2BUF0
FEEC	0000 0000	R/W	RBUF2		1	R2BUF7	R2BUF6	R2BUF5	R2BUF4	R2BUF3	R2BUF2	R2BUF1	R2BUF0
FEED													
FEEE													
FEEF													
FEF0													
FEF1													
FEF2													
FEF3													
FEF4					-	TAHRUN	TALRUN	TALONG	TACB4	TAHCMP	TAHIE	TALCMP	TALIE
FEF5	0000 0000	R/W	TACNT	-	1	TAPRR7	TAPRR6	TAPRR5	TAPRR4	TAPRR3	TAPRR2	TAPRR1	TAPRR0
FEF6	0000 0000	R/W	TAPRR	-	1	TALR7	TALR6	TALR5	TALR4	TALR3	TALR2	TALR1	TALR0
FEF7	0000 0000	R/W	TALR		-	TAHR7	TAHR6	TAHR5	TAHR4	TAHR3	TAHR2	TAHR1	TAHR0
FEF8	0000 0000	R/W	TAHR										
FEF9													
FEFA				-									
FEFB				·									


LC87C000 APPENDIX-I

Address	Initial Value	R/W	LC87C000	Remarks	BIT8	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO
FEFC													
FEFD													
FEFE													
FEFF													



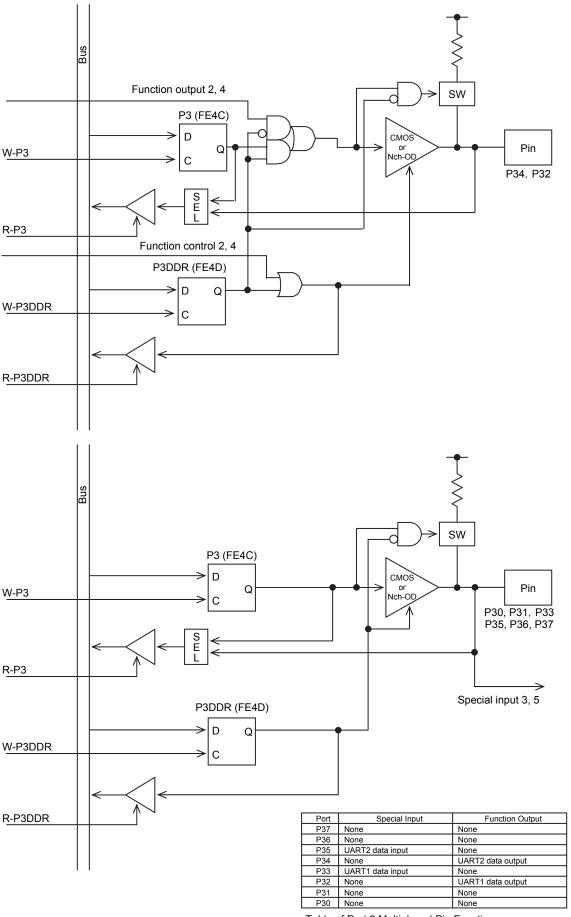
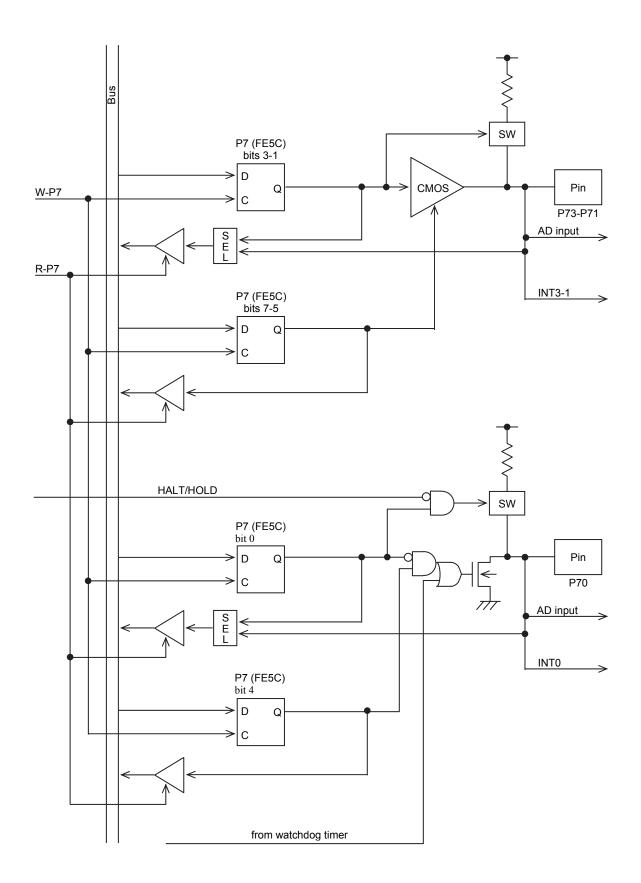

Port 0 Block Diagram

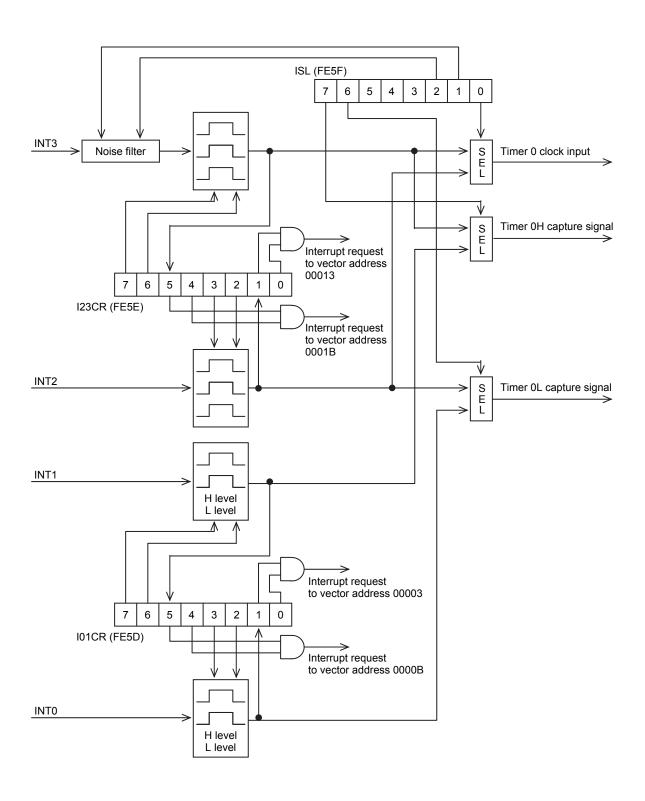
Option: Output type (CMOS or N-channel OD) selectable in 1-bit units.

Port 1 Block Diagram
Option: Output type (CMOS or N-channel OD) selectable in 1-bit units.

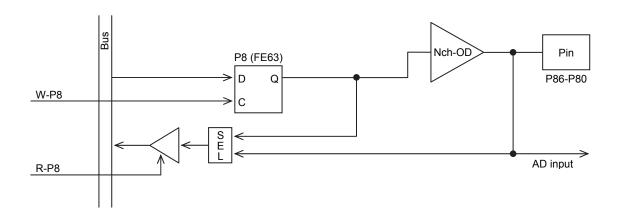
Port 2 Block Diagram

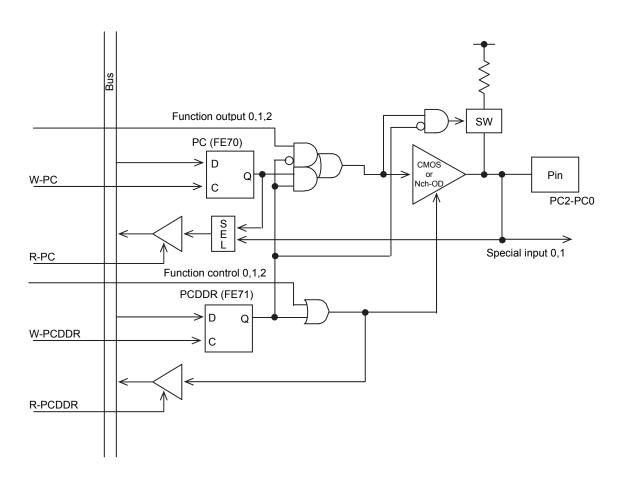
Option: Output type (CMOS or N-channel OD) selectable in 1-bit units.

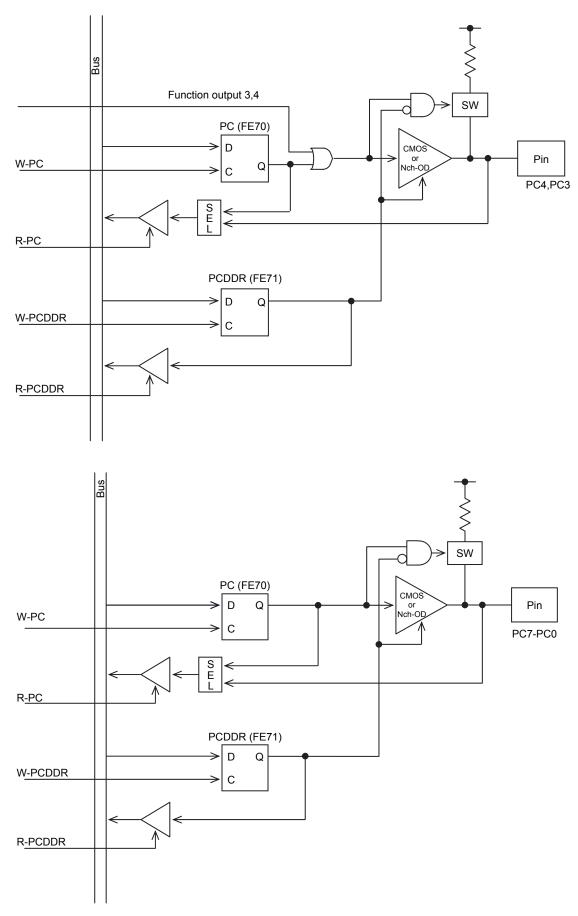




Table of Port 3 Multiplexed Pin Functions

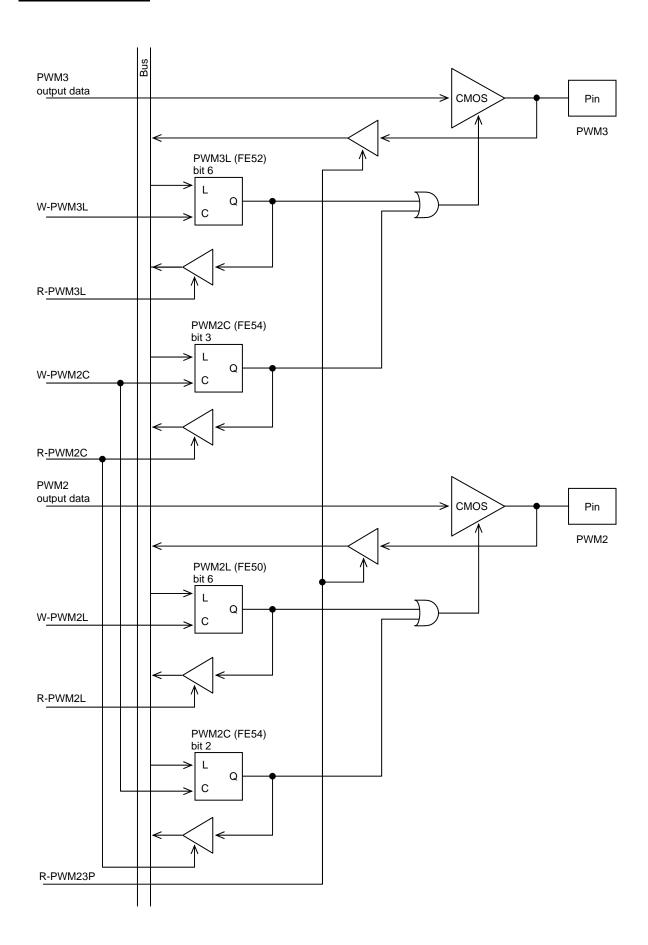
Port 3 Block Diagram


Option: Output type (CMOS or N-channel OD) selectable in 1-bit units.


Port 7 (Pin) Block Diagram Option: None



Port 7 (Interrupt) Block Diagram Option: None



Port 8 (AD Pin) Block Diagram Option: None

Port C Block Diagram
Option: Output type (CMOS or N-channel OD) selectable in 1-bit units.

PWM2/PWM3 (Pin) Block Diagram
Option: None

Important Note

This document is designed to provide the reader with accurate information in easily understandable form regarding the device features and the correct device implementation procedures.

The sample configurations included in the various descriptions are intended for reference only and should not be directly incorporated in user product configurations.

ON Semiconductor shall bear no responsibility for obligations concerning patent infringements, safety or other legal disputes arising from prototypes or actual products created using the information contained herein.

LC87C000 SERIES USER'S MANUAL

Rev: 1.00 October 01, 2012

ON Semiconductor
Digital Solution Division

Microcontroller & Flash Business Unit