ON Semiconductor

Is Now

onsemi

To learn more about onsemi™, please visit our website at
www.onsemi.com

onsemi and ONSEMI and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or
subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi
product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without
notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality,
or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws,
regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/
or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application
by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized
for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for
implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees,
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative
Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.

LC87F1M16A
USB Application Note

2012/09/05

SANYO Semiconductor Co., Ltd.

LSI Division

Microcontroller & Flash Development Dept.

Contents

Chapter 1. Initializationcoceviiiiiii e 1-1
1.1. Control Program OVEIVIEWcciiiiiiiiiiieieeeeeeeeeeeeeeevv e 1-2
1.2. RelAted REQISTEIS ..uuuiiiiiiiie ettt e e e e e e e e e eeeaeeeeas 1-3
1.3. Initializing the LCB7FLMLOBA ... 1-4
1.4. Initializing the USB FUNCLIONScoviiiiiiiiiiiiiiiiii s a e e e e e e e 1-5

Chapter 2. State Transitions and Interruptsccoceeeeevivviieeeeeeennnnnn. 2-1
2.1. DeVice State TranSItiONueviiiiiiiie ettt 2-2

2.1.1 DEVICE STALUSeeiieiiiiiee ettt ettt ettt e e et e e e et et e e s e e e e s e s e e e e s nre e e e e nere e e e e eanes 2-3
2.1.2 TrANSITION SSOUICES.ciiuuitieieiie e e e ettt et e e et e ettt e e e e e e s e bebe e et e e e e e e s e aanbbe b e e e e e e e e e aannnnneees 2-5
P = T U L= o U 0 =T =T o] o 2-6
2.3, USB IN e TUPES .o 2-8
P2 I R @ 1= 1= OO PRERRR 2-8
2.3.2 RelAtEU REGISTEIS....ceiiiiieiiiiitte ettt ettt e e e e e et e et e e e e e e s s bbb reeeeeeesaannae 2-10
2.4. USB BUS RESEt INTEITUPT...cuviiiie i e e e e 2-12
2.5. ENdpoint INTEITUPES cooooiii i 2-14
2.5.1 ENAPOINt N ACK INTEITUDTS ...uvivieiiiieiitiiiiitiess s s s ssss s s s e s e s e e e e e e e e e aeaaaaaaaaaaaaaaaaaaaeesererereeeenenees 2-14
2.6. SUSPEND INTEITUPTS oiiiiiiiiieei et e e e e s e e e e e e e e 2-16
2.7. USB Bus Active Interrupt (Resume Detected).........cccuvriiiiiieeiiiiiiiiiiiiiieeee e 2-18
2.8. REMOTE WAKEUP .ot e e e e e e 2-20
Chapter 3. Control Transfers......coooviiii i, 3-1
3.1, ENdpoint O CONrol..cccooeiiiii e 3-2
Tt 0 R o =T =T L= 0 1S3 (=T PRSP 3-2
R T I 1 T [T o | A TSR 3-4
3.2. 0utline of CoNtrol TraNSTEIceviiiiieieeee e e e e 3-5
3.2.1. StAgE TrANSIHIONS ...ueiiiiie ittt e e et e e ek b e e e e sbb e e e e s sabe e e e e aanbeeeeeaaes 3-5
3.2.2. Transaction CONFIQUIALIONuuueiuiiiiiiiitiise s ssss e s e s e s e s e e e e e e e e e eeeaeeaaaaaaaaaaaaaaeeeeereeeeereeeeeeenes 3-6
3.2.3. ENdpoint O INItIAlIZAtION ...t e e et e e e e e e e 3-9
3.2.4. Control Transfers PrOCESSINGcoui it et e et e e e e e e e e s eeeeaaeeeeeannes 3-10
3.2.5. Setting Up the TransSmiSSION MOUEuviiiiiiiiiiiiiiiiissss s s e e s e n e e e e e e e aaaaaaaaaaas 3-11
3.3, SEIUP SEAGE ..o 3-14
3.3.1. Outline of Setup stage SETUP tranSaCtioNceeeiiiiiieeiiiiieee ittt 3-14
3.3.2. SETUPR OPEIALION.eeiieiiitieee ettt ettt ettt e e et e e e st bt e e e abb e e e e s aab e e e e e sbreeeeeans 3-15
T T TR o I U o o o =11 T o S 3-16
3.3.4. RECEIVE EITOIS ...eiiiiiieiie e e ettt e ettt e e e e e e e ettt et e e e e e e saanasbeeeeeeeeeeseaannseeneeeaaaeaeaanns 3-17
3.4. Control Write Transfer Data StAgeuueeiiiieeiiiiiiiieiee e 3-18
3.4.1. Outline of Data stage OUT tranSACHIONceeiiiiiiiieiiiiiie ettt e e 3-18
3.4.2. DALA OUT SBIUD ..ettetetitirititiiii s e e e et e e e e e e e e e e e e e e e e aeeaeeeteter et eteteeeeeeeeeessnnnnernrernrnnnnes 3-18
3.4.3. DAtA OUT OPEIALIONeeiiiitiieeeiiitiee ettt ettt e ettt e stb et e s e e e e s asbb et e e sabbe e e e s aanbeeeesannneees 3-19
3.4.4. DAtA OUT PrOCESSING ..eeeiutiieeeitiiiee ittt e ettt ettt e e sttt e e e st e e e e sabb et e e s sabe e e e s abbeeeessabneeaeaas 3-20

LC87F1M16A <USB Application Notes>

B.4.5. RECEIVE EITOIS . .eiiiiiiiiiee e ettt oottt et e e e e e e ettt e e aaaeeesaanasbeeeeeeaeeeseaannseeseeeaaaeeeaanns 3-21
3.5. Control Write and No Data Transfer Status Stage...........ccccovveeieeeiiiiiiiiiiiieeeeenn. 3-22
3.5.1. Outline of Status stage IN tranSACHONcccoiiiiiiiiiiiiee e 3-22
3.5.2. STALUS IN SEIUP .. et e e et ta e e e e e e rab i r e e e e e e aabnneeaaees 3-22
3.5.3. StAtUS IN OPEIALION.eeiiiiiiiieeiiii ettt ettt et e e tbb et e s s e e e s aabb e e e e annneee s 3-23
3.5.4. StALUS IN PrOCESSINGeeeittiiieiitiiiee ettt e e ettt e ettt e ettt e e st e e s st b e e e e s abbe e e e e abbeeeessebneeaean 3-24
3.5.5. TraNSMISSION EITOIS ..coiiiiiiiiiiiiie ittt e e e e e e e e e e s e ran e e e e e e e e e aans 3-25
3.6. Control Read Transfer Data Stageccccuvviiiiiiieiieiiiee e 3-26
3.6.1. Outline of Data stage IN tranSACONueiiiiiiiiieei e 3-26
3.6.2. DALA IN SEIUP ..ottt e e e e e e e 3-26
R TG B = 1= W AN IO o 1= = 1o o PP 3-27
3.6.4. DALA IN PrOCESSING ...veeeieiitiieeeittite ettt ettt e ettt e e e sttt e e s st et e e e s bt e e e e e sabbeeeesanbaeeaeans 3-28
3.6.5. TraNSMISSION EITOIS ..coiiiiiiiiiiiiiiie ettt e e ettt e e e e e e ettt e e e aee e s e snntneneeeaaaeaeaanns 3-28
3.7. Control Read Transfer Status Stageooovviiiiiiiiiiiiiieeeeeeeeeeee s 3-29
3.7.1. Outline of Status stage OUT tranSaCHiONuvvvuveriiiimiiiiiiiissn s e e e 3-29
3.7.2. STALUS OUT SEUUP ...eveiiiiiieeiiiiitte ettt e e e e e st et e e e e s e s e r e e e e e e e e s 3-29
3.7.3. StatUS OUT OPEIALION.ciiutiiii ettt ettt et et e s st e e e s nabb e e e e snnneee s 3-30
3.7.4. STAtUS OUT PrOCESSING.....cciitiiiiiiiiieieeiieeeeeeaereteternrnrannrnrene e aaaaaaaaaaaaaaaaeaaaaaees 3-31
3B.7.5. RECEIVE EITOIS . .eiiiiiieiiie ettt ettt et e e e e e e ettt ettt e e e e e s aaanaabeeeeeeeeeeseaannneeseeeaaaeaeaanns 3-31
Chapter 4. Data TranSferS ... 4-1
4.1, ENAPOINT CONTIOL ettt e e e e e 4-2
o S L= o (=T I T o T (T £ T O PSP PP UPP PRI 4-2
O e g o [o T £ R 3PS 4-4
4.1.3. Setting Up the TransSmiSSION MOGEcoiiiiiiiiieie e 4-6
4.2. Outline of BUIK Transfer. ... e 4-7
4.2.1. OULIINE Of PrOCESSttt e e e e e e e e e ettt e e e e e e e e aeennnreneeeas 4-8
4.2.2. Endpoint n Initialization (bBUIK transfer) ..o 4-9
4.2.3. ENdpoint DeSCHPtOr EXAMPIE. . .. iuiiiiiiiiiecess e s eeeeerananes 4-10
G T =T U] S LA I = Vg B3 (=T 4-11
4.3, 1. BUIK IN SEBIUD oeieiitieeee itttk s et e e s ettt e e s et e e e e abr e e e e e neee 4-11
e B = TV || QN I @ 0= = V[o 4-12
4.3.3. BUIK IN PrOCESSING . .ututututututiniiiiieessssssssse s e s e seaeeeaaaaaaaaaaaaaaaaaataeaeeeteterereeereeessensnreressrnrnnnnes 4-13
4.3.4. TranSMISSION EFTOFSoeiiiiieeiiiiii et e e e e e e e e e e e e e e e s e s nnnbeeeeeeeens 4-13
N TN 1 O LU I L =10 1) (=] T 4-14
I = U] @ L I ST= U o PSPPSR 4-14
o = TV || @ 10 B @] 0= [4-15
4.4.3. BUIK OUT PIOCESSING ...veeeeiutiiteeiitiete e sttt ettt e ettt e e sttt e e s sabb et e e s bbb e e e e snsbe e e e s aanbeeeesannneeas 4-16
44,4, RECEIVE EITOIS ...ttt ettt e e e e e e e st e et e e e e e s e anbbeereeaeeas 4-17
4.5. Outline of Interrupt TranSTer ..., 4-18
4.5.1. OULINE OF PrOCESSttt e e e e e e e e s s eee s 4-19
4.5.2. Endpoint n Initializaion (interrupt tranSTer)ooveiiiiiii e 4-20
4.5.3. ENdpoint DeSCHPtOr EXAMPIE. ettt s s eeeeeeerenanes 4-21
4.6. Interrupt IN Transfers ... 4-22
N I [a1 =T U o VRS =] (U o USSP 4-22
4.6.2. INtErrupt IN OPEIALIONoiiiiiiiiii ittt ettt e e et e e s b e e e ennneas 4-23
4.6.3. INLEITUPL IN PrOCESSING ..vvvvvviriiiiiiitiiiieiiiiiissessssssss s e s e s e s aaeaaaaaaaaaaaaaaaaaaaasaseeeesererereerrerenes 4-24
4.6.4. TranSMISSION EFTOFSeeiiiiiiiiiiie et e e e e eeeeeeas 4-24

09/05/12 Contents

4.7.INterrupt OUT TranSTeIS ..o 4-25
4.7. 1. INEEITUPTE OUT SEIUD ...vvreiiieieeeieeiirete ettt e e e st e e e e e s e e e e e e e s s e nreeeeees 4-25
o [o1 (=T (U] O 1O I o T=T = 1] o 4-26
4.7.3. INLErrUPt OUT PrOCESSING ...uuuuuuuiiiiiieieieieieteeeee et e e e e eeaeaeaeaeaaaaaaeaeteeeteteeeeeeeeeeeeereserernrsrnrnnnnes 4-27
A B (ot YT T o] £ SRS 4-28

4.8. Outline of 1ISOChroNOUS TranSTercooi i 4-29
4.8.1. OULIING OF PrOCESSttt e e e e e e e e s eee s 4-30
4.8.2. Endpoint n Initializaion (ISOCNroNOUS tranSfer)uuuvveiiiiiiiiiirr e 4-31
4.8.3. Endpoint DesCriptor EXamPIe.........coi it 4-32
4.8.4. ENAPOINT DAA ATNBASvueuiiiiiieie i isis e te e et e e e e et e e e e e e e e e e e e e e e e e e e aeea et et et et et eeeeeeeeesaeesssnsnrnrnrnrnnnnnnes 4-33

4.9.1S0ChronouUS IN TranSTEIS ..ooiiiiiiiiiieeee e 4-34
e B I (Yo Tod oo g T TU LS 1AV Y= (U] o U 4-34
4.9.2. 1SOChIrONOUS IN OPEIALIONeeiiiiiiiiie ettt e et e e snnneeas 4-34
o T T (Yo Tod o o) {0 10 ES T | NI o 0TS Y [o N 4-36

4.10. I1SOChronous OUT TranSTerScooiiiiiiiiiiiiieeeee e 4-37
O A Yo Tod T To 10 LS @ 10 ST = U o PR 4-37
4.10.2. 1SOChronOUS OUT OPEIALIONuviiiiiiiiiiee ittt e e e anneeee s 4-38
4.10.3. 1SOChroN0OUS OUT PrOCESSING ...vvvvviiiiiiiiiiiiiiiiiinrntniainnennn s s ss s s s s s s e s e s asaseaaaaaeaaaaaaaaes 4-39

Chapter 5.APPENAIX covuruie e 5-1

5.1. LCB7FLIMIOBA RAM MaAP ... ittt ittt e e e e et e e e et s e e e et e e s eann s 5-2

5.2. Example of Control Program Configuration............ccccooeeeiiiee, 5-3

Figures and Tables

Chapter 1. Initialization

Figure 1-1 Sample Control Program Configuration..................oeveviveiiiiieeiiiiiieiiieieiinn s 1-2
Figure 1-2 LC87F1M16A Initialization EXamPIe.........ccooiiiiiiiiiiiiieciieiee e 1-4
Figure 1-3 USB Initialization EXamPple ... 1-5
Table 1-1 Initialization Related REQISIEIScoouviiiiiiiiiii e 1-3
Table 1-2 Endpoint Configuration (EPBMODZ0)uuuuiuiiiiiiiiiiiis i s eeeee e e aeeeaaaaaaaaaaeaees 1-6
Table 1-3 Endpoint Configuration (EPBMODZL)uuuiiuiiiiiiiiiii i s e ea e e aeaaaaaaaaaaaaeaees 1-6
Table 1-4 Endpoint Configuration (EPBMODZ2)ccccuiiiiiiiiiiciiiiee e 1-6
Table 1-5 Endpoint Configuration (EPBMODZ3)uuuiuiiiiiiiiiiii s is s eeeaaa e e e e eaaaaaaaaaaaaees 1-7
Table 1-6 Endpoint Configuration (EPBMODZ4)uuuuiiiiiiiiiiiis i e e e aaaeaaaaaaaaaae e 1-7
Table 1-7 Endpoint Configuration (EPBMODT5)coiiuiiiiiiiiiiieeiie e 1-7
Table 1-8 Endpoint Configuration (EPBMODZE0)uuuuuiiiiiiiiiiiiiis e eeeee e e aeaeaaaaaaeaaaaaees 1-8
Table 1-9 Endpoint Configuration (EPBMODZT7)uuuuuiiiiiiiiiieii s n e eeae e e aaaaaaaaaaaaaaeaees 1-8
Table 1-10 Endpoint Buffer RAM MapPing.......ueeeeiiiiiiieiiiiiee ettt 1-9

Chapter 2. State Transitions and Interrupts
Figure 2-1 Device State Transitions and TranSition SOUICE..........cuveeiiiiiieiiiiie e 2-2

LC87F1M16A <USB Application Notes>

Figure 2-2 Outline of the bus enumeration process (device Side)coceeiiiiiiiiiiiiieie s 2-6
Figure 2-3 Example of Bus ENUMEration PrOCESSINGcccoiiuriiiiiiiiiiieiiiiieeeiiieee e siieeeesnineeee e 2-7
Figure 2-4 USB-related INTerTUPLSccoeee it 2-9
Figure 2-5 Example of USB Bus Reset Interrupt ProCESSINGcuvveeeiiiiieeeiiiiiee e 2-13
Figure 2-6 Example of Endpoint n ACK Interrupt ProCeSSINGcocuvveeiiiiieeeiniiiiie e 2-15
Figure 2-7 Example of Suspend ProCeSSING........cccoiviiiiiiiiiiiiiicieeeeeeeeeeeeeeeeaeeee s 2-17
Figure 2-8 Example of USB Bus Active Interrupt ProCessSingccuveeeviiiieiiiiiiieeiiiieee i 2-19
Figure 2-9 Example of Setting the Device for Remote Wakeup Interrupts (INTO Interrupt) 2-21
Figure 2-10 Example of Remote Wakeup Interrupt Processing........ccccceveveveeieieeeeeeeeeeeeeeeeeeeee 2-22
Figure 2-11 Resume Signal TransmiSSiON ProCESSINGcccoiuirriiiiiiiieeiiiieeeeiiieee et e s 2-24
Table 2-1 Device States and TransitioN SOUICES (1) ..uuuuuuurriiimimieiiiiiiirirsssssss s s e s e e e s e s e eeeeaeaeaaeas 2-3
Table 2-2 Device States and TranSition SOUMCES (2) ..vvvvieiiirieeiiiiiie ettt 2-4
Table 2-3 USB INTEITUPLS TIST......eiiiiiiiiieiiiiie ettt 2-8
Table 2-4 USB interrupts related REQISTEIS. 2-10
Table 2-5 USB operation conrtol register FUNCHON liSt..........c..oviiiiiiiiiiiiiiiecee e 2-10
Table 2-6 USB interrupt register FUNCHION TStoooiiiiiiiii e 2-10
Table 2-7 Endpoint n interrupt register FUNCHON liSt..........uuuiiiiiiiiiiii e, 2-11
Table 2-8 Interrupts list for Returning from the Hold Mode ..o 2-20

Chapter 3. Control Transfers

Figure 3-1 Control Transfer Stage TranSIitioNSc.ueiie i 3-5
Figure 3-2 Stages of a Control Transfer.........cooooii i 3-7
Figure 3-3 Example of Endpoint O Initialization ProCessing...........cccuvuveveeeeeveeeveeninininininnninnnnnnnnnns 3-9
Figure 3-4 Example of Control Transfers ProCeSSINGcccuiirieiiiiiiiieiiiiiee et e e 3-10
Figure 3-5 Transmission Mode Setting FIOW. ... 3-13
Figure 3-6 SETUP TranSacCtionccooiiiiiiiiii ittt as 3-14
Figure 3-7 SETUP OPEration FIOWccuuiiiiiiiiiiiiiiiiee ettt 3-15
Figure 3-8 Example of SETUP ProCeSSINGcccoeiiiiiiiiiieieieee ettt s 3-16
Figure 3-9 Data OUT TranSaACHONccceeie e e e e ettt 3-18
Figure 3-10 Data OUT OPEration FIOWoccuuiiiiiiiiiieiiiie ettt 3-19
Figure_3-11 Example of Data OUT ProCeSSINGcceeeeeeeieieiiiiee et eeee et e enennnnes 3-20
Figure 3-12 Status IN TranSaACHONcccoeieie it 3-22
Figure 3-13 Status IN Operation FIOWcccueiiiiiiiiiiiiiiie e 3-23
Figure 3-14 Example of Status IN ProCeSSiNgccoiviiiiiiiiiiiieeeeeeeeeeeeeee s 3-24
Figure 3-15 Data IN TranSacCtioNcccoeieieii ittt 3-26
Figure 3-16 Data IN Operation FIOWoiiiiiiiiiiiiiie et 3-27
Figure 3-17 Example of Data IN ProCeSSiNg........ccccoeiiiiiiiiiiiii et 3-28
Figure 3-18 Status OUT TranSaCHiONccceeeiiiiiiii et 3-29
Figure 3-19 Status OUT OPeration FIOW.uiiiiiiiiiiiiiiie et 3-30
Figure 3-20 Example of Status OUT ProCesSingcccovvviiiiiiiiiiiieieee e 3-31
Table 3-1 Control Transfer Related ReQISIErS.......uuuuueiiicece e 3-2
Table 3-2 Outline of ENAPOINT O......eeiiiiiiieii ettt e e e 3-4
Table 3-3 Control Transfer PACKEt SIZES........cooi it 3-4
Table 3-4 TransmisSioN MO CRANoiiiiiiiiii e 3-12

09/05/12 Contents

Chapter 4. Data Transfers

Figure 4-1 Bulk Transfer TranSaCtioNScooiieiiiiii et 4-7
Figure 4-2 Example of Endpoint n Initialization for Bulk Transfersccccccviiiiiiiiecc e 4-9
Figure 4-3 Bulk IN OPeration FIOW..........ccuuiiiiiiiiiie ittt 4-12
Figure 4-4 Example of BUIK IN ProCeSSINGccceeeiieieeeeeeeeieee ettt 4-13
Figure 4-5 Bulk OUT Operation FIOWcooiiiiiiiiiiiie et 4-15
Figure 4-6 Example Of BUIK OUT PrOCESSINGccieiiuiiiiieiiiieieiiiiiee ettt 4-16
Figure 4-7 Interrupt Transfer TraNSACONS..........uuiuiiiiiiirere e e e e e e e e e e e e e e e aaaaaeaaeeees 4-18
Figure 4-8 Example of Endpoint Initialization for Interrupt Transfers.........ccccccvieiiniiieee e, 4-20
Figure 4-9 Interrupt IN Operation FIOWcuuiiiiiiiiieiie e 4-23
Figure 4-10 Example of Interrupt IN ProCeSSiNg.........cooeeeiiiieieiiee e 4-24
Figure 4-11 Interrupt OUT OPEration FIOW..........ccoiiuuiiiiiiiiiiieiiiiiie et 4-26
Figure 4-12 Example of Interrupt OUT ProCESSINGccciiuurriiiiiiiiieiiiiee et 4-27
Figure 4-13 Isochronous Transfer TraNSACLIONSuuiurriiiuiriiirrs s e s e e e e e e e e e aaeaaaaaeas 4-29
Figure 4-14 Example of Endpoint n Initialization for Isochronous Transfers...........cccccccovveeennns 4-31
Figure 4-15 Isochronous IN Operation FIOWcooiiiiiiiiiiiiiiieiieee e 4-35
Figure 4-16 Example of ISochronous IN ProCeSSing......cccceveveiiiiiiiiiiii e, 4-36
Figure 4-17 Isochronous OUT Operation FIOWcccoiuiiiiiiiiiiieiiiiiee e 4-38
Figure 4-18 Example of 1ISochronous OUT ProCESSING......cccoiuuuriiiiiiiiieiiiiiieeiiiieee e e sineeeens 4-39
Table 4-1 Data Transfer Related RegISIErS.......uuu i 4-2
Table 4-2 Endpoints for Data TraNSTEISocuuiiiiiiiiiii e 4-4
Table 4-3 Packet Sizes for Data TranSTerS... ... 4-5
Table 4-4 Endpoint Descriptor (Bulk Transfer) ... 4-10
Table 4-5 Endpoint Descriptor (INterrupt TranSfer).......c..eee i 4-21
Table 4-6 Endpoint Descriptor (ISochronous Transfer) ... 4-32

LC87F1M16A <USB Application Notes>

Chapter 1. Initialization

1.1. Control Program OVEIVIEW...........uuuuuuiiiiiiiiiiiiiiiienien s ssssssssssassssasssaaasaaaaaaaens 1-2
1.2. Related REQISTEIS ... ie e 1-3
1.3. Initializing the LCB7FLMLBA.......cooiieieeeeeeeeeeee s e e n e e a e e e e aaaaaaaas 1-4
1.4. Initializing the USB FUNCLIONSoivviiiiiiiiiiiiiiiiiiiiii s e e e e e 1-5

11

LC87F1M16A <USB Application Notes>

1.1. Control Program Overview

The LC87F1M16A notifies the CPU of USB data transmissions and receptions and special
signal processing in the form of interrupts. As such, its control program is composed of an
initialization program and a USB interrupt processing program. Assuming that USB sources
are to be processed by interrupt processing, the schematic system flow of the LC87F1M16A
looks like as shown in below.

The function Main needs to initialize the LC87F1M16A and USB functions. Figure 1-1 shows a
sample control program configuration.

Control Program Configuration Example I

Initialization

USB interrupt processing

Initialize LC87F1M16A

Initialize USB Special signal processing
See Chapter 2,
Start USB State Transitions and Interrupts
[T T T o Control transfer processing
i Pull up D+ [
''''''''''''''''''''' - See Chapter3, Control Transfers.
Interrupt
Enable interrupts Data Transfer Processing
See Chapter 4, Data transfers.
Main Loop
User Application <
RETI

Figure 1-1 Sample Control Program Configuration

1-2

09/05/12

Chapter 1 Initialization

1.2. Related Registers

The table below shows a list of registers that need to be initialized before using the USB

functions.
Register Name Symbol Address R/W Function

USB clock division control register USBDIV FEO4h R/W USB clock devision

Master interrupt enable control register IE FEO8h R/W Enables interrupts

System clock division control register CLKDIV FEOCh R/W Clock devision

PLL control register PLLCNT FEODhA R/W PLL

Oscillation control register OCR FEOEh R/W Oscillation

USB operation control register USCTRL FEB80h R/W USB operation control

USB interrupt control register USBINT FE82h R/W USB interrupt control
Mapping address in

Endpoint buffer mode register EPBMOD | FEABh R/W RAM of the endpoint

buffer

Table 1-1 Initialization Related Registers

LC87F1M16A <USB Application Notes>

1.3. Initializing the LC87F1M16A

When using USB, it is necessary to synchronize the system clock and 48MHz clock for USB.
The 48MHz clock for USB is created by PLL circuit using a main clock. The oscillation for the
main clock is enabled by connecting a ceramic oscillator and a capacitor across the CF1 and
CF2 pins. The system clock selects the divided clock of 48MHz for USB created by the PLL.
After the PLL circuit gets stabilized, a wait time need to be provided to avoid unstable
operation due to clock related problems. Since the wait time varies depending on the oscillator
to be used, an adequate wait time should be provided according to the characteristics of the
oscillator.

Figure 1-2 shows a sample procedure for initializing the LC87F1M16A.

C LC87 initialization >

A 4

USBDIV (FEO4h) 3 10h PLL setup _
- When the CF frequency is 12MHz
PLLCNT (FEODhA) 3 80h

A4
CLKDIV (FEOCh) 3 00h Frequency division (1/1)
A4
Wait * Needs to wait until oscillation gets stabilized.

; CIIEOCI(bI ilati

- Enable oscillation
OCR (FEOEh) 3 90h - Select main clock

- Frequency division (1/1)

A4

(End of LC87 initialization >

Figure 1-2 LC87F1M16A Initialization Example

1-4

09/05/12 Chapter 1 Initialization

1.4. Initializing the USB Functions

It is the Powered state that a USB device initially enters. Accordingly, it is necessary to set up
the USB functions so that the device can run in the Powered state. USB initialization should be
carried out after completing the initialization of the LC87F1M16A. For details on the device
states, see Chapter 2, "State Transitions and Interrupts.”

Figure 1-3 shows a sample procedure for initializing the USB.

The endpoint buffer for data transmission and reception (64 bytes maximum) is mapped into
RAM. The address mapping RAM of endpoint buffer can be selected by configuring the endpoint
buffer mode register (EPBMOD). Table 1-2 — Table 1-10 show the endpoint configuration. In
this document EPBMOD=0 (default) is used.

< USB initialization >

\ 4
EPBMOD (FE82h) 13 00h .. 07h | Selection the mapping RAM of endpoint buffer

4
Initialize USB interrupts.
USBINT (FE82h) 3 00h - Disable all USB interrupts.

- Clear all USB Interrupt flags.

\ 4
USCTRL (FE80h) 13 E4h Enable USB operations.

or Pull up D+ (P70 or P27)
USCTRL (FE80h) (3 C4h Enable USB suspend interrupts.
USPORT (FE81h) 13 40h

\ 4
BRSEN(FES2h[6]) R 1 Enable USB bus reset interrupts.

pmmmmsmsmmmes i""““"“‘. Enable H/L level interrupts.
o IE (FEO8N[7]) 31 1 *This step is unnecessary if they have already

been enabled.

Update the variable for managing device state.

Update device state

\4

< End of USB initialization >

Figure 1-3 USB Initialization Example

1-5

LC87F1M16A <USB Application Notes>

1-6

Setting '(\flr?)E).y?eizzsi RAM Address
EPO Tranem o4 02400~ 027FH
EPL ank 1 o4 02COH = 02FFTH
EP2 ank 1 o4 0340~ 037FH
Sankc o GG
Sankc o gat s
Sankc o Ssoor—gose
Sanko o agen o

Table 1-2 Endpoint Configuration (EPBMOD=0)

Setting '(\rlr?)é'y?éz;; RAM Address
EPO Transm o4 03COH = 03FFH]
EPL ank 1 o4 030K~ 037FH
EP2 ank 1 o4 02COH = 02FFH]
EP3 Bank 1 16 0270H ~007EH]
P4 ank 1 16 0250 —025FH
EPS ank 1 16 0230 —03FH
EPS ank 1 16 0210 — 0p1FH

Table 1-3 Endpoint Configuration (EPBMOD=1)

Setting '(\l/lr?)é)yilezsi RAM Address
EPO Transm o4 03COH = 03FFF]
Bank 2 Soaon - gaee
Bonk 2 2200~ g1
Sanko 2 Szc—onen
Bank 2 gamon- oz
Sankc 2 2o~ ozec
Sankc 2 Szoor~ozics

Table 1-4 Endpoint Configuration (EPBMOD=2)

09/05/12

Chapter 1 Initialization

Setting '(\flr?)E).y?eizzsi RAM Address
EPO Tranem 22 0350 — 03PFH
EPL ank 1 22 D3A0H = 03BETH
EP2 ank 1 2 0360K — 037FH
EP3 ank 1 2 0320K ~ 033FH
Sankc 2 Szcor1—oznen
Sankc 2 aasor oz
Sanko = Szioh oz

Table 1-5 Endpoint Configuration (EPBMOD=3)

Setting '(\rlr?)é'y?éz;; RAM Address
Fete, 2 R
Sankc 2 01— soors
EP2 ank 1 22 0360K — 037FH
EP3 Bank 1 22 0320 —033FH]
EP4 ank 1 16 020k = 03]
EPS ank 1 16 0250K — 02DFF
EPS ank 1 16 0250H— 035

Table 1-6 Endpoint Configuration (EPBMOD=4)

Setting '(\l/lr?)é)yilezsi RAM Address
Feate 2 R
EPL Bank 1 16 0350~ 03BFH
EP2 ank 1 15 030K~ 039F
EP3 ank 1 16 0370K — 037+
EP4 ank 1 16 0350 —035FH
EPS ank 1 16 0350H 033FH
EPS ank 1 16 0310 —031FH

Table 1-7 Endpoint Configuration (EPBMOD=5)

1-7

LC87F1M16A <USB Application Notes>

Setting '(\flr?)E).y?eizzsi RAM Address
T X CoE R a:
Bankc T Sacon—ssce
EP2 ank 1 16 0350 = 03BFH
EP3 ank 1 16 030K — 039FF
Sankc : Goror—gsr
Sankc : gocor oz
Sanko e

Table 1-8 Endpoint Configuration (EPBMOD=6)

Setting '(\rlr?)é'y?éz;; RAM Address
EPO Receive_ 8 03FOH — 03F7H
Transmit 03F8H — 03FFH
EP1 Bank O 8 03E8H - 03EFH
Bank 1 03B8H — 03BFH
Ep? Bank O 8 03EOH — 03E7H
Bank 1 03BOH - 03B7H
EP3 Bank 0 8 03D8H — 03DFH
Bank 1 03A8H — 03AFH
Ep4 Bank 0 8 03DOH - 03D7H
Bank 1 03A0H — 03A7H
EP5 Bank 0 8 03C8H — 03CFH
Bank 1 0398H — 039FH
EP6 Bank 0 8 03COH — 03C7H
Bank 1 0390H — 0397H

Table 1-9 Endpoint Configuration (EPBMOD=7)

1-8

09/05/12

Chapter 1 Initialization

RAM

Address

0x200

0x210

0x220

0x230

0x240

0x250

0x260

0x270

0x280

0x290

0x2A0

0x2B0

0x2C0

0x2D0

0x2EOQ

0x2FO0

0x300

0x310

0x320

0x330

0x340

0x350

0x360

0x370

0x380

0x390

0x3A0

0x3B0

0x3CO0

0x3D0

O0x3EO

0x3F0

0 1 2 3 4 5 6 7
EPORX EP6BKO EP6BKO
EP6BK1
EP5BKO EP6BK1
EP5BK1
EPOTX EP4BKO EP5BKO EP6BKO
EP4BK1
EP3BKO EP5BK1 EP6BK1
EP3BK1
EP1BKO EP2BKO EP4BKO EPS5BKO
EP6BKO
EP4BK1 EP5BK1 EP6BKO
EP6BK1
EP1BK1 EP2BK1 EP3BKO EP4BKO EP5BKO
EP6BK1
EP5BK1
EP3BK1 EP4BK1 EP4BKO
EP4BK1
EP2BKO EP1BKO EP2BKO EP3BKO EP3BKO EP6BKO
EP5BKO
EP6BK1
EP2BK1 EP3BK1 EP3BK1 EP5BKO
EP5BK1
EP2BK1 EP1BK1 EP1BKO EP2BKO EP2BKO EP4BKO
EP5BK1
EP4BK1 EP6BKO
EP6BK1
EP1BK1 EP2BK1 EP2BK1 EP3BKO EP5BKO
EP5BK1
EP3BK1 EP4BKO
EP4BK1
EP3BKO EPORX EPORX EP1BKO EP1BKO EP2BKO EP3BKO
EP4BKO
EP2BK1 EP3BK1 EP6BK1
EP5BK1
EP1BK1 EP1BK1 EP1BKO EP2BKO EP4BK1
EP3BK1
EP1BK1 EP2BK1 EP2BK1
EP1BK1
EP3BK1 EPOTx EPOTx EPORX EPORX EPORX EP1BKO EP6BKO
EP4BK1 EP5BKO
EP1BK1 EP4BKO
EP3BKO
EPOTx EPOTx EPOTx EPORX EP2BKO
EP1BKO
EPOTx EPORX
EPOTX
Table 1-10 Endpoint Buffer RAM Mapping

1-9

LC87F1M16A <USB Application Notes>

1-10

Chapter 2. State Transitions and Interrupts

2.1. DeVice State TranSitioNocuiiiiiiiiiiiiee it 2-2
2.1.0. DEVICE STALES ... cveeeiiiiiiie ettt ettt et e e s st e e s se e e e st e e e s r e e e e e e e e e e ee e 2-3
2.1.2. TrANSItION SOUICESeeiiieeeiiiiiiieiieeee e e e e e ettt ee e e e e e e e s et beteeeeaeeaesansbebeeeeaaeeesaaanssneeeeeeaaaeaeannns 2-5

2.2. BUS ENUMEIALION ...ciiiiiiiiiiiie ettt e e e e et ee e e e e e e e e 2-6

ARG T U IS = B 1] (=T U o) 2-8
2.3. L. OVEBIVIBW ..ttt ettt et e e o4 oottt e e e e e e e 4o e bbbt e et e e e e e e e e e s nb b e be e et e e e e e s e abbbnneeeeeeeeanan 2-8
2.3.2. Related REQISIEISeeiiiiiieeiii ittt e e e e e r e e e e e e s e e sab e e e e eaeeeas 2-10

2.4. USB BUS ReESEt INTEITUPT....uiiei e 2-12

2.5, ENAPOINT INTEITUPES ..ottt e e e 2-14
2.5.1. ENAPOiNt N ACK INTEITUPDLS ...ceeiiiiiee ettt ettt e et e et e e e e s nnbeeeeeanes 2-14

2.6. SUSPEN INTEITUPLS oo 2-16

2.7. USB Bus Active Interrupt (Resume Detected).......ccuvvvivrerimiiiiiiiiiiiiee i, 2-18

2.8. REMOTE WAKEBUP ..uueeiiiiiiieiee e ettt ettt ettt ettt e e e e e e e e aaeeaearranrane 2-20

2-1

LC87F1M16A <USB Application Notes>

2.1. Device State Transition

Devices have states and make transitions between them. The figure below shows a USB device
state transition diagram for this microcontroller. (Refer to 9.1,”USB Device States”, of USB 2.0
Specification).

(3) Suspend detected

Powered
State

(4) Resume detected
(1) Bus reset detected

(1) Bus reset detected

o HEEEE If y /
SEREE g —{X
7 i
S
/ Default

// State '__/
</ \ (4) Resume detected
/
/ (2) Execute SetAddress \
,I \ (3) Suspend de\tected
| Address
| State
\ (4) Resume de;ected
\ \ ,
\ /

<Transition source>

<Interrupt used>

(1) Bus reset detected

Bus reset interrupt

(2) SetAddress
Set Configuration

Endpoint O Interrupt

(3) Suspend detected

Suspend interrupt

(4) Resume detected

Bus active interrupt

Figure 2-1 Device State Transitions and Transition Source

2-2

09/05/12

Chapter 2 State Transitions and Interrupts

2.1.1. Device States

The LC87F1M16A manages the device state transitions among Powered, Default, Address,
Configured, and Suspended under program control. The user should set up and control variables
as necessary. Table 2-1 summarizes the major actions that the LC87F1M16A takes in every state,
interrupts (transition sources) that are enabled in that state, and the next state that is entered on

the corresponding source).

State Enabled Interrupt
. . . Next State
Major Actions (Transition Source)
Bus rese Default
Powered _ ___
Waits for a bus reset. Suspend
(Suspended state) Suspended
Default
Suspend
Default _(Suspended state) | : Suspended |
Responds to address 0 and has an address assigned. | [Endpoint O
SetAddress(0) Default
SetAddress(1-127) Address
Default
Suspend
_(Suspended state) Suspended |
Address Endpoint 0
Responds only to the assigned address and has a SetAddress(0) Default
configuration assigned.
SetAddress(1-127) Address
SetConfiguration(Not 0) Configured
SetConfiguration(0) Address
Default
Suspend
Configured (Suspendedstate) Suspended
Performs usual USB communication. Endpoint O
(Specified configuration gets available.)
SetConfiguration(nonzero) . Configured
SetConfiguration(0) Address

Suspended
Stops USB and waits for a bus active.

Bus active

Return to original
state

Table 2-1 Device States and Transition Sources (1)

2-3

LC87F1M16A <USB Application Notes>

The table below lists the source and destination states associated with the transition sources.

Source State Transition Source . Interrupt Used Destination State
Powered '
Default (1) Bus reset detected : Bus reset Default
Address :
Configured
(Default) !
Address (2) SetAddress(0) | Default
Default (2) SetAddress(1-127) Address
(Address) Endpoint 0
(Address) . . ;
Configured (2) SetConfiguration(0) | Address
Address (2) SetConfiguration .
(Configured) (Not 0) Configured
Powered |
Default I
Address (3) Suspend detected | Suspend Suspended
Configured
Suspended (4) Resume detected Statesjggg:]es?oaefore

Table 2-2 Device States and Transition Sources (2)

Note: The numbers (1)-(4) in the column "Transition Source" of Table 2-2 correspond to the

numbers in Figure 2-2.
The transition source number (2) identifies requests from the host. Their meanings are
given below (the requests other than those described here do not become the source of any

device state transition).

* SetAddress (0) The host specified the USB address 0.

* SetAddress(1-127) The host assigned a USB address 1-127.

* SetConfiguration(0) The host specified configuration value 0.

* SetConfiguration(Not 0) The specified a nonzero configuration value.

(An error will be raised if a configuration value that is not specified in the

configuration descriptor is encountered.)

09/05/12 Chapter 2 State Transitions and Interrupts

2.1.2. Transition Sources

The details of the device state transition sources (1)-(4) shown in Figure 2-2 and Table 2-2 are
given below.

(1) Bus reset detected (bus reset interrupt)
The host issues a reset command when it recognizes a new device connected or when it
initializes the devices. The device recognizes a reset condition when the USB bus line stays in
the SEO state for 2.5 microseconds. The reset device enters the initialized state and transits
into the Default state. Since this microcontroller generates a USB bus reset interrupt on
detection of a reset, the bus reset interrupt processing routine must initialize the device and
place it into the Default state (see 2.4, "USB Bus Reset Interrupt").

(2) SetAddress/SetConfiguration executed
SetAddress is a request that is issued by the host when assigning a USB address to a device.
When the device is assigned an address (1 to 127) through this request, it enters the Address
state. (The device transits into the Default state when address O is given since address 0 is the
default address.)
SetConfiguration is a request that is issued by the host when specifying a configuration value.
This request configures the device as specified and places it into the Configured state (the
device enters the Address state if a configuration value of 0 is specified).
When this microcontroller receives this request, it generates an endpoint 0 interrupt.
Consequently, the request must be processed during endpoint O processing, after which the
device must switch into the pertinent state (see Section 2.5, "Endpoint O Interrupt").

(3) Suspend detected (base timer interrupt)
The device is regarded as being suspended when it stays in the idle state on the USB bus line
for 3 milliseconds or longer. When this microcontroller detects a suspended state, it generates a
suspend interrupt. The suspend interrupt processing routine must place it into the Suspend
state (see Section 2.6, "Suspend Interrupt”).

(4) Resume detected (Bus active interrupt, remote wakeup)

The device is regarded as being resumed if a bus activity occurs when the device is in the
Suspended state. Restoration from the Suspended state can be accomplished either by a USB
bus active interrupt (resume detected) or by remote wakeup (resume transmitted).

This microcontroller regards an activity (packet transmission or reset) as being initiated by the
host and generates a bus active interrupt when the USB bus line state changes from the idle
state. The device must be returned into the original state that it was in before the Suspended
state by the bus active interrupt processing routine. If the remote wakeup feature is available,
it is possible to send the resume signal and switch the device into the state before the
Suspended state using the interrupt processing routine associated with the source of wakeup
(see Sections 2.7, "USB Bus Active Interrupt” and 2.8, "Remote Wakeup").

2-5

LC87F1M16A <USB Application Notes>

2.2. Bus Enumeration

The host identifies and controls the state change of USB devices through a process called "bus
enumeration” when connecting or disconnecting them. The enumeration process of the device is
shown in Figure 2-2.

Connection is notified to a host.

Pull up D+

Receive the bus reset signal L

Endpoint 0 is available
Set default address

Device initialization

Receive GetDescriptor request L

Send Device Descriptor

Send Descriptor

Set assigned address

Address setting

Receive GetDescriptor request L

Send Configuration Descriptor

Send Descriptor

Receive SetConfiguration request L

Endpoints initialization

Configuration

Receive SetAddress request L

Figure 2-2 Outline of the bus enumeration process (device side)

09/05/12 Chapter 2 State Transitions and Interrupts

The figure below shows the outline of firmware processing from the time a USB cable is connected
till the time the device's primary functionality gets available.

Host PC Connect USB device Device
(detect D+ pull-up
Detect deyice Initialization
connection
Switch to Powered state Pow ered
Send USB bus reset I?#tserrreijspett \ State
occurred Device initialization
Switch to Default state
Device descriptor Defaul
) State
Send GetDescriptor to request et
USB address 0 occurred A
Receive device et Return device descriptor
descriptor and get EPO S -
maximum packet size
Endpoint
Send SetAddress to Your address is XX inte?rupt N
USB address 0 _1_19*
(XX=1-127)1 occurred Load assigned address
into register
Switch into Address state
] Configuration) Address
Send GetDescriptor to descriptor request Endpoint State
assigned address interrupt N
_ . _ occurred / Return
Receive configuration ——--"1 configurationdescriptor
descriptor and get -
device configuration g -
information
Use this
. i ; Endpoint
Select device configuration! inteFr]rupt .
corfiguration and send Specify configuration occurred et wablished
Set Configuration value.*2 ecgfﬂ%i%tign e
Switch into Configured
state
Configured
State

Switch into the state
where the original device
functions are available.

*1 The device enters the Default state if an address of 0 is specfied.
*2 The device enters the Address state i a Configuration value of 0 is specffied.

Figure 2-3 Example of Bus Enumeration Processing

2-7

LC87F1M16A <USB Application Notes>

2.3. USB Interrupts

2.3.1. Overview

The interrupts associated with the USB functions are used for flow control of data transfers and
for device state management of the USB. The interrupts used for the USB are classified as follows:

Flag Enable
Vector Interrupt Name Detected Flag Source
0013h | USB bus active BACFG BACEN Bus active detected
0033h | USB bus reset BRSFG BRSEN Bus reset detected
USB suspend IDLFG IDLEN Suspend detected
003Bh | SOF SOFFG SOFEN SOF detected
EPOINT ACK ACOFG ACOEN EPO transaction ends with ACK.
NAK NKOFG NKOEN EPO transaction ends with NAK.
Error EROFG EROEN Error detected in EPO transaction.
STALL STOFG STOEN EPO transaction ends with STALL.
EP1INT ACK AK1FG AKI1EN EP1 transaction ends with ACK.
NAK NK1FG NK1EN EP1 transaction ends with NAK.
Error ER1FG ER1EN Error detected in EP1 transaction.
STALL ST1FG ST1EN EP1 transaction ends with STALL.
EP2INT ACK AK2FG AK2EN EP2 transaction ends with ACK.
NAK NK2FG NK2EN EP2 transaction ends with NAK.
Error ER2FG ER2EN Error detected in EP2 transaction.
STALL ST2FG ST2EN EP2 transaction ends with STALL.
EP3INT ACK AK3FG AK3EN EP3 transaction ends with ACK.
NAK NK3FG NK3EN EP3 transaction ends with NAK.
Error ER3FG ER3EN Error detected in EP3 transaction.
STALL ST3FG ST3EN EP3 transaction ends with STALL.
EPAINT ACK AKA4FG AK4EN EP4 transaction ends with ACK.
NAK NK4FG NK4EN EP4 transaction ends with NAK.
Error ER4FG ER4EN Error detected in EP4 transaction.
STALL ST4FG ST4EN EP4 transaction ends with STALL.
EP5SINT ACK AK5FG AK5EN EP5 transaction ends with ACK.
NAK NK5FG NK5EN EP5 transaction ends with NAK.
Error ER5FG ER5EN Error detected in EP5 transaction.
STALL ST5FG ST5EN EP5 transaction ends with STALL.
EP6INT ACK AKG6FG AKGEN EP6 transaction ends with ACK.
NAK NK6FG NKG6EN EP6 transaction ends with NAK.
Error ER6FG ERGEN Error detected in EP6 transaction.
STALL ST6FG ST6EN EP6 transaction ends with STALL.

Table 2-3 USB interrupts list

09/05/12 Chapter 2 State Transitions and Interrupts

USB-related Interrupts

Vector 0013h USB BUS active interrupt processing

Vector 0033h

USB BUS reset interrupt processing

USB Suspend interrupt processing

Vector 003Bh SOF interrupt processing

Endpoint O interrupt processing

Endpoint 1 interrupt processing

Endpoint 2 interrupt processing

Endpoint 3 interrupt processing

Endpoint 4 interrupt processing

Endpoint 5 interrupt processing

Endpoint 6 interrupt processing

Figure 2-4 USB-related Interrupts

2-9

LC87F1M16A <USB Application Notes>

2.3.2. Related Registers

Shown below are the interrupt-related registers that are used by the USB functions.

Symbol Address R/W Function
USCTRL FE80h R/W | Include Suspend interrupt control
USBINT FE82h R/W | USB interrupt control
EPOINT FE83h R/W | Endpoint 0 interrupt
EPLINT FE84h R/W | Endpoint 1 interrupt
EP2INT FE85h R/W | Endpoint 2 interrupt
EP3INT FE86h R/W | Endpoint 3 interrupt
EPAINT FE87h R/W | Endpoint 4 interrupt
EPSINT FE88h R/W | Endpoint 5 interrupt
EPGINT FE89h R/W | Endpoint 6 interrupt

IE FEO8h R/W | Interrupt control
IP FEQO9h R/W | Interrupt level switching

Table 2-4 USB interrupts related Registers

@ USB operation control register : USCTRL (FE80h)

Bit

Bit Name

R/W

Function

IDLFG

R/W

Suspend detection flag

Set when a suspend condition (staying in bus idle state for 3 ms
or longer) is detectedThis flag must be cleared with an
instruction.

IDLEN

R/W

Suspend interrupt request enable flag

1: Enables USB suspend interrupts.
0: Disables USB suspend interrupts.

Table 2-5 USB operation control register Function list

@USB interrupt register: USBINT (FE82h)

2-10

Bit

Bit Name

R/W

Function

BRSFG

R/W

USB bus reset interrupt flag

Set when a USB bus reset is detected. This flag must be cleared
with an instruction.

BRSEN

R/W

USB bus reset interrupt enable flag

1: Enables USB bus reset interrupts.
0: Disables USB bus reset interrupts.

BACFG

R/W

USB bus active interrupt flag

Set when a USB bus active condition is detected. This flag must
be cleared with an instruction.

BACEN

R/W

USB bus active interrupt enable flag

1: Enables USB bus active interrupts.
0: Disables USB bus active interrupts.

SOFFG

R/W

SOF interrupt flag

Set when an SOF condition is detected. This flag must be
cleared with an instruction.

SOFEN

R/W

SOF interrupt enable flag

1: Enables SOF interrupts.
0: Disables SOF interrupts.

Reserved

ENPEN

R/W

Endpoint interrupt enable flag

1: Enables endpoint n (n=1-6) interrupts.
0: Disables endpoint n (n=1-6) interrupts.

Table 2-6 USB interrupt register Function list

09/05/12 Chapter 2 State Transitions and Interrupts

@Endpoint n interrupt register : EPnINT (n=0-6)
(FE83h/FE84h/FE85h/FE86h/FE87h/FE88h/FE89h)

Bit | Bit Name | R/IW Function
Endpoint n ACK interrupt flag
7 AKNnFG R/W | Set when the transaction terminates with an ACK. This flag

must be cleared with an instruction.
End point n ACK interrupt enable flag
6 AKnEN R/W | 1: Enables endpoint n ACK interrupts.
0: Disables endpoint n ACK interrupts.
Endpoint n NAK interrupt flag

5 NKnFG R/W | Set when the transaction terminates with a NAK. This flag
must be cleared with an instruction.

Endpoint n NAK interrupt enable flag

4 NKnEN R/W | 1: Enables endpoint n NAK interrupts.
0: Disables endpoint n NAK interrupts.
Endpoint n error interrupt flag

3 ERNFG R/W | Set when an error occurs in the transaction. This flag must be
cleared with an instruction.

Endpoint n error interrupt enable flag

2 ERNEN R/W | 1: Enables endpoint n error interrupts.
0: Disables endpoint n error interrupts.
Endpoint n STALL interrupt flag

1 STnFG R/W | Set when the transaction terminates with a STALL. This flag
must be cleared with an instruction.

Endpoint n STALL interrupt enable flag
0 STnEN R/W | 1: Enables endpoint n STALL interrupts.
0: Disables endpoint n STALL interrupts.

Table 2-7 Endpoint n interrupt register Function list

2-11

LC87F1M16A <USB Application Notes>

2.4. USB Bus Reset Interrupt

(1) USB bus reset interrupt source

The USB bus reset interrupt occurs when a reset signal from the host is detected. A reset is
detected when the bus lines (D+,D-) stays in the LOW state for 2.5 microseconds or longer.

(2) When a USB bus reset is detected

The USB bus reset interrupt flag (BRSFG) in USBINT (FE82h) is set when a USB bus reset is
detected,

(3) To use USB bus reset interrupts

USB bus reset interrupts must be enabled for 4 device states: Powered, Default, Address, and
Configured. To enable USB bus reset interrupts, set the USB bus reset interrupt enable flag
(BRSEN) in USBINT.

(4) Conditions under which USB bus reset interrupts are accepted

A USB bus reset interrupt occurs when all of the following conditions are met:
I The USB block enable flag (USBON) is 1.
I The USB bus reset interrupt enable flag (BRSEN) is 1.
I The USB bus reset interrupt flag (BRSFG) is 1.
1 The H/L level interrupt enable flag (IE7) is 1.

(5) USB bus reset interrupt processing

Execution transfers to vector address 0033h when a USB bus reset interrupt is accepted. The
interrupt processing routine must reset (initialize) the USB registers and place the device into
the Default state. The USB bus reset interrupt flag (BRSFG) must be cleared before execution
returns from the interrupt processing routine. Note, however, that BRSFG remains reset until
the bus reset state is released. After clearing BRSFG, the interrupt processing routine must
confirm that BRSFG is not set before returning control.

2-12

09/05/12

Chapter 2 State Transitions and Interrupts

QSB bus reset interrupt processinD

A 4

USBADR (FE8Ch) 3 00h

y

Endpoint O initialization

v

EP1STA (FE92h) 13 00h
Initialize device EP2STA (FE93h) (3 00h
EP3STA (FE94h) 13 00h
EP4STA (FE95h) 13 00h
EP5STA (FE96h) 12 00h
EP6STA (FE97h) 13 00h

y

ENPEN (FES2h[0]) R 1

Switch to Default
State \ 4

Update device state

»
»

y

BRSFG (FES2h[7]) R 0

Yes

Respond to device address 0.
Clear device address.

Initialize endpoint O
*3.2.3, Endpoint O initialization

Endpoint 1-6 are not yet available.

Enable interrupts.
- Endpoint interrupt

Update variable for controlling
device state.

Clear interrupt flag

Wait reset to be cleared.

@(it USB bus reset interrupt processiD

Figure 2-5 Example of USB Bus Reset Interrupt Processing

2-13

LC87F1M16A <USB Application Notes>

2.5. Endpoint Interrupts

There are four types of interrupts for endpoint n (n=0-6).

(1) Endpoint n ACK interrupt
(2) Endpoint n NAK interrupt
(3) Endpoint n error interrupt
(4) Endpoint n STALL interrupt

2.5.1. Endpoint n ACK interrupts

(1) Sources of endpoint n ACK interrupts

The endpoint n ACK interrupt occurs when a transaction terminates normally. Its source varies

depending on the transfer type.

Transfer Type

Source

Control transfer data stage (IN)
Control transfer status stage (IN)
Bulk IN transfer

Interrupt IN transfer

The device received an ACK handshake packet from the
host after sending a data packet in response to an IN
token.

Control transfer setup stage (SETUP)
Control transfer data stage (OUT)
Control transfer status stage (OUT)
Bulk OUT transfer

Interrupt OUT transfer

The device sent an ACK handshake packet after receiving
a data packet following a SETUP/OUT token.

Isochronous IN transfer

The device sent a data packet in response to an IN token.

Isochronous OUT transfer

The device received an EOP packet following OUT token
and data packet.

(2) When an endpoint n ACK interrupt is detected

The endpoint n ACK interrupt flag (AKnFG) in EPnINT (n=1-6) is set when a transaction

terminates normally at endpoint n.

(3) To use endpoint n ACK interrupts

Endpoint 0 ACK interrupts must be enabled for device states Default, Address, and Configured.
Endpoint n ACK interrupts (n=1-6) must be enabled for device states Configured. To enable
endpoint n ACK interrupts, set the endpoint n ACK interrupt enable flag (AKnFG) in EPnINT
and the endpoint interrupt enable flag (ENPEN) in USBINT (FE82h).

(4) Conditions under which endpoint n ACK interrupts are accepted

An endpoint n ACK interrupt occurs when all of the following conditions are met:
1 The endpoint interrupt enable flag (ENPEN) is 1.
1 The endpoint n ACK interrupt enable flag (AKnEN) is 1.
I The endpoint n ACK interrupt flag (AKnFG) is 1.
I The H/L level interrupt enable flag (IE7) is 1.

2-14

09/05/12 Chapter 2 State Transitions and Interrupts

(5) Endpoint n ACK interrupt processing

Execution transfers to vector address 003Bh when an endpoint n ACK interrupt is accepted.
The interrupt processing routine must clear the endpoint n ACK interrupt flag. It must also
take necessary actions on each transaction according to the transfer flow and switch the device

state as required.

(Endpoint n ACK interrupt processinD

AKOEN=1 AKnEN=1
AKOFG=1 AKNFG=1 (n=1~6)
A 4 A\ 4
AKOFG (FE83h[7]) < 0 AKNnFG < 0 (n=1~6)
Control transfers e N
processing One of the following processing routines
is executed:

Bulk IN processing

Bulk OUT processing

Interrupt IN processing

Interrupt OUT processing

Isochronous IN
processing

Isochronous OUT
processing

A 4
Gxit Endpoint n ACK interrupt processinD

Figure 2-6 Example of Endpoint n ACK Interrupt Processing

2-15

LC87F1M16A <USB Application Notes>

2.6. Suspend Interrupts

(1) Source of USB Suspend detection

Suspend refers to an idle state that persists for 3 milliseconds or longer. A suspend condition is
detected and the device is switched into the Suspended state when no activity is performed by
the host (the state of the bus lines does not change from (D+,D-)=(1,0)) for not shorter than 3
milliseconds.

(2) When a suspend interrupt is detected

The suspend interrupt flag (IDLFG) in the USB operating control register (USCTRL) is set when
the USB suspend is detected.

(3) To use the suspend interrupt

The suspend interrupt must be enabled for 4 device states: Powered, Default, Address, and
Configured. The suspend interrupt can be enabled by settin the suspend interrupt request
enable flag (IDLEN) in USCTRL (FE80h).

(4) Conditions under which suspend interrupt is accepted

A suspend interrupt occurs when all of the following conditions are met:
I The suspend interrupt request enable control flag (IDLEN) is 1.
I The suspend detectionf flag (IDLFG) is 1.
I The H/L level interrupt enable flag (IE7) is 1.

(5) Suspend Processing

When a suspend condition is detected, disable all interrupts that are enabled in the current
state and enable interrupts that are used to return from the suspend condition. Subsequently,
switch the device into Suspended state. In the Suspended state, the device can be run in the
hold mode. When running the device in the hold mode, set the interrupt level of the interrupt
for returning from the hold mode higher than that of the interrupt used to place the device into
the hold mode. For example, to make the device enter the hold mode during the suspend
interrupt processing routine, set the interrupt level of the interrupt to be used for returning
from the suspend processing higher than that of the suspend interrupt. The interrupt level
must be set using the master interrupt enable control register IE (FEO8h) or the interrupt
priority control register IP (FEO9h).

(6) Returning from the Suspended state

The device can be returned from the Suspended state through the resume detection or remote
wakeup function. For details, see Section 2.7, "USB Bus Active Interrupt (Resume Detected)"” or
Section 2.8 "Remote Wakeup."

2-16

09/05/12

Chapter 2 State Transitions and Interrupts

< Suspend processing >

A 4

USCTRL (FE80h) 3 20h
or

USCTRL (FE80h) 3 00h

USPORT (FE81h) 13 40h

A 4

BACFG (FES2h([5]) R 0
BACEN (FES2h[4]) R 1
*IP13 (FEO9h[O]) R 1

A\ 4

Set up for remote wakeup
interrupts

\4

Update device state

______________ o

1 When it is necessary to place the device

PDN (FEO7[1]) <-- 1

Hold mode
[Stop oscilation]
[Stop CPU]

J——

Stop USB operation
Can detect bus active conditions even
when the USB block is stopped
- Pull up D+ (P70 or P27)

Clear bus active flag.
Enable bus active interrupt.
Set interrupt priority level of bus active to H.

Enable remote wakeup interrupts, if the remote
wakeup feature has been enabled by the host.

Update variable for managing device
state (to Suspend state).

'into hold mode.

Interrupt processing for
resetting hold mode

A 4

USB bus active
interrupt processing
or
Remote wake up

End of Suspend
processing

D

interrupt processing

N

(Exit interrupt processinD

* To place the device into hold mode during
suspend interrupt(L level) processing, raise the
interrupt level (H or higher) so that the hold mode
can be reset.

Figure 2-7 Example of Suspend Processing

2-17

LC87F1M16A <USB Application Notes>

2.7. USB Bus Active Interrupt (Resume Detected)

This microcontroller can detect the resume condition through the USB bus active interrupt. If the
device is running in the hold mode in the Suspended state, the microcontroller can also reset the
device from the hold mode through the USB bus active interrupt. To reset the hold mode, however,
it is necessary to set the interrupt level of the USB bus active interrupt higher than that of the
interrupt to be used when placing the device into the hold mode. This must be considered when the
hold mode entry processing is to be executed during the interrupt processing routine. (No problem
will arise when the hold mode entry processing is to be executed after the return from the
interrupt processing).

(1) Source of USB bus active detection

A USB bus active interrupt occurs when an activity initiated by the host is detected. An activity
is regarded as being detected when the bus lines change their state from the idle state (switch
into the K or SEO state).

(2) When a USB bus active interrupt is detected

The USB bus active interrupt flag (BACFG) in USBINT (FE82h) is set when a USB bus active
interrupt is detected.

(3) To use USB bus active interrupts

USB bus active interrupts must be enabled in the Suspended state. USB bus active interrupts
can be enabled by setting the USB bus active interrupt enable flag (BACEN) in USBINT
(FE82h).

(4) Conditions under which USB bus active interrupts are accepted

A USB bus active interrupt occurs when all of the following conditions are met:
I The USB bus active interrupt enable flag (BACEN) is 1.
I The USB bus active interrupt flag (BACFG) is 1.
I The H/L level interrupt enable flag (IE7) is 1.

(6) USB bus active interrupt processing

Execution transfers to vector address 0013h when a USB bus active interrupt is accepted. The
interrupt processing routine must clear the USB bus active interrupt flag (BACFG). It must also
take preparatory actions to return to the original state from the Suspended state.

If the device is running in the hold mode, it is necessary to set up the clock to return to the
normal mode. In this case, the routine must insert a wait before setting up the clock until the
oscillation gets stabilized. Since the wait time varies depending on the oscillator to be used, an
adequate wait time should be provided according to the characteristics of the oscillator.

2-18

09/05/12 Chapter 2 State Transitions and Interrupts

QSB bus active interrupt processi@

l * Only when the device is run in the hold mode.
:] * Necessary to wait until i
i wait oscillation gets stable. |
' Set up clock. E
! v -Enable oscillation !
| OCR (FEOEh) 13 92h -Select main clock. :

-Frequency division(1/1)

USCTRL (FE8Oh) 13 E4h Enable USB operation

or
USCTRL (FE80h) 13 C4h E“"t‘jlp B’éépm or sz.7)t t
USPORT (FE81h) R 40h napble suspena interrupts.

A
BACEN (FE82h[4]) 3 0
*|P13 (FEO9h[0]) 13 0

Disable USB bus active interrupts.
Set bus active interrupt level to L.

A 4

Disable remote wake up (Only when remote wakeup interrupts are
Interrupts enabled)

A 4
Update device state

Update variable for managing device state.
(Return to state before suspend.)

A 4

@it USB bus active interrupt processi@

* Restore interrupt level as required.

Figure 2-8 Example of USB Bus Active Interrupt Processing

2-19

LC87F1M16A <USB Application Notes>

2.8. Remote Wakeup

If the device wants to resume operation in the Suspended state on its own account, it must issue a
resumption request to the host using the remote wakeup feature. The remote wakeup feature is
not available until the host enables it. The remote wakeup feature is available only when the
device is in the Configured state and it is enabled by the SetFeature request from the host.

(1) Remote wakeup interrupt

It is necessary to reset the hold mode if the device is running in the hold mode in the
Suspended state. The following types of interrupts can be used to return the device from the
hold to normal mode:

Ir;t:l::::t Pin Interrupt Input Signal A\;e(;::ggs Interrupt Level
INTO P70* L level 0003h X or L
INT1 P71 H level 000Bh X or L
INT2 P72 L edge

~INT4__ P20-P23 H edge 0013h Horl
INTS P24-P27 Both edges 001Bh Hor L
Port 0 P00-PO7 From "H" to "L" 004Bh Hor L

Table 2-8 Interrupts list for Returning from the Hold Mode

*When P70 is used to control “D+ pull-up”, it isn’'t able to use as INTO.

2-20

09/05/12 Chapter 2 State Transitions and Interrupts

(2) To use remote wakeup interrupts

Remote wakeup processing must be enabled only in the Suspended state. Remote wakeup
interrupts can be enabled by setting the respective interrupt enable flags. For the hold mode to
be reset successfully on a remote wakeup, it is necessary to set the interrupt level of the remote
wakeup interrupt higher than that of the interrupt to be used when placing the device in the
hold mode by manipulating the register (IE or IP). This must be considered when the device is
to be placed into the hold mode during the interrupt processing routine.

This example uses INT1 interrupts

Gemote wakeup interrupt setuD

v

* XCNT1 (FEOSh[1]) 3 0

v

P71DDR (FE5Ch[5]) 3 0 - For input .
P71 (FE5Ch[1]) R 0 - No pull-up resistance (open)

v

INT1LH (FESDh[7]) R O

- INTZ interrupt level: X level

INT1LV (FESDh[E]) 13 1 - Low Level interrupt
INT1IF (FE5Dh[5]) 13 O - Clear interrupt flag.
INT1IE (FE5Dh[4]) 3 1 - Enable interrupts.

v

End of remote wakeup interrupt setup

Disable remote wakeup interrupts

v

INT1IF (FE5Dh[5]) 13 0 - Clear interrupt flag.
e CESDIED (2 O interrupt level: L evel
*XCNT1 (FEO8h[1]) 13 1 P '

v

End of remote wakeup interrupts
disable processing

Figure 2-9 Example of Setting the Device for Remote Wakeup Interrupts (INT1 Interrupt)

* Restore interrupt level as required.

2-21

LC87F1M16A <USB Application Notes>

(3) Remote wakeup interrupt processing

Execution transfers to the vector address to be used when a remote wakeup interrupt is accepted. The
interrupt processing routine must clear the interrupt flag, disable further interrupts, and send a resume
signal. In addition, it must take preparatory actions to return to the preceding state from the Suspended
state. (It is only when the device switches its state from Configured to Suspended that the remote wakeup
feature is available. Consequently, the destination is limited to the Configured state.) If the device is running
in the hold mode, it is necessary to set up the clock to return to the normal mode at the beginning of the
interrupt processing routine. In this case, the routine must insert a wait before setting up the clock until the
oscillation gets stabilized. Since the wait time varies depending on the oscillator to be used, an adequate wait
time should be provided according to the characteristics of the oscillator.

QSB remote wakeup interrupt process@

l * Only when the device is run in the hold mode.
i) * Necessary to wait until |
! walit oscillation gets stable. E
! Set up clock. :
! v -Enable oscillation :
| OCR (FEOEh) R 92h -Select main clock. :
' -Frequency division(1/1) !

Clear interrupt flag

\4
USCTRL (FESOh) 3 E4h
or
USCTRL (FESOh) 3 C4h
USPORT (FE81h) 3 40h

Enable USB operation
Pull up D+ (P70 or P27)
Enable USB suspend interrupts.

A
BACEN (FE82h[4]) 3 0 Disable USB bus active interrupts.
*|P13 (FEO9h[O]) 13 0 Set bus active interrupt level to L.
A 4
Disable remote wake up (Only when remote wakeup interrupts are
Intel’rupts enab|ed)

A 4
Send resume signal

A\ 4
Update device state

Update variable for managing device state.
(Return to Configured state.)

A 4

@it USB bus active interrupt processi@

* Restore interrupt level as required.

Figure 2-10 Example of Remote Wakeup Interrupt Processing

2-22

09/05/12

Chapter 2 State Transitions and Interrupts

(4) Sending the resume signal

The procedure for sending the resume signal is explained below.

<1>Hold the idle state for 2 milliseconds.

The resume signal must be transmitted after interrupts are disabled by the remote wakeup
interrupt processing routine. The signal, however, cannot be transmitted unless the bus stays in the
idle state for at least 5 milliseconds. Since 3 milliseconds are required to identify the Suspended
state, it is necessary to keep the bus in the idle state for at least 2 milliseconds before transmitting
the resume signal (this ensures that the bus remains in the idle state for at least 5 milliseconds
when a remote wakeup interrupt occurs immediately following the entry into the Suspended state).
Use the base time or similar feature to count 2 milliseconds, and then proceed to the next step.

<2>Generating the resume signal

The resume signal places the USB bus lines in the (D+, D-)=(0,1) state (K state). To send data out of
the USB port (D+, D-) of this microcontroller, clear the USB run flag (USRUN) in the USB block
control register (USCTRL), then set the USB port control register (USPORT) to initiate generation
of the K state.

<3>Hold the K state for 1 to 15 milliseconds.

When the device is to send the resume signal through the remote wakeup feature, it is necessary to
maintain the USB bus in the K state for 1 to 15 milliseconds. Use the base timer or similar feature
to count 1 to 15 milliseconds and proceed to the next step.

<4>End the transmission processing.

Set up the USB port control register (USPORT) so as to place the USB port (D+, D-) into the input
mode and terminate the resume signal transmission processing. Subsequently, set the USB run flag
(USRUN) in the block control register (USCTRL) to enable USB operations.

2-23

LC87F1M16A <USB Application Notes>

A 4

(Resume signal transmission)

ISL (FE5Fh) R 10h
BTCR (FE7Fh) 13 70h

»
»
N

No
‘ Elapsed 2ms?

BTON (FE7Fh[6]) R O
BTIF1 (FE7Fh[3]) R 0

A4

USPORT (FE81h) 3 0Dh
or
* USPORT (FE81h) 13 4Dh

A4

BTON (FE7Fh[6]) R 0

»
»
X

No
‘ Elapsed 10ms?

BTON (FE7Fh[6]) R O
BTIF1 (FE7Fh[3]) R 0

A 4

USPORT (FE81h) 3 00h
or
* USPORT (FE81h) 3 40h

A 4

Setup and start base timer.
- Select base timer source clock (cycle clock).
- Start base timer (no interrupt used).

Keep idle state for 2ms.

(When base timer 1 is used)
Stop base timer
Clear base timer interrupt 1 flag.

Output K state (D+,D-)=(0,1) on ports.

* |f P27 controls D+ pull up.

(When base timer 1 is used)
Start base timer (no interrupt used).

Resume signal must be at least 1 ms long.
Wait for not longer than 15 ms (approx. 10 ms).

(When base timer 1 is used)
Stop base timer
Clear base timer interrupt 1 flag.

Put USB ports (D+,D-) into input mode.

* |f P27 controls D+ pull up.

Gnd of resume signal transmissi(D

Figure 2-11 Resume Signal Transmission Processing

2-24

Chapter 3. Control Transfers

3.1. ENdpoint O CONtrol..cccooiiiiii i 3-2
0t O R = = =T B L= 0] (=T PRSP 3-2
K O = 0 To | o To 1 | A0 PP O PR PPPPPPPPPPPPPPTN 3-4
3.2. Outline of CoNtrol TranSTer ... 3-5
T T = Vo [T I = 1 1= 11T T RSP 3-5
3.2.2. Transaction CONFIQUIALIONuuuuuiiiiiiiiiiiese e ssss s e e s e s e e e e e e e e e e e e e aaaeaeaeaaaaaaaaeeeeeeereeereeeeeeenes 3-6
3.2.3. ENdpoint O INILANZALIONcooiiiiiiiiiiiec e 3-9
3.2.4. Control Transfers ProCeSSINGcoiviiiiiiiii ettt 3-10
3.2.5. Setting Up the TranSmiSSION MOUEuuvuiiiiiiiiiiiiiiirs s s e s s e s e e e e e e e e e aaaaaaaaaaas 3-11
3.3, SEIUP STAGE oo i 3-14
3.3.1. Outline of Setup stage SETUP tranSaCtiONueeiiiiiiiieeiiiiieee ittt 3-14
TR T = U @ o T = 11T o SRR 3-15
3.3.3. SETUP PrOCESSING.....ceiiiiiiiiiiieiieieieeiettatsteininrnrnresasasaa s s s s s s s s e sasaaaaaaaaaaaaaaaaaaaaeeaseees 3-16
R =oAL (o] (=SSO PEERRR 3-17
3.4. Control Write Transfer Data Stage ..., 3-18
3.4.1. Outline of Data stage OUT traNSACLONuuuuuiuiuruiiiiiiie s es e e s e e e e eeeeeaeeaeaeaaaaaaeaaes 3-18
N D - | - W @ LU IS (1] o PP 3-18
3.4.3. DAta OUT OPEIALIONeeieiiiiieieiiiiie ettt ettt ettt e ettt et e e it et e s sbb e e e e s aabneeeesnnnneees 3-19
3.4.4. Data OUT PrOCESSING ...cevvvvvereriiiiririnieinininnnnnnnnnnenen s aaasasasasaaasaaaaaaaaaasaesaseseserereeeen 3-20
34,5, RECEIVE ETOIS.ttt e e et e e e e e e e e e bbb e et et e e e e s e aanbbrreeeeeeeeeaanns 3-21
3.5. Control Write and No Data Transfer Status Stage...........ccccoveveieeeeniiiiiiiiiieeeeenn. 3-22
3.5.1. Outline of Status stage IN traNSACHONocoiiiiiiiiiiiie e 3-22
3.5.2. STALUS IN SBIUP .. oieeeiiiii et e e et e e e e e e e ba b s e e e e e e aabnnaeaaees 3-22
3.5.3. StAtUS IN OPEIALION.......euueriririiiiiiitii e rrrsss s s se s e s e s e s e e e e e eeeaeaaaaaaaaaaaaaaaaeaeeeerererererererererernnes 3-23
3.5.4. StAtUS IN PrOCESSING .. .eieittiiieiitiiie ettt et ettt e et b e e e e kb e e e e st beeeessirneeaean 3-24
3.5.5. TraNSMISSION EITOIS ..coiiiiiiiiiiiieiit ettt e e e et e e e e e e e s e st e e e e e e e e e aans 3-25
3.6. Control Read Transfer Data Stage...........cccceeeeeeiieiieiee e, 3-26
3.6.1. Outline of Data stage IN traNSACLONuueruiiiiiirerr e e e e e e e e e e e aaaaaaaaaes 3-26
3.6.2. DALA IN SEIUD ...ttt e e e e 3-26
RO TCTB T=r= W |\ o 1T = U1 o] o PSP 3-27
3.6.4. DAta IN PrOCESSING ..eeviveiiiiiiieiiiiieieieieiaiareieeesasaaaa s as s s s e s s e s e s e s eaeaaaaaaaaaaaaaaaaaaaeaeeeeeeenes 3-28
3.6.5. TranNSMISSION EITOIS ..coiiiiiiiiiiiiieii ettt e ettt e e e e e e et e e e e e e e s e snntneeeeeaaaeaeaanns 3-28
3.7. Control Read Transfer Status Stageooovviviiiiiiiiiiieeeeeeeeeeeee s 3-29
3.7.1. Outline of Status stage OUT tranSACHON............uuuveriiiiiieiiirrr e n e e e e e aeaaeas 3-29
3.7.2. StAIUS OUT SEIUP «ooeieieiieiiitiiee ettt sttt e ettt ettt e e e st e e e s sttt e e e stbe e e e s snseeeaesansbeeeesnsneeens 3-29
3.7.3. StAtUS OUT OPEIALION....cciiutiiiieiiiiie ettt ettt et et e e e ab e e e s nabne e e e snnneee s 3-30
3.7.4. StatuUS OUT PrOCESSING.....cciitiiiiiiiiiiiieeieteeeeterereretarnrarnrae s e s s e aaaasasaaaaaaaaaaaaaaaees 3-31
3.7 5. RECEIVE ETOIS. ... ittt e ettt et e e e e e e s bbb e e e e e e e e s e aaanbbrreeeeeeeeeaanns 3-31

3-1

LC87F1M16A <USB Application Notes>

3.1. Endpoint 0 Control

Control transfers are bi-directional transfers that are used primarily to configure device. Endpoint
0 is used in control transfers. The buffers to be used for endpoint O transfers are mapped as
transmission/receiving data areas to 8, 16, 32 or 64-bytes internal RAM areas, respectively.
Control transfers are performed according to access to these transmission/receiving data areas
(storing of transmitting data, and read-out of received data), and a setup of the related registers.

3.1.1. Related Registers

The registers that are related to control transfers are listed below.

Symbol Address R/W Function
FRAMEL FE8Ah R Frame number lower-order 8 bits
FRAMEH FE8Bh R Frame number higher-order 3 bits
USBADR FE8Ch R/W USB address management
EPINFO FE8Dh R USB transfer information
EPOSTA FE8SEh R/W EPO control

EPOMP FE8Fh R/W EPO maximum payload size

EPORX FE9Oh R EPO receive data size

EPOTX FE91h R/W EPO transmit data size

Table 3-1 Control Transfer Related Registers

@Frame number low register: FRMEL (FE8Ah)

Bit Bit Name R/W Function
7 FRMO7 Frame number lower-order 8 bits
- R Loaded with the lower-order 8 bits of the frame number when
0 FRMOO an SOF is received.

@Frame number high register: FRMEH (FE8Bh)

Bit Bit Name R/W Function

7

- - - Reserved

3

2 FRMO08 Frame number higher-order 3 bits

- - R | Loaded with the higher-order 3 bits of the frame number
0 FRM10 when an SOF is received.

@USB address register: USBADR (FE8Ch)

Bit Bit Name R/W Function
Address enable flag
7 ADREN R/W | 1: Enables ADR6-ADRO.
0: Disables ADR6-ADRO (responds to address 0).
6 ADRG6 Device address
- R/W

0 ADRO Stores the device address assigned by the host.

@ Transfer information register: EPINFO (FE8Dh)

Bit Bit Name R/W Function

7 EPNO3 Endpoint number

- - R | Loaded with the endpoint number when an EPnINT (n=0-6)
4 EPNOO interrupt source is established.

3 TKN1 Token ID. :

5 TKNO R | Loaded with the token ID when an EPNINT (n=0-6) interrupt

source is established.

3-2

09/05/12

Chapter 3 Control Transfers

[EnY

CTKN1
CTKNO

Token ID for control transfer

Loaded with the token ID when an EPOINT interrupt source
is established.

@ Endpoint 0 mode setup register: EPOSTA (FE8SEh)

Bit Bit Name R/W Function
Endpoint O enable bit

7 EOEN R/W | 1: Enables endpoint 0.

0: Disables endpoint 0.

Endpoint O data toggle bit

This bit is inverted and the receive data is transferred to the
buffer when this bit matches DATA PID (in the data receive

6 EOTGL R/W | mode). This bit is set to 1 in the SETUP receive mode.

The data whose DATA PID matches this bit is transmitted (in
the data transmit mode) and this bit is inverted when an ACK
is received.

Endpoint 0 maximum payload size excess bit

5 EOOVR R/W | Set when the volume of data exceeding the maximum payload
size is received. This bit must be cleared with an instruction.
STALL bit

4 EOSTL RIW A 1 in this bit caus_es _STALL to _be returned for tokens other
than SETUP. The bit is automatically cleared after a SETUP
token is received.

ACK bit (* See the transmission mode chart.)
(When EOCSU=0)
3 EOACK RIW 1: Performs ACK processing for IN/OUT tokens.
0: Returns NAK for IN/OUT tokens.
Control SETUP bit (* See the transmission mode chart.)

5 E0CSU RIW Set_ Wh_en_ the Setup stage of a control transfer is completgd.
This bit is cleared when the Status stage of a control write
transfer is completed.

Control STATUS bit (* See the transmission mode chart.)
A 1 in this bit identifies a status stage for a control transfer.

1 EOCST R/W | This bit is cleared when the Setup stage is completed. The bit is
set when the Status stage of a control read transfer is
completed.

Control R/W bit (* See the transmission mode chart.)

0 EOCRW RIW Cleared when the Setup stage is completed.

1: Identifies a control read transfer.
0: Identifies a control write transfer.

@Endpoint 0 maximum payload size register: EPOMP (FE8Fh)

Bit Bit Name R/W Function

7 - - Reserved

6 EOMP6 Endpoint 0 maximum payload size

- - R/W
0 EOMPO Indicate the maximum payload size of endpoint 0.

@ Endpoint 0 receive data size register: EPORX (FE9Q0h)

Bit Bit Name R/W Function

7 - - Reserved

6 EORX6 Endpoint O receive data size

- - R

0 EORXO Indicate the size of endpoint O receive data.

LC87F1M16A <USB Application Notes>

@Endpoint 0 transmit data size register: EPOTX (FE91h)

Bit Bit Name R/W Function
7 - - Reserved
6 EOTX6 Endpoint O transmit data size
- - R/W i . . .
0 EOTXO0 Indicate the size of endpoint O transmit data.

3.1.2. Endpoint O

Endpoint 0 is mapped into 8, 16, 32 or 64-byte receiving and transmission RAM areas. Its payload
size is indicated in a register for each packet. The size of received data is stored in EPORX during a
control write transfer. In this case, EOOVR is set if the volume of data exceeding the maximum
payload size specified in EPOMP is received. For control read transfers, EPOTX must be loaded
with the number of bytes to be transmitted. The bytes of data specified here are transmitted

during the actual transmission processing.
The characteristics of endpoint 0 are summarized below.

Name

Payload Size

Corresponding Transfer

Endpoint 0
(reception)

Endpoint 0
(transmission)

(* Size of data received)

Stored in EPORX. (64 bytes maximum)

(* Size of data to be transmitted)
Stored in EPOTX. (64 bytes maximum)

Control write

Control read

Table 3-2 Outline of Endpoint 0

Transfer Type

Maximum Packet Size

Packet Payload Size

Control

8, 16, 32, or 64 bytes

0-Maximum packet size
(Up to the byte count specified by the host)

Table 3-3 Control Transfer Packet Sizes

Note: The actual payload size of the packets may be changed provided it does not exceed the
endpoint 0 maximum packet size (bMaxPacketSize0) that is defined in the device descriptor.
The total number of data bytes to be transmitted or received in the Data stage, however,
must not exceed the size that is specified in the Setup stage (wLength in the device request).
When setting up EPOTX, make sure that this size should not be exceeded. If data exceeding
this size is received, a STALL must be returned in the next transaction. If the size of
transmit data is smaller than the size specified by the host and is an integral multiple of the
maximum packet size, transmit a packet of a 0 byte length as the last packet to identify the

end of data.

3-4

09/05/12 Chapter 3 Control Transfers

3.2. Outline of Control Transfer

A control transfer is made up of 3 (or 2) stages called Setup stage, Data stage, and Status stage,
and each stage is performed in order.

(1) Setup stage --------------- The host transmits a device request.
(2) Data stage (option) ----- The device transmits/receives data specified in the device request.

(3) Status stage -------------- The device reports the result of request processing.

3.2.1. Stage Transitions

The Setup stage always forms the first stage of a control transfer followed by the Data stage and
Status stage. The presence or absence of the Data stage and its direction (IN/OUT) are specified
during the Setup stage. According to the contents of the Setup stage, control transfers are divided
into the following three types:

@ Control read transfer
A control read transfer is made up of 3 stages that occur in the order of Setup, Data, and
Status stages. The direction of the Data stage is from device to host (IN direction). In the Data
stage, the data is sent in one or more IN transactions as required.

@ Control write transfer
A control write transfer is made up of 3 stages that occur in the order of Setup, Data, and
Status stages. The direction of the Data stage is from host to device (OUT direction). In the
Data stage, the data is received in one or more OUT transactions as required.

@ Control no-data transfer
A control no-data transfer is made up of 2 stages that occur in the order of Setup and Status
stages. This transfer has no Data stage and its Status stage begins with an IN token.

Setup stage Data stage Status stage

| | |

: : :

Control read)
ransfer | | SETUP(O) ——® INQ1) IN(0) - — 0UT()

: : :

|] |

|] |

|] |

: : :

i |
conolwite 1 | seTupO) |-—9{ ouT@) out) |- —» N

sfer : ! !

: : :

|] |

|] |

: : :

Control no-data ! ! !
transfer | [_SETUP(O) [> IND)

: : :

|] |

Numbers enclosed in parentheses represent the PID of the data packets.
1:DATAL1 0:DATAO

Figure 3-1 Control Transfer Stage Transitions

3-5

LC87F1M16A <USB Application Notes>

3.2.2. Transaction Configuration

u Setup stage

3-6

The Setup stage consists of one SETUP transaction. The SETUP transaction consists of token
(SETUP), data (DATAO), and handshake packets. DATAO PID is always used for the data
packet and its content is always a device request (the size is fixed at 8 bytes). For a
transaction that begins with a SETUP token packet, the device must always respond with
ACK handshake packet.

Token Data Handshake

SETUP DATAO(8byte) ACK

Data stage

The Data stage, if present, consists of one or more IN/OUT transactions. IN/OUT transaction
consists of token (IN/OUT), data (DATA1/0), and handshake packets. As many transactions as
required according to the amount of data are repeated in the Data stage. DATA1 and DATAO
are used alternately as the PID of the data packets so that retransmitted and new data
packets can be distinguished.

Token Data Handshake
IN DATA1/DATAO ACK
ouT DATA1/DATAOQO ACK

Status stage

The Status stage consists of one IN/OUT transaction. IN/OUT transaction consists of token
(IN/OUT), data (DATAL), and handshake packets. The token that is opposite to that which is
used in the Data stage is used in the Status stage. The PID of the data packet used is DATA1
and its data size is 0 byte.

Token Data Handshake
IN DATA1(Obyte) ACK
ouT DATA1(Obyte) ACK

09/05/12 Chapter 3 Control Transfers

—» DATA0/1 TP ACK)

IN P> NAK ©))
P STALL | (4)
Data stage transaction
ACK 5)
OUT [—» DATA0/1 NAK (6)
STALL | (7)

—» DATAlL [—» ACK (8)
IN P NAK | (9)
Status stage transaction P STALL (10)
ACK | (11)
OUT [—» DATAL NAK | (12)
STALL | (13)

Device operation

(1) The device must always respond with an ACK.

(2) Send data packets alternately starting at DATAL.

(3) Respond with a NAK if the device is not readyto send data.
(4)(7)(10)(13) Respond with a STALL if a host intervention is required.

(5) Receive data and return an ACK.

(6) Respond with a NAK if the device is not ready to accept data.

(8) Send a 0-byte DATA1 packet.

(9)(12) Respond with a NAK if the device is not ready for the status stage.
(11) Receive a 0-byte DATAL packet and respond with an ACK.

Figure 3-2 Stages of a Control Transfer

3-7

LC87F1M16A <USB Application Notes>

The type of control transfer is determined during the Setup stage, and the direction of transfer
changes on the Data stage and the Status stage. The endpoint O operation for a token is performed
according to the transmission mode set in EPOSTA. Set up suitable transmission mode for each
stage. See 3.2.5, “Setting Up the Transmission Mode”. LC87F1M16A can achieve control transfer
processing through the initialization for initiating control transfers and the processing of endpoint

0 ACK interrupt which occurs on each normal termination of each transaction.
The figure below shows the outline of control transfer processing.

Setup stage

Data stage

Status stage

3-8

Endpoint 0
Initialization

|
|
v

SETUP
DATAO
ACK

Endpoint 0 ACK
interrupt

SETUP processing

Status OUT processing

I |
I |
]]
IN ouT
DATAXx DATAx
ACK ACK
I I
Endpoint 0 ACK | Endpoint 0 ACK |
interrupt | interrupt |
Data IN processing - Data OUT processing -
I I
| |
__________ | R B
i i
|
. f
ouT IN
DATA1(null) DATAL(null)
ACK ACK
T T
Endpoint0 ACK | Endpoint 0 ACK |
interrupt | interrupt |

Status IN processing

___________ Yo,

R
E End of Control no-data transfer /
1
1

Controlwrite transfer

09/05/12 Chapter 3 Control Transfers

3.2.3. Endpoint O Initialization

Endpoint O setup is required to perform a control transfer. When initializing the device as the
result of a bus reset, be sure to perform endpoint O initialization. This application note assumes
that endpoint O initialization is executed during bus reset interrupt processing. See Section 2.4,
"USB Bus Reset Interrupts,” for bus reset interrupt processing.

Since the first stage of a control transfer is the Setup stage (see Figure 3-1), the endpoint O
initialization must be set up so that SETUP transactions for the Setup stage can be accepted. An
example of endpoint 0O initialization processing is shown below.

CEndpoint 0 initialization)

EPOSTA (FEBEh) settings [EPO setting]
[OJEOCRW — 0 Clear R/W bit.
[1JEOCST < 0 Blear STATUS bit.
[2]JEOCSU < O Clear SETUP hit.
[3JEOACK <« 0 Clear ACK hit.
[4]EOSTL < 0O Clear STALL bit.
[5JEOOVR « 0 Clear Payload size excess bit.
[6]EOTGL < 0 FEzﬁsgr datatoggle_: to 0.
[7JECEN < 1 able endpoint interrupts.

EPOMP (FE8Fh) < 40h Set EPO maximum payload size to 64bytes.

v

EPOINT (FE83h) <« 40h Enable endpoint 0 ACK interrupts.

Gnd of endpoint 0 initializatiD

Figure 3-3 Example of Endpoint O Initialization Processing

3-9

LC87F1M16A <USB Application Notes>

3.2.4. Control Transfers Processing

An endpoint 0 ACK interrupt occurs at each normal termination of the Setup, Data, and Status
stages. Since EPINFO (FE8Dh) is updated whenever an endpoint 0 ACK interrupt occurs, the
Control transfers processing must be executed according to the token information that is stored.
The interrupt to be processed for the SETUP token is the one that occurs on completion of the
SETUP transaction. The SETUP processing must be followed by the preparatory processing that is
required to proceed to the next stage.

For the IN and OUT tokens, the lower-order 4 bits of EPOSTA must be checked to identify the
stage of the terminated transaction.

The Control transfers processing to be performed during the endpoint 0 ACK interrupts processing
routine looks like as shown below.

Qontrol transfers processi@

Check token code in EPINFO, Bits 1-0

3 (SETUP)

g SETUP processing

Control read transfer

Data IN processing >

2 (IN)

Control write/no-data transfer

Status IN processing -

Control write transfer

0 (QU Data OUT processing P

Control read transfer

Status OUT processing -

CEnd of Control transfer processinb

Figure 3-4 Example of Control Transfers Processing

3-10

09/05/12 Chapter 3 Control Transfers

3.2.5. Setting Up the Transmission Mode

The LC87F1M16A responds to control transfers according to the transmission mode defined in the

EPOSTA.
bit: 7 6 5 4 3 2 1 0
EPOSTA EOEN EOTGL EOOVR EOSTL EOACK EOCSU EOCST | EOCRW

(FESEh)

~

Set transmission mode

Bit Name

Setting

7 EOEN

If this bit is set to 1, the endpoint 0 is enabled. The endpoint 0 must always be
enabled in the stages following the Default state.

6 EOTGL

This bit need not be set during initialization since no toggle check is performed
during the SETUP transaction. It is automatically set to 1 when the Setup
stage is completed. Subsequently, the state of this bit is automatically inverted
on each normal termination of the transactions in the Data stage. This bit has
no meaning in the Status stage.

5 EOOVR

Set when the volume of data exceeding the maximum payload size is received.

4 EOSTL

Set to 1 when a protocol violation occurs. If this bit is set when the endpoint O
is enabled (EOEN=1), the endpoint O sends a STALL in response to an IN/OUT
token regardless of the transmission mode setting. This bit is cleared when a
SETUP token is received.

3 EOACK

This bit has no meaning if the Setup stage is not completed (EOCSU=0). It is
automatically reset to 0 when the Setup stage is completed. If this bit is O,
endpoint O responds with a NAK handshake in an IN/OUT transaction. If this
bit is 1, the processing corresponding to the transmission mode is executed in
an IN/OUT transaction.

2 EOCSU

It is automatically set to 1 when a Setup stage is complete. Since the device
can respond to an IN/OUT tokens if this bit is 1, this bit must not be set by
firmware. This bit is cleared when the Status stage of a control write transfer
is completed.

1 EOCST

This bit has no meaning if the Setup stage is not completed (EOCSU=0). It is
automatically reset to 0 when the Setup stage is complete. If this bit is O, it
identifies the Data stage of a control transfer. If 1, it identifies the Status
stage. This bit must be set to 1 by firmware when a Data stage is complete.
This bit is set when the Status stage of the control read transfer is completed.

0 EOCRW

This bit has no meaning if the Setup stage is not completed (EOCSU=0). It is
automatically reset to 0 when the Setup stage is complete. If this bit is O, it
identifies a control write transfer. It must be set to 1 by firmware when a control
read transfer is to be performed.

3-11

LC87F1M16A <USB Application Notes>

Transmission Mode Chart

EO . . ACK
EO EO EO Receive | Receive
CR Token Response Inter
ACK | CSU | CST W Toggle Data -rupt
— Invalid | (Ignore)
ol 1ol | SETUP — Valid | Send ACK O
ouT — — (Ignore)
IN (Ignore)
— Invalid | (Ignore)
i Valid Send ACK @)
2 0 1 — — — Invalid | (Ignore)
ouT = Valid | Send NAK
IN Send NAK
— Invalid | (Ignore)
i Valid Send ACK @)
Not Invalid | (Ignore)
0 0 ouT match Vahd_ Send ACK
Match |an‘i|Id (Ignore)
Valid Send ACK (data OUT operation) O
IN Send null DATA1 packet (status IN operation) O
— Invalid | (Ignore)
SETUP — Valid | Send ACK ®)
0 1 ouT — Invalid | (Ignore)
3 1 1 — Valid Send ACK (status OUT operation) O
3) IN Send data (data IN operation) O
— Invalid | (Ignore)
SETUP — Valid | Send ACK ®)
1 0 — Invalid | (Ignore)
ourT = Valid | Send STALL
IN Send null DATA1 packet (status IN operation)
— Invalid | (Ignore)
SETUP — Valid | Send ACK
1 1 ouT — Invalid | (Ignore)
— Valid Send ACK (status OUT operation) @)
IN Send STALL

Table 3-4 Transmission Mode Chart

— Don'’t care
Not applicable

*SETUP tokens are always accepted regardless of the transmission mode setting.
(1) Only SETUP tokens are accepted if EOCSU=0. IN/OUT tokens are ignored.

(2) EOCSU=1 indicates that the Setup stage has been completed. IN/OUT tokens are accepted.

When EOACK=0, however, the LC87F1M16A responds with a NAK handshake packet to
IN/OUT tokens.

(3) EOCSU=1 indicates that the Setup stage has been completed. When EOACK=1, the LC87F1M16A

can perform Data and Status stage processing for IN/OUT tokens.

[EOCST=0, EOCRW=0] Identifies a control write transfer Data stage. In this case, the
LC87F1M16A performs data OUT processing on OUT tokens and status IN processing on IN
tokens.

[EOCST=0, EOCRW=1] Identifies a control read transfer Data stage. In this case, the
LC87F1M16A performs status OUT processing on OUT tokens and data IN processing on IN
tokens.

[EOCST=1, EOCRW=0] Identifies a control write transfer Status stage. In this case, the
LC87F1M16A responds with a STALL handshake packet to OUT tokens and performs status
IN processing on IN tokens.

[EOCST=1, EOCRW=1] ldentifies a control read transfer Status stage. In this case, the
LC87F1M16A performs status OUT processing on OUT tokens and responds with a STALL
handshake packet to IN tokens.

3-12

09/05/12

Chapter 3 Control Transfers

The Transmission mode setup processing to be performed during each preparatory processing is

shown in Figure 3-5.

bit: 7 6 5 4 3 2 1 0
EPOSTA EOEN EOTGL | EOOVR | EOSTL | EOACK | EOCSU | EOCST | EOCRW
(FES8Eh) : Settol Usually, a setup by the Set up the transmission mode

during firmware is unnecessary.
»initialization |

Transmission mode: is automatically set by hardvare

must be set by firmware

Control write transfer

Setup stage Data stage Status stage
[e 1oy) A
SETUP(0) OUT(0/1) IN(1)

transmission mode: [0

=
(=]
(=]

73

{

Setup by fi _ (Set EOACK) (Set EOACK,EOCST)
elup by trmw are: “Data OUT Setup” “Status IN Setup”
Control read transfer
Setup stage Data stage Status stage
[et o T
SETUP(0) IN(O/1) OUT(1)
/ o
transmittion mode: (0] 1{ 0|0 1]1]/0f1 of1|o]1|1]1}1f1 o111 1

{

{

(Set EOACK ,EOCRW)

Setup by firmw are:
up by “Data IN Setup”

(Set EOACK,EOCST)
“Status OUT Setup”

Control no-data transfer
Setup stage

SETUP(0)

transmission mode: [0

I~
(=]
(=]

Serup by firmware:

Status stage

IN(L)

1)1{1]0

(=]
(=]
(]

o

{

(Set EOACK,EOCST)
“Status IN Setup”

Figure 3-5 Transmission Mode Setting Flow

3-13

LC87F1M16A <USB Application Notes>

3.3. Setup stage

3.3.1. Qutline of Setup stage SETUP transaction

The Setup stage is executed when a SETUP token is received (see Figure 3-6). It is a transaction
that begins with a SETUP token packet. The actions that the device is to take vary depending on
the status of the received data (presence or absence of errors).

(Refer to 8.4.5.4, "Function Response to SETUP Transaction," of the USB 2.0 Specification.)

SETUP —P| DATA0 ACK --- Normal reception

No response --- Data error

Figure 3-6 SETUP Transaction

3-14

09/05/12 Chapter 3 Control Transfers

3.3.2. SETUP Operation

The device must always be ready to receive the SETUP transaction regardless of its state. The
LC87F1M16A can always accept the SETUP token the endpoint O is enabled (EOEN=1). When the
LC87F1M16A receives a data packet following a SETUP token, it stores the received data in the
receiving data area (200h-) of the endpoint 0. When the LC87F1M16A sends an ACK after normal
reception of data, the transmission mode of the endpoint O is updated and the data toggle bit
(EOTGL) is set to 1. A SETUP operation flow of the Setup stage is shown in Figure 3-7.

v

To next stage

|
USB function : .
: Firmware
:
]
]
Receive SETUP token E Initialization
| [
]
v |
: |
Receive data from host E :
¢ : |
' |
Update receive data ! |
area : :
]
I | |
! |
Send ACK handshake H :
; | |
E |
Update EPORX Endpoint 0 ACK ! v
EOTGL =1 interrupt H
EOACK =0 \ Endpoint 0 ACK
EOCSU =1 1 interrupt processing
EOCST =0 '
EOCRW =0 ! 40
AKOFG =1 E Control transfer
' processing
]
To next st : L
0 next stage
g E SETUP processing
:
]
]
1
]
]
]

Figure 3-7 SETUP Operation Flow

3-15

LC87F1M16A <USB Application Notes>

3.3.3. SETUP Processing
When the SETUP transaction terminates normally, the endpoint 0 ACK interrupt flag (AKOFG) of
the endpoint 0 interrupt register EPOINT (FE83h) is set to 1 and an endpoint 0 ACK interrupt is

generated.
The LC87F1M16A takes the following actions when an endpoint 0 ACK interrupt occurs:

1 Update the receive data area (200h-).

1 Update the receive data size (EORX).

1 Set up the transmission mode (EOACK, EOCSU, EOCST, EOCRW).
1 Set the toggle bit to 1 (EOTGL=1).

The endpoint 0 ACK interrupt processing routine must perform the following SETUP processing:
o Read the receive data.
o Analyze the request.
o Process the request.
o Take preparatory actions for the next stage. (Data IN Setup / Data OUT Setup / Status IN

Setup)

The SETUP processing to be performed during the control transfers processing looks like as shown
below (see 3.2.4, “Control Transfers Processing").

C SETUP processing)

Get 8bytes of data from EPO receiving data area
Readfq“e“ (200h and up)
Analyze request Analyze the contents of the request
Control readl Controlwrite Control no-datal Unsupported error
Write data into transmit Process request
data area(240h-) v
L EOCST (FESEh[1]) < 1
EPOTX (FE91h) — [byte] L 4
v EOSTL (FESEh[4]) — 1
EOCRW (FESEh[0]) <« 1

A 4
—P»| EOACK (FESEh[3]) — 1 [€—

<
v

C End of SETUP processing)

Figure 3-8 Example of SETUP Processing

3-16

09/05/12 Chapter 3 Control Transfers

3.3.4. Receive Errors

Data error (corruption)

The LC87F1M16A makes error checks (CRC, bit stuffing) by hardware. When the
LC87F1M16A detects an error, it returns no response regardless of the transmission mode
settings. In such a case, the endpoint O error interrupt flag (EROFG) of the endpoint O interrupt
register EPOINT (FE83h) is set to 1. Error recovery actions, then, must be taken as required.
Normally, the routine can continue SETUP receive processing following the data
retransmission from the host.

Unsupported request

The endpoint 0 ACK interrupt processing routine must send a STALL handshake packet in
the next transaction even when it received data with no error and sent an ACK handshake
packet if the received request is not supported. The STALL bit (EOSTL) of the endpoint O status
register EPOSTA (FESEh) must be set to 1 by firmware.

3-17

LC87F1M16A <USB Application Notes>

3.4. Control Write Transfer Data Stage

3.4.1. Outline of Data stage OUT transaction

Data is transferred from the host to the device (OUT direction) in the Data stage of the control
write transfer. Accordingly, the device must receive data in this stage. The outline of OUT
transaction in the Data stage (OUT) is shown in Figure 3-9. The operation that the device is to
perform when it receives a data packet from the host following an OUT token varies depending on
the status of the received data and the state of the device.

(Refer to 8.4.5.3, "Function Response to an OUT Transaction," of USB 2.0 Specification.)

Host Device
Token Data Handshake
OUT [DATA0/L TP ACK --- Normal reception
—» NAK --- Preparation for reception in progress
—» STALL --- Endpointstall processing in progress

—» No response --- Data error

Figure 3-9 Data OUT Transaction

3.4.2. Data OUT Setup

The preparatory steps shown below are required before receiving OUT token to receive data in the
OUT transactions in the Data stage.

I Setting up the transmission mode
Set the lower-order 4 bits (EOACK, EOCSU, EOCST, EOCRW) of EPOSTA (FEBENh).

[O]JEOCRW: Must not be changed (set to 0 on completion of the Setup stage).
[1]JEOCST: Must not be changed (set to 0 on completion of the Setup stage).
[2]JEOCSU: Must not be changed (set to 1 on completion of the Setup stage).
[3JEOACK: Must be set to 1.

The control write transfer data stage is started by performing the preparation processing above
after the setup stage is completed (see 3.3.3, “SETUP Processing”). If the data is received in
multiple OUT transactions, the above processing is performed after the normal termination of
each OUT transaction (see Section 3.4.4).

3-18

09/05/12 Chapter 3 Control Transfers

3.4.3. Data OUT Operation

The operation of the control write transfer Data stage proceeds according to the transmission
mode settings stored in EPOSTA(FE8SEh) when the endpoint 0 is enabled (EOEN=1). The setup
procedure is explained in 3.4.2. "Data OUT setup.” If data OUT setup is performed properly, the
LC87F1M16A receives a data packet following an OUT token, and then returns an ACK. If the
data toggle bits match, the received data is stored in the endpoint O receive data area (200h-), the
receive size (EPORX) is updated, the data toggle bit (EOTGL) is inverted, and the ACK bit is cleared
(EOACK=0). The endpoint 0 ACK interrupt occurs on completion of the OUT transaction and the
endpoint 0 ACK interrupt processing routine must perform the Data OUT processing. The Data
OUT operation flow of the Data stage is shown in Figure 3-10.

USB function

: Firmware
}
}
—’ I
Receive OUT token '
¢ I
}
I
Receive data from host !
1
1
No(send NAK) I
@ E
1
1
1
]
}
}
I
I
Send ACK handshake i
I
I
No :
Data toggle match? E
I
I
]
I
Update receiving data :
area :
I
¥ = A |
: ! |
Update EPORX Endpoint 0 ACK | v :
interrupt t ;
EOACK =0 P : ~ Endpoint 0 ACK :
Invent EOTGL : interrupt processing |
AKOFG =1 E 1T |
¢ E Control transfer :
: processing |
continue Data stage or ! 10 |
proceed to Status stage : . |
: Data OUT processing :
I |
1
1

Figure 3-10 Data OUT Operation Flow

3-19

LC87F1M16A <USB Application Notes>

3.4.4. Data OUT Processing

When the Data stage OUT transaction terminates normally, the endpoint 0 ACK interrupt flag
(AKOFG) of the endpoint O interrupt register EPOINT (FE83h) is set to 1 and an endpoint 0 ACK
interrupt is generated.

The following actions are automatically taken when an endpoint 0 ACK interrupt occurs:

1 Update the receive data area (200h-).
1 Update the receive data size (EORX).
1 Turn on the NAK mode (EOACK=0).

1 Invert the toggle bit (EOTGL).

The endpoint 0 ACK processing routine must perform the following Data OUT processing:
o Read the receive data.
o Process the request and take preparatory actions for the next stage.

The Data OUT processing to be performed during the control transfers processing looks like as
shown below (see 3.2.4, "Control Transfers processing").

CData ouT processingD

Read EPORX Get the size of the actually data
Read the specified number of
Read receive data data from bytes from the EPO
receive data area(200h and up)

No(Continue Data OUT processing)

All data bytes read?

Yes(Proceed to status IN processing)

Process request

v

EOCST (FESEh[1]) < 1

<

EOACK (FESEh[3]) < 1

CEnd of Data OUT processinD

Figure 3-11 Example of Data OUT Processing

3-20

09/05/12 Chapter 3 Control Transfers

3.4.5. Receive Errors

Toggle mismatch

The LC87F1M16A performs hardware toggle check when it receives data. If a toggle mismatch
is found, the LC87F1M16A responds with an ACK handshake packet but generates no
endpoint 0 ACK interrupt. It neither updates the receive data area nor change the toggle bit
(EOTGL) or transmission mode settings. Consequently, the routine can continue the data
receive processing.

Expected receive size exceeded (stall)

The LC87F1M16A must respond with a STALL in the next transaction if it receives data
without an error but the byte count of the received data is greater than the byte count
specified in the Setup stage. In such a case, the STALL bit (EOSTL) of the endpoint O status
register EPOSTA (FE8Eh) must be set to 1 by firmware. (Refer to 8.5.3.1, "Reporting Status
Results," of the USB 2.0 Specification.)

Data error (corruption)

The LC87F1M16A makes error checks (CRC, bit stuff) by hardware. When the LC87F1M16A
detects an error, it returns no response regardless of the transmission mode settings. In such a
case, the endpoint 0 error interrupt flag (EROFG) of the endpoint 0 interrupt register EPOINT
(FE83h) is set to 1. Normally, the routine can continue data receive processing following the
data retransmission from the host. Take any error correction procedure if necessary.

Maximum payload exceeded

The payload excess bit (EOOVR) of the endpoint O status register EPOSTA (FE8Eh) is set to 1
even when the LC87F1M16A receives data without an error if the byte count of the received
data exceeds the maximum payload size specified in EPOMP (FE8Fh). Normally, the routine
can continue data receive processing following the data retransmission from the host. Take
any error correction procedure if necessary.

3-21

LC87F1M16A <USB Application Notes>

3.5. Control Write and No Data Transfer Status Stage

3.5.1. Qutline of Status stage IN transaction

The Status stages of the control write transfer and control no data transfer involve those transfers
in which the results of the Setup and Data stages (success/failure/processing) are sent to the host
(IN direction). The outline of the IN transaction in the Status stage (IN) is shown in Figure 3-12.
The operation that the device is to perform when it receives an IN token from the host varies
depending on the status of the received token and the state of the device.

(Refer to 8.5.3.1, "Reporting Status Results," of USB 2.0 Specification.)

Host Device
Token Data Handshake
IN 7% DATAL [—® ACK --- Request successful
0-byte length
P NAK --- Request being processed
P STALL --- Endpointstall processing in progress
orrequest failure

P No response --- Token error

Figure 3-12 Status IN Transaction

3.5.2. Status IN Setup

The preparatory steps shown below are required before receiving IN token to send data in the IN
transaction of the Status stage

I Setting up the transmission mode
Set the lower-order 4 bits (EOACK, EOCSU, EOCST, EOCRW) of EPOSTA (FEBENh).

[O]JEOCRW: Must not be changed (set to 0 on completion of the Setup stage).
[1]JEOCST: Must be set to 1.
[2]JEOCSU: Must not be changed (set to 1 on completion of the Setup stage).
[3JEOACK: Must be set to 1.

For a control no-data transfer, the preparation processing above is performed after the setup stage
is completed (see 3.3.3, “SETUP Processing”). For a control write transfer, the above processing is
performed after the data stage is completed (see 3.4.4). When an IN token is received in the data
stage of control write transfer, even if this preparation processing is omitted, the status stage
operation is performed normally.

3-22

09/05/12 Chapter 3 Control Transfers

3.5.3. Status IN Operation

The operation of the control write no data transfer Status stage proceeds according to the
transmission mode settings specified in EPOSTA (FE8SEh) when the endpoint 0 is enabled (EOEN=1).
The setup procedure is explained in 3.5.2, "Status IN setup.” If status IN setup is performed
properly, the LC87F1M16A sends a 0-byte DATAL data packet in response to the IN token. When
an ACK handshake packet is received from the host, the data toggle bit is cleared (EOTGL=0) as
well as the ACK, SETUP, and STATUS bits are cleared (EOACK=EOCSU=E0CST=0). The endpoint O
ACK interrupt occurs on completion of the IN transaction and the endpoint 0 ACK interrupt
processing routine must perform the Status IN processing. Status IN operation flow of the Status
stage is shown in Figure 3-13.

| | StatusINprocessing| |

End of control transfer

USB function ! _
| Firmware
1
1
1
Receive IN token H
I
]
No(send NAK) E
I
}
I
]
1
1
1
]
:
Send 0-byte DATAL i
1
v !
I
Receive ACK '
handshake '
:
]
}
:
EOTGL =0 !
EOACK =0 !
EOCSU =0 Endpoint 0 ACK !
EOCST=0 interrupt :
AKOFG =1 : _ Endpoint 0 ACK_
| interrupt processing
1
; I
: Control transfer
: processing
1
; I
I
]
1
1
1
]
1

Figure 3-13 Status IN Operation Flow

3-23

LC87F1M16A <USB Application Notes>

3.5.4. Status IN Processing

When the IN transaction of the Status stage terminates normally, the endpoint 0 ACK interrupt
flag (AKOFG) of the endpoint O interrupt register EPOINT (FE83h) is set to 1 and an endpoint O
ACK interrupt is generated.
The following actions are automatically taken when an endpoint 0 ACK interrupt occurs:

1 Turn on the NAK mode (EOACK=0).

1 Clear the SETUP and STATUS bits (EOCSU=E0CST=0).

1 Clear the toggle bit (EOTGL=0).

The endpoint 0 ACK interrupt processing routine must take the actions corresponding to the
standard device request SetAddress. There is no need to set up the transmission mode as the
LC87F1M16A is set up to accept only SETUP tokens.

The Status IN processing to be performed during the control transfers processing looks like as
shown below (see 3.2.4, “Control Transfers Processing”).

(Status IN processing)

No

“Set Address”
request

Yes

A 4

Set USBADR(FESCh)

g

h 4
CEnd of Status IN processinD

Figure 3-14 Example of Status IN Processing

3-24

09/05/12 Chapter 3 Control Transfers

3.5.5. Transmission Errors

Stall

The STALL bit (EOSTL) of the endpoint O status register EPOSTA (FESEh) must be set to 1 by
firmware if the endpoint O is stopped or it can transmit no data packet for some reason. This
causes the LC87F1M16A to send STALL handshake packets for any IN/OUT tokens received
from the host.

If an OUT token is received when the data reception in the Data stage is completed and EOCST
is set to 1 (status IN), the LC87F1M16A sends a STALL handshake packet and sets the
STALL bit (EOSTL) to 1. In this case, the STALL interrupt flag (STOFG) of the endpoint O
interrupt register EPOINT (FE83h) is set to 1. Error recovery processing must be performed as
required.

Data retransmission

If the device fails to receive an ACK handshake packet from the host after sending a 0-byte
DATALl data packet normally, it is necessary to retransmit the data packet. Since the
LC87F1M16A performs retransmission automatically by hardware, there is no need for the
firmware to control the retransmission processing.

3-25

LC87F1M16A <USB Application Notes>

3.6. Control Read Transfer Data Stage

3.6.1. Outline of Data stage IN transaction

Since data transfers from device to host (IN direction) occur in the Data stage of the control read
transfer, the device must perform data transmissions. The outline of the IN transaction in the
Data stage is shown in Figure 3-15. The operation that the device is to perform when it receives an
IN token from the host varies depending on the status of the received token and the state of the

device.

(Refer to 8.4.6.1, "Function Response to IN Transactions," of the USB 2.0 Specification.)

IN 7P DATA0/L —P ACK

P NAK

P STALL

P No response

--- Normal transmision

--- Preparation for transmission in progress

--- Endpointstall processing in progress

--- Token error

Figure 3-15 Data IN Transaction

3.6.2. Data IN Setup

The preparatory steps shown below are required before receiving IN token to send data in the IN

transactions in the Data stage.

I Writing data

Write the data into the endpoint O transmit data area (240h-).

1 Setting the transmit data size

Store the number of bytes to be transmitted in EPOTX (FE91h).

I Setting up the transmission mode

Set the lower-order 4 bits (EOACK, EOCSU, EOCST, EOCRW) of EPOSTA (FEBENh).

[O]JEOCRW: Must not be changed (must have been set to 1 during SETUP processing).
[1]JEOCST: Must not be changed (set to 0 on completion of the Setup stage).
[2]EOCSU: Must not be changed (set to 1 on completion of the Setup stage).

[3JEOACK: Must be set to 1.

The control read transfer data stage is started by performing the preparation processing above
after the setup stage (see 3.3.3, “SETUP Processing”). If the data is sent in multiple IN
transactions, the above processing is performed after the normal termination of each IN

transaction (see Section 3.6.4).

3-26

09/05/12 Chapter 3 Control Transfers

3.6.3. Data IN Operation

The operation of the control read transfer Data stage proceeds according to the transmission mode
settings specified in EPOSTA (FEBEh) when the endpoint O is enabled (EOEN=1). The setup
procedure is explained in 3.6.2, "Data IN setup.” If data IN setup is performed properly, the data
stored in the endpoint O transmit data area (240h-) is transmitted over a data packet following the
IN token. In this case, the PID corresponding to the data toggle bit (EOTGL) is used. The size of the
data is equal to the byte count defined in EPOTX. When an ACK is received following the
transmission processing, the data toggle bit (EOTGL) is inverted and the ACK bit is cleared
(EOACK=0). The endpoint 0 ACK interrupt occurs on completion of the IN transaction and the
endpoint 0 ACK interrupt processing routine must perform the Data IN processing. The Data IN
operation flow of the Status stage is shown in Figure 3-16.

USB function

1
| Firmware
]
]
]
Receive IN token '
]
]
No(send NAK) E
I
]
]
]
]
]
]
]
I
Send data to host i
¢ :
]
I
Receive ACK t
handshake :
¢ I
e rommm- |
. |
Invert EOTGL Endpoint0 ACK | v I
EOACK =0 interrupt ' _ I
AKOFG = 1 : ~ Endpoint 0 ACK :
! interrupt processing |
]
|
v ; Il i
continue Data stage or : Control transfer '
proceed to Status stage E processing :
! |
| 1L !
! Data IN processing :
I |
]
]
!

Figure 3-16 Data IN Operation Flow

3-27

LC87F1M16A <USB Application Notes>

3.6.4. Data IN Processing

When the IN transaction in the Data stage terminates normally, the endpoint 0 ACK interrupt flag
(AKOFG) of the endpoint O interrupt register EPOINT (FE83h) is set to 1 and an endpoint 0 ACK
interrupt is generated.

The following actions are automatically taken when an endpoint 0 ACK interrupt occurs:
1 Turn on the NAK mode (EOACK=0).
1 Invert the toggle bit (EOTGL).

The endpoint 0 ACK interrupt processing routine must perform the following Data IN processing:
o Take preparatory actions for the next stage.

The Data IN processing to be performed during the control transfers processing looks like as
shown below (see 3.2.4, "Control Transfers Processing").

C Data IN processing)

Transmit data present?

No L Yes
Continue Data stage
(Proceed to Status stage) (nu stage)

Write transmit data

v

EOCST (FESEh[1]) < 1 EPOTX (FE91h) < [byte]

i }
!

EOACK (FESEh[3]) < 1

C End of Data IN processing)

Figure 3-17 Example of Data IN Processing

3.6.5. Transmission Errors

1 Stall

The STALL bit (EOSTL) of the endpoint O status register EPOSTA (FESEh) must be set to 1 by
firmware if the endpoint O is stopped or it can transmit no data packet for some reason. This

causes the LC87F1M16A to send STALL handshake packets for any IN,OUT tokens received
from the host.

1 Data retransmission

If the device fails to receive an ACK handshake packet from the host after sending a data
packet normally, it is necessary to retransmit the data packet. Since the LC87F1M16A
performs retransmission automatically by hardware, there is no need for the firmware to
control the retransmission processing.

3-28

09/05/12

Chapter 3 Control Transfers

3.7. Control Read Transfer Status Stage

3.7.1. Outline of Status stage OUT transaction

The Status stage of the control read transfer involves those transfers in which the results of the
setup and Data stages (success/failure/processing) ‘re sent to the host (OUT direction). The outline
of the OUT transaction in the Status stage (OUT) is shown in Figure 3-18. The operation that the
device is to perform when it receives a 0-byte DATAL data packet from the host following an OUT
token varies depending on the status of the received data and the state of the device. (Refer to
8.5.3.1, "Reporting Status Results,” of the USB 2.0 Specification.)

OUT r—J» DATAL r—Pp ACK

0-byte length

—» NAK

—» STALL

— No response

--- Request successful

--- Request being processed

--- Endpoint stall processing progress
or request failure

--- Token error

Figure 3-18 Status OUT Transaction

3.7.2. Status OUT Setup

The preparatory steps shown below are required before receiving OUT token to receive data in the

OUT transactions in the Status stage.

1 Setting up the transmission mode

Set the lower-order 4 bits (EOACK, EOCSU, EOCST, EOCRW) of EPOSTA (FE8SEh).

[O]JEOCRW: Must not be changed (must have been set to 1 during SETUP processing).

[1]EOCST: Must be set to 1.

[2]JEOCSU: Must not be changed (set to 1 on completion of the Setup stage).

[3]JEOACK: Must be set to 1.

The preparation processing above is performed after the data stage. When OUT token is received
during the data stage of control read transfer, even if this preparation processing is omitted, the

status stage operation is performed normally.

3-29

LC87F1M16A <USB Application Notes>

3.7.3. Status OUT Operation

The operation of the control read transfer Status stage proceeds according to the transmission
mode settings specified in EPOSTA (FE8Eh) when the endpoint 0O is enabled (EOEN=1). The setup
procedure is explained in 3.7.2, "Status OUT setup." If status OUT setup is performed properly,
the LC87F1M16A receives a data packet following an OUT token and returns an ACK. In this case,
the LC87F1M16A makes no check on the PID or data size of the data packet. It also sends an ACK
when the DATAO packet or size is not 0 byte. When the LC87F1M16A sends an ACK, the data
toggle bit is cleared (EOTGL=0), the ACK bit is cleared (EOACK=0), and the STATUS bit is set
(EOCST=1). The endpoint 0 ACK interrupt occurs on completion of the OUT transaction and the
endpoint 0 ACK interrupt processing routine must perform the Status OUT processing. Status
OUT operation flow of the Status stage is shown in Figure 3-19.

1
USB function E Firmware
]
1
» Receive OUT token E
¢ :
:
Receive data from host !
1
*Neither toggle bit nor E
No(send NAK) size are checked :
}
:
]
1
1
1
1
I
Send ACK handshake E
¢ :
1
1
:
EOTGL =0 Endpoint 0 ACK !
EOACK =0 interrupt :
EOCST=1 : Endpoint 0 ACK
AKOFG =1 E interrupt processing
: 1L
}
: Control transfer
E processing
; i1
' Status OUT processing
I
| End of control transfer
1

Figure 3-19 Status OUT Operation Flow

3-30

09/05/12 Chapter 3 Control Transfers

3.7.4. Status OUT Processing

When the OUT transaction of the Status stage terminates normally, the endpoint 0 ACK interrupt
flag (AKOFG) of the endpoint O interrupt register EPOINT (FE83h) is set to 1 and an endpoint 0
ACK interrupt is generated.
The following actions are automatically taken when an endpoint 0 ACK interrupt occurs:

1 Turn on the NAK mode (EOACK=0).

I Set the STATUS bit (EOCST=1).

1 Clear the toggle bit (EOTGL=0).

The transmission mode in this case is set up so as to respond with a NAK for IN/OUT tokens.
Since it is considered that a control transfer is normally followed by a SETUP token, it is possible
to start a Setup stage normally even when the NAK mode is on.
To inhibit the LC87F1M16A from responding IN/OUT tokens after completing a control transfer,
the following status OUT processing must be performed during the endpoint 0 ACK interrupt
processing:

o Clear the SETUP bit (EOCSU=0).

(to inhibit the LC87F1M16A from accepting tokens other than SETUP.)

The Status OUT processing to be performed during the control transfers processing looks like as
shown below (see 3.2.4, "Control Transfers Processing").

CStatus ouT processinD

EOCSU (FESEh[2]) — 0

Gnd of Status OUT processing)

Figure 3-20 Example of Status OUT Processing

3.7.5. Receive Errors

1 Stall
The LC87F1M16A sends a STALL handshake packet and set the STALL bit (EOSTL) to 1 if it
receives an IN token even when the data transmission in the Data stage is completed and the
transmission mode (EPOSTA[O0-3]) is set to [1111] (status OUT). In this case, the STALL
interrupt flag (STOFG) of the endpoint O interrupt register EPOINT (FE83h) is set to 1. Error
recovery actions must be taken as required.

The STALL bit (EOSTL) of the endpoint O status register EPOSTA (FE8Eh) must be set to 1 by
firmware if the endpoint O is stopped or it can transmit no data packet for some reason. This
causes the LC87F1M16A to send STALL handshake packets for any IN/OUT tokens received
from the host.

1 Data error (corruption)
The LC87F1M16A makes error checks (CRC, bit stuffing) by hardware. When the
LC87F1M16A detects an error, it returns no response regardless of the transmission mode
settings. In such a case, the endpoint O error interrupt flag (EROFG) of the endpoint O interrupt
register EPOINT (FE83h) is set to 1. Error recovery actions, then, must be taken as required.
Normally, the routine can continue data receive processing following the data retransmission
from the host.

3-31

LC87F1M16A <USB Application Notes>

3-32

Chapter 4. Data Transfers

4.1, ENdpoint CONTIOl ..o 4-2
I T L= = =T o =01 (= PR 4-2
o O = T [o Jo] o £ K T PP P P PP PP TPPPPPTTPPPPPN 4-4
4.1.3. Setting Up the TranSmISSION MOUEoevvviiiiiiiiiiiiiiiiiiii s a e e 4-6

4.2. 0utline of BUIK TranSTer ... e, 4-7
o I @ 10 1 [T = o) e 0T =L P 4-8
4.2.2. Endpoint n Initialization (bulk transfer) ... 4-9
4.2.3. Endpoint DesCriptor EXAMPIE........ccooii it 4-10

4.3. BUIK IN TranSTEIS cooviiiiiiiiiiiiiiii s s a e e e e e e e e e e e e e e e e e e aaaaaaaaaaes 4-11
T I 2 T VST (U o SO 4-11
4.3.2. BUIK IN OPEIALION ..ottt ettt ettt e e st e e st e e s nnnee s 4-12
e R T = 11 | VI o o T == [T 4-13
S I =Y 1S 0 VTS o =1 0 £ SR 4-13

4.4, BUIK OUT TranSTeIS ..ot e e e e e e s 4-14
A 4.1, BUIK OUT SEEUP ..cciiitiiie ittt ettt ettt ettt e e sttt e e e st bt e e s et b et e e e abb e e e e s aabbeeeesanbeeeaeans 4-14
v = T || Q@ 1O I @ oY1 = o I 4-15
4.4.3. BUIK OUT PrOCESSING ..vvvvuueietururuietutuiuiiasasasassesasasaaasaasaaaaaaaaaaasaasasasssseserreerseeserermsemmmmmmme 4-16
A.4.4, RECEIVE EITOIS ...coiiiiiiiiieeeeeeeee et s e aaaaeaaaaaaeaeaeaaeeeeeeeeees 4-17

4.5. Outline of Interrupt Transfer ... 4-18
T A O 10 1 [T =0) o 0T L= PSP 4-19
4.5.2. Endpoint n Initialization (interrupt tranSfer).........oovvveveiiieeii 4-20
4.5.3. Endpoint Descriptor EXAaMPIE..........uuuiiiiiiiei ittt 4-21

4.6. Interrupt IN TranSTers oo 4-22
4.6. 1. INTEITUPTL IN SEEUP eieetii ettt e e e e ettt e e e s e e e tb e e e e e e asbbneeeaees 4-22
o R a1 (T U] oA N @ T o1 = o o 1 4-23
4.6.3. INLEITUPL IN PrOCESSING....cittteteiitiiite ittt ettt ettt e ettt e et e e e e abbr e e e s anneeeas 4-24
S I =Y 1= 0 VST o =1 0] = R 4-24

4.7. Interrupt OUT TransSfers ..o 4-25
4.7.0. INTEITUPT OUT SBIUP toevetiiiii ettt ettt e e e et e e e e e e et e e e s e e arbb e eas 4-25
4.7.2. INTErrUPL OUT OPEIALION.eeiiieiiiiiit ettt e s et e e s anbe e e e e ennees 4-26
4.7.3. INLEITUPT OUT PrOCESSING. .. uuuruuuuuiiiiiiaseeisisiete e e e e e e e e e eeaeaaaaaaaaaaaaaaaaaeeetetetereeerereeeeerererennnnnes 4-27
A = 1o =T 1YL= L 0] =P 4-28

4.8. Outline of Isochronous TransSfer ... e, 4-29
4.8.1. OULIING Of PIrOCESScoiiiiieieiiiieeie s s e aaaaaaeeeeeaaeeeeeeeeees 4-30
4.8.2. Endpoint n Initialization (iISOChronous tranSfer)eevvvvvvviiiiiiiiiin 4-31
4.8.3. Endpoint DescCriptor EXAMPIE........ccooie it s 4-32
4.8.4. ENAPOINT DALA AFBAS ...ccoiiiiiiiiiiiieee e e ettt e e e e e e e e et e et e e e e e e s stetbeeeeeaeeessaannnteeeeeeaaeeaaannns 4-33

4.9. 1Sochronous IN TranSTers ... 4-34
4.9.1. 1ISOCNIONOUS IN SEUUP ..utururutitiiiiiieisess e s s s e s e s e s e s e e e e e e e e e e e e e e e aeaaaaaaaateetetet et eeereeeeeeesaseserernrnrnnes 4-34
Vi e B LYo Tod a1 o] g Lo TN KT 1\ A @ 01T = U e] o 1P 4-34
4.9.3. 1SOCNIONOUS IN PrOCESSINGeeiiiuiiiiieiiiiitee ittt ettt ettt et e e e e e b e e e aneneeas 4-36

4.10. Isochronous OUT Transfers.......o s 4-37
O E=ToTod o[o] Lo 10 ES R @ 10 N Y= (1 o PPN 4-37
4.10.2. 1SOChronOUS QUT OPEIAtIONuuuuiiiieiieieieieie e e e e e e et e e e e e e e e e e aeaeaaaaaaee e e et e e e e eeeeeeeeeeerererernnane 4-38
4.10.3. 1ISOChroNOUS OUT PrOCESSING ...veetieiitiiieeitiiiee ettt e sttt e et e et eessibee e e e sabre e e s aneeeees 4-39

4-1

LC87F1M16A <USB Application Notes>

4.1. Endpoint Control

When the device switches into the Configured state as the result of a bus enumeration, the
endpoints described in the host-designated configuration become available, enabling data
transfers via the endpoints. The LC87F1M16A supports bulk, interrupt, and isochronous
transfers.

Endpoints n (n=1-6) are used for data transfers. Since the transfer buffers are mapped into the
internal RAM areas, data transfers are carried out by means of accesses to these areas
(transmit data writes or receive data reads) according to the settings of the related registers.

4.1.1. Related registers

The registers that are related to data transfers (bulk/interrupt/isochronous) are listed below.

Symbol Address R/W Function
EP1INT FE84h R/W EP1 interrupt
EP2INT FEB85h R/W EP2 interrupt
EP3INT FEB86h R/W EP3 interrupt
EP4INT FE87h R/W EP4 interrupt
EPSINT FE88h R/W EPS5 interrupt
EPGINT FE89h R/W EP6 interrupt
EP1STA FE92h R/W EP1 control

EP2STA FE93h R/W EP2 control

EP3STA FE94h R/W EP3 control

EPASTA FE95h R/W EP4 control

EP5STA FE96h R/W EP5 control

EPG6STA FE97h R/W EP6 control
EP1CNT FE98h R/W EP1 size

EP1RX FE99h R EP1 receive data size
EP2CNT FE9Ah R/W EP2 size

EP2RX FE9Bh R EP2 receive data size
EP3CNT FE9Ch R/W EP3 size

EP3RX FE9Dh R EP3 receive data size
EPACNT FE9Eh R/W EP4 size

EP4RX FE9Fh R EP4 receive data size
EP5CNT FEAOh R/W EPS5 size

EP5RX FEA2h R EP5 receive data size
EP6CNT FEA6h R/W EP6 size

EP6RX FEA8h R EP6 receive data size

Table 4-1 Data Transfer Related Registers

09/05/12 Chapter 4 Data Transfers

@Endpoint n interrupt register : EPnINT (n=1-6)(FE84h-FE89h)

Bit Bit Name R/W Function
Endpoint n ACK interrupt flag
7 AKnFG R/W | Set when the transaction terminates with an ACK. This flag must

be cleared with an instruction.

Endpoint n ACK interrupt enable flag

6 AKnEN R/W | 1: Enable endpoint n ACK interrupts.

0: Disables endpoint n ACK interrupts.

Endpoint n NAK interrupt flag

5 NKnFG R/W | Set when the transaction terminates with a NAK. This flag must
be cleared with an instruction.

Endpoint n NAK interrupt enable flag

4 NKnEN R/W | 1: Enable endpoint n NAK interrupts.

0: Disables endpoint n NAK interrupts.

Endpoint n error interrupt flag

3 ERNFG R/W | Set when an error occurs in the transaction. This flag must be
cleared with an instruction.

Endpoint n error interrupt enable flag

2 ERNEN R/W | 1: Enables endpoint n error interrupts.

0: Disables endpoint n error interrupts.

Endpoint n STALL interrupt flag

1 STnFG R/W | Set when the transaction terminates with a STALL. This flag
must be cleared with an instruction.

Endpoint n STALL interrupt enable flag

0 STnEN R/W | 1: Enables endpoint n STALL interrupts.

0: Disables endpoint n STALL interrupts.

@Endpoint n status register: EPNSTA (n=1-6) (FE92h-FE97h)

Bit Bit Name R/W Function

Endpoint n enable bit

7 EnEN R/W | 1: Enables the endpoint n.

0: Disables the endpoint n.

Endpoint n data toggle bit

This bit is inverted and the receive data is transferred to the
buffer when this bit matches DATA PID (in the data receive mode).
The data whose DATA PID matches this bit is transmitted (in the
data transmit mode) and this bit is inverted when an ACK is
received. No toggle inversion occurs in isochronous transfers.
Endpoint n maximum payload size excess bit

6 EnTGL R/W

5 EnOVR R/W | Set when the volume of data exceeding the maximum payload size
is received. This bit must be cleared with an instruction.
STALL bit

4 EnSTL RIW A1 in this bit causes STALL to be returned for the token.
ACK bit

3 EnACK R/W | 1: Causes ACK processing to be performed on the token.

0: Causes a NAK to be returned in response to the token.
Transfer direction bit

2 EnDIR R/W | 1: IN tokens are processed.

0: OUT tokens are processed.

Isochronous bit

1 EnISO R/W | 1: Identifies an isochronous endpoint.

0: Identifies an endpoint other than isochronous endpoints.
Bank select bit

0 EnBNK R/W | 1: Bank 1

0: Bank 0

4-3

LC87F1M16A <USB Application Notes>

@Endpoint n size register: EPNCNT (n=1-6) (FE98h/FE9Ah/FE9Ch/FE9Eh/FEAQOh/FEAGH)

Bit Bit Name | R/W Function
7 - . Reserved
6 EnCNG6 Endpoint n data size
- R/W | Specify the maximum payload size (for OUT endpoints).
0 EnCNO Specify the transmit data size (for IN endpoints).

@Endpoint n receive size reg

ister: EPNRX (n=1-6) (FE99h/FE9Bh/FE9Dh/FE9Fh/FEA2h/FEA8h)

Bit Bit Name | R/W Function
7 _ . Reserved

6 EnRX6 Endpoint n receive data size

- - R . . .

0 EnRX0 Specify the receive data size.

4.1.2. Endpoints 1-6

Endpoints 1-6 transfer data in only one direction. Whether endpoints 1-6 are to be used for
transmission or reception is determined by the direction (bEndpointAddress[bit7]) specified in
their endpoint descriptor. Endpoints 1-6 are mapped into 8, 16, 32 or 64-byte (" 2 banks) RAM
areas, respectively. Care must be taken when specifying the mapping address of an endpoint
that it will not overlap the mapping address of another endpoint area. Refer Table 1-2 - Table

1-10 for the mapping address of endpoints 1-6.

The payload size which is actually received for each packet is indicated in the registers (EPnRX
(n=1-6)). The registers (EPnCNT (n=1-6)) must be loaded with the size of data to be transmitted
in the transmission mode (IN transfers) and with the maximum payload size of the endpoint in

the receive mode (OUT transfers).
Table 4-2, 4-3 shows the outline of endpoint n (n=1-6) and the sizes of data packets.

Receive Mode (OUT)

Transmit Mode (IN)

Name Maximum Payload Size Receive Size Transmit Size
Endpoint 1 EP1CNT [EP1RX] EP1CNT
(transmit/receive) (64 bytes max.) (64 bytes max.)
Endpoint 2 EP2CNT [EP2RX] EP2CNT
(transmit/receive) (64 bytes max.) (64 bytes max.)
Endpoint 3 EP3CNT [EP3RX] EP3CNT
(transmit/receive) (64 bytes max.) (64 bytes max.)
Endpoint 4 EPACNT [EP4RX] EPACNT
(transmit/receive) (64 bytes max.) (64 bytes max.)
Endpoint 5 EP5CNT [EPSRX] EP5CNT
(transmit/receive) (64 bytes max.) (64 bytes max.)
Endpoint 6 EPG6CNT [EP6RX] EPGCNT

(transmit/receive)

(64 bytes max.)

(64 bytes max.)

4-4

Table 4-2 Endpoints for Data Transfers

09/05/12 Chapter 4 Data Transfers

Transfer Type Maximum Packet Size Packet Transmit/Receive Size
Bulk Either of 8, 16,32, and 64 bytes
Interrupt Any integer value between 0-64 bytes 0-Max. packet size
Isochronous Any integer value between 0-64 bytes

Table 4-3 Packet Sizes for Data Transfers

Note: The actual payload size of each packet type is variable within the range not exceeding the
endpoint's maximum packet size (bMaxPacketSize) that is defined in the respective
endpoint descriptor.

LC87F1M16A <USB Application Notes>

4.1.3. Setting Up the Transmission Mode

The LC87F1M16A responds to control transfers according to the setting in the EPnSTA.

bit:

6 5 4 3 2 1 0

EPNnSTA EnEN EnTGL | EnOVR | EnSTL EnACK EnDIR EnISO EnBNK

Bit Name Setting
7 EnEN If this_bit is_ set to 1, the endpoint n is enabl_ed. Th_is bit must be set to 1 when
endpoint n is enabled by requests of SetConfiguration/Setlnterface.
This bit must be reset to 0 during the endpoint n initialization for bulk or
6 EnTGL interrupt transfers. The state of this bit is automatically inverted on each
normal termination of the transactions. This bit has no meaning in the
isochronous transfers.
5 EnOVR | Set when the volume of data exceeding the maximum payload size is received.
4 EnSTL If this bit is set when the endpoint n is enabled (EnEN=1), the endpoint n sends a
STALL in response to an IN/JOUT token.
If this bit is 0, endpoint n responds with a NAK handshake to a token defined in
3 EnACK | EnDIR bit. If this bit is 1, the ACK processing is executed to a token defined in
EnDIR bit.
Set the direction of endpoint n during the endpoint n initialization. If this bit is
2 EnDIR 0, endpoint n can accept an OUT token only. If 1, endpoint n can accept an IN
token only.
Set the transfer type of endpoint n during the endpoint n initialization. If this
1 EnISO | bit is 0, it identifies the bulk or interrupt endpoint. If 1, it identifies the
isochronous endpoint.
Switch the bank of endpoint 1-6. Set to 0 when endpoint n bank 0 is used. Set to
0 EnBNK . .
1 when endpoint n bank 1 is used.

4-6

09/05/12 Chapter 4 Data Transfers

4.2. Outline of Bulk Transfer

Bulk transfers are most often used to transfer a large volume of data asynchronously. Bulk
transfers include bulk IN transfers from devices to the host and bulk OUT transfers from the
host to devices. A transaction consists of token (IN or OUT), data (DATAO/1), and handshake
packets. As many transactions as required according to the volume of data are repeated in a
bulk transfer. In this case, DATAL1 and DATAO are used alternately as the PID of the data
packets so that retransmitted and new data packets can be distinguished (the first PID is
DATAO).

Host Device

Token Data Handshake
— DATA0/L [—P ACK Q)
Bulk IN transaction IN P NAK @)
P STALL | (3)
ACK “)
Bulk OUT transaction ouT P DATAO/L NAK)
STALL | (6)

Device operation
(1) Send data packets alternately starting at DATAO.
(2) Respond with a NAK if the device is notreadyto
send data or there is no data to send.
(3)(6) Respond with a STALL if a hostintervention is required.
(4) Receive data and return an ACK.
(5) Respond with a NAK if the device is not ready to accept data.

Figure 4-1 Bulk Transfer Transactions

LC87F1M16A <USB Application Notes>

4.2.1. Outline of Process

LC87F1M16A can achieve bulk transfer processing through the initialization for initiating bulk
transfers and the processing of endpoint n ACK interrupt which occurs on each normal
termination of each transaction. The figure below shows the outline of bulk transfer processing.

Bulk IN Transfer Bulk OUT Transfer
Endpoint n initialization Endpoint n initialization
(bulk transfer) (bulk transfer)

No

Transmit data present?

Endpoint n ACK
interrupt *

Write transmit data

>
(@) ¢
A

¢ Bulk OUT processing o
Set transmit size

v

Turn on ACK mode

v i
]

1

1

]

IN :

DATAx :

ACK :

' e

Endpointn ACK : '
interrupt '

p 4 _E

Bulk IN processing

09/05/12 Chapter 4 Data Transfers

4.2.2. Endpoint n Initialization (bulk transfer)

A device cannot perform data communications until it is configured and enters the Configured
state. This application note assumes that the devices are initialized during USB bus reset
interrupt processing and those endpoints 1-6 are disabled (see 2.4, “USB Bus Reset Interrupts”).
It is necessary to set up endpoints n (n=1-6) to perform bulk transfers. Make sure that endpoint
n (n=1-6) is initialized when a request that will affect that endpoint (SetConfiguration /
Setinterface / ClearFeature[ENDPOINT_HALT]) is accepted.

An example of endpoint n initialization processing is shown in Figure 4-2. When IN transfers,
set up EPnSTA and enable the endpoint n ACK interrupts. When OUT transfers, set up
EPNnSTA and EPnCNT and enable the endpoint n ACK interrupts.

Endpoint 1 : bulk IN
Endpoint 1 initialization
(bulk transfer)
¢~ Use bank 0
Clear isochronous bit

A 4 < IN transfer
EP1STA (FE92h) < 84h Turn on NAK mode

Clear STALL bit

Clear payload size excess bit
Reset data toggle bit to 0

-~ Enable endpoint 1

h 4
AKI1EN (FE84h[6]) — 1 Enable endpoint 1 ACK interrupt

v

End of endpoint 1 initialization

Endpoint 2 : bulk OUT

Endpoint 2 initialization
(bulk transfer)
/~ Use bank 0

L 4 Clear isochtronous bit
OUT transfer
EP2STA (FE93h) < 88h < Turn on ACK mode
Clear STALL bit
Clear payload size excess bit
Reset data toggle bit 0
“~ Enable endpoint 2

4

EP2CNT (FE9Ah) < 40h Set maximum payload size (64-bytes)
v

AK2EN (FES5h[6]) — 1 Enable endpoint 2 ACK interrupt

v

Gnd of endpoint 2 initializatiD

Figure 4-2 Example of Endpoint n Initialization for Bulk Transfers

LC87F1M16A <USB Application Notes>

4.2.3. Endpoint Descriptor Example

Endpoints 1-6 can be used in bulk transfers. Since data is transferred in one direction in bulk
transfers, it is necessary to specify the data direction (transmit or receive) for each endpoint to
be used. Specify the endpoint number to be used and the data direction in the endpoint address
field (bEndpointAddress) in the endpoint descriptor and one of the size values 8, 16, 32, and 64

in the maximum packet size field (bMaxPacketSize).

4-10

Field Size (in Bytes) Value Description
bLength 1 07h Descriptor size
bDescriptorType 1 05h ENDPOINT descriptor
(One of the values listed below)
01h 01h: Endpoint 1 OUT
02h 02h: Endpoint 2 OUT
03h 03h: Endpoint 3 OUT
04h 04h: Endpoint 4 OUT
05h 05h: Endpoint 5 OUT
bEndpointAddress 1 06h 06h: Endpoint 6 OUT
81h 81h: Endpoint 1 IN
82h 82h: Endpoint 2 IN
83h 83h: Endpoint 3 IN
84h 84h: Endpoint 4 IN
85h 85h: Endpoint 5 IN
86h 86h: Endpoint 6 IN
bmAttributes 1 02h Bulk transfer
(One of the values listed below) The maximum packet
0008h size (in bytes) must be set
wMaxPacketSize 2 0010h .
to one of the following
0020h values: 8, 16, 32, 64
0040h o
bInterval 1 00h Polling interval (in ms)

Table 4-4 Endpoint Descriptor (Bulk Transfer)

09/05/12 Chapter 4 Data Transfers

4.3. Bulk IN Transfers

4.3.1. Bulk IN Setup

Initialization must be performed before bulk IN transfer starts.
(see 4.2.2, “Endpoint n Initialization (bulk transfer)”).

The preparatory steps shown below are required to send data in the IN transactions in bulk
transfer.

I Writing data
Write data into the endpoint n transmit data area.

* This step is unnecessary when sending a null packet with a 0-byte data size.

I Setting the transmit size
Load EPNnCNT with the byte count of data to be transmitted.

* Make sure that the byte count of the transmit data does not exceed the maximum
payload size of the endpoint n. Specify a 0 for a null packet.

I Turning on the ACK mode
Set the ACK bit in EPnSTA (EnACK=1).

When the newly data to be transmitted is present after initialization of endpoint or completion
of transfer, the bulk IN transfer is started by performing the preparation processing listed
above. If the data is sent in multiple IN transactions, the above processing is performed after
each normal termination of each transaction. This application note assumes that this
processing is accomplished by Bulk IN processing (see Section 4.3.3.).

4-11

LC87F1M16A <USB Application Notes>

4.3.2. Bulk IN Operation

The bulk IN transfer operation proceeds according to the settings of the status register EPNSTA
and size register EPnCNT of the endpoint n used. If the endpoint n is configured in the ACK
mode (EnACK=1), the reception of an IN token is followed by the transmission of the data stored
in the endpoint n data area in the form of a data packet. After the transmission processing,
when an ACK is received, the endpoint n is automatically placed into the NAK mode (EnACK=0)
and the data toggle bit (EnTGL) is inverted. The endpoint n ACK interrupt occurs on completion
of the IN transaction and the endpoint n ACK interrupt processing routine must perform the
Bulk IN processing. The Bulk IN operation flow of the Bulk IN transfer is shown in Figure 4-3.

USB function Firmware

Endpoint n initialization
(bulk transfer)

»
»

No(send NAK

Receive IN token

|

>
<
y

\

Transfer data present?

Write transmit data

Send data to host

\ 4 \ 4
Receive ACK Set transmit size
handshake
\ 4
Turn on ACK mode
v : """"" N A
' (bulk IN continue) ,
EnACK =0 interrupt Endpoint n ACK !
AKNFG =1 > interrupt processing :
]
! =
| | Bulk IN processing | |-————J

*n = 1-6(endpoint number)

(bulk IN complete)

Figure 4-3 Bulk IN Operation Flow

4-12

09/05/12 Chapter 4 Data Transfers

4.3.3. Bulk IN Processing

The endpoint n ACK interrupt flag (AKnFG) of the endpoint n interrupt register EPnINT is set
and an endpoint n ACK interrupt is generated when a bulk transfer IN transaction terminates
normally,.
The following actions are automatically taken when an endpoint n ACK interrupt occurs:

I Turn on the NAK mode (EnACK=0).

1 Invert the toggle bit (EnTGL).

The endpoint n ACK interrupt processing routine must perform the following bulk IN
processing:

o |f data to be sent remains, take preparatory actions for the next transmission.

The Bulk IN processing to be performed during the endpoint n ACK interrupt processing
routine looks like as shown below (see 2.5.1, “Endpoint n ACK Interrupts”).

(Bulk IN processing >

Transmit data present?

No

Write transmit data Write data into the EPn data area
EPNCNT (3 [byte] Set transmit size
EnACK I3 1 Turn on ACK mode

»

\4

n = 1-6 (endpoint number) (End of Bulk IN processing>

Figure 4-4 Example of Bulk IN Processing

4.3.4. Transmission Errors

1 Stall
The STALL bit (EnSTL) of the endpoint n status register EPNSTA must be set to 1 by
firmware if the endpoint HALT is set or the endpoint n can transmit no data packet for
some reason. This causes the LC87F1M16A to send STALL handshake packets for any
IN/OUT tokens received from the host.

1 Data retransmission
If the device fails to receive an ACK handshake packet from the host after sending a 0-byte
DATA1 data packet normally, it is necessary to retransmit the data packet. Since the
LC87F1M16A performs retransmission automatically by hardware, there is no need for the
firmware to control the retransmission processing.

4-13

LC87F1M16A <USB Application Notes>

4.4. Bulk OUT Transfers

4.4.1. Bulk OUT Setup

Initialization must be performed before bulk OUT transfer starts.
(see 4.2.2, “Endpoint n Initialization (bulk transfer)”).

The preparatory steps shown below are required to receive data during the OUT transactions in
a bulk transfer.

I Turning on the ACK mode
Set the ACK bit in EPnSTA to turn on the ACK mode (EnACK=1).

The bulk OUT transfer is started by performing the preparation processing above. This
application note assumes that this processing is accomplished by endpoint n initialization(see
Section 4.2.2.) and bulk OUT processing (see Section 4.4.3.).

4-14

09/05/12

Chapter 4 Data Transfers

4.4.2. Bulk OUT Operation

The operation of the bulk OUT transfer proceeds according to the settings of the endpoint n
status register EPnSTA. If the endpoint n is configured in the ACK (EnACK=1), the reception of
an OUT token is followed by the reception of a data packet and the received data is stored in the
endpoint n data area. When an ACK is transmitted after the receive processing, the endpoint n
is automatically configured into the NAK mode (EnACK=0) and the data toggle bit (EnTGL) is
inverted. The endpoint n ACK interrupt occurs on completion of the OUT transaction and the
endpoint n ACK interrupt processing routine must perform the Bulk OUT processing. The Bulk
OUT operation flow of the Bulk OUT transfer is shown in Figure 4-5.

USB function

No

A 4

No(send NAK

Receive OUT token

Receive data to host

'

Send ACK handshake

Data toggle match?

Update receiving data
area

A 4

Update EPnRX
EnACK =0

Endpoint n ACK
interrupt

Firmware

Endpoint n initialization
(bulk transfer)

- g

Invert EnTGL
AKNFG =1

*n = 1-6(endpoint number)

v

Endpoint n ACK
interrupt processing

Il

Bulk OUT processing

Figure 4-5 Bulk OUT Operation Flow

4-15

LC87F1M16A <USB Application Notes>

4.4.3. Bulk OUT Processing

When the LC87F1M16A transmits an ACK handshake packet after receiving data in an OUT
transaction of a bulk transfer, the endpoint n ACK interrupt flag (AKnFG) of the endpoint n
interrupt register EPnINT is set and an endpoint n interrupt is generated.

The following actions are automatically taken when an endpoint n ACK interrupt occurs:

1 Update the receive data area.

1 Update the receive data size (EPnRX).
1 Turn on the NAK mode (EnACK=0).

1 Invert the toggle bit (EnTGL).

The endpoint n ACK interrupt processing routine must perform the following bulk OUT
processing:

o Read the receive data

o Take preparatory actions for the next reception.

The Bulk OUT processing to be performed during the endpoint n ACK interrupt processing
routine looks like as shown below (see 2.5.1, “Endpoint n ACK Interrupts”).

< Bulk OUT processing >

A 4
Read EPnRXx Get size of actually received data

A\ 4

Read specified number of data

Read receive data
bytes from EPn data area

\ 4
EnACK 3 1 Turn on ACK mode

v
*n = 1-6 (endpoint number) <End of Bulk OUT processinD

Figure 4-6 Example of Bulk OUT Processing

4-16

09/05/12 Chapter 4 Data Transfers

4.4.4. Receive Errors

1 Data corruption

The LC87F1M16A makes error checks by hardware. When the LC87F1M16A detects an
error, it returns no response regardless of the transmission mode settings. In such a case,
the endpoint 0 error interrupt flag (ERnFG) of the endpoint O interrupt register EPnINT is
set to 1. Error recovery actions, then, must be taken as required. Normally, the routine can
continue data receive processing following the data retransmission from the host.

I Toggle mismatch

The LC87F1M16A performs hardware toggle check when it receives data. The
LC87F1M16A responds with an ACK handshake if no error is found in the data. No
endpoint n ACK interrupt is generated, however, if a toggle mismatch is found. In this case,
neither the receive data area is updated nor the toggle bit (EnTGL) or ACK bit (EnACK) is
changed. Consequently, the routine can continue data receive processing.

I Maximum payload exceeded

The payload excess bit (EnOVR) of the endpoint n status register EPnSTA is set to 1 even
when the LC87F1M16A receives data without an error if the byte count of the received data
exceeds the maximum payload size specified in EPnMP. In such a case, the routine must

take error recovery actions as required. Normally, the routine can continue data receive
processing.

1 Stall

The STALL bit (EnSTL) of the endpoint n status register EPNSTA must be set to 1 by
firmware if the endpoint HALT is set or the endpoint n can receive no data packet for some

reason. This causes the LC87F1M16A to send STALL handshake packets for any IN/OUT
tokens received from the host.

4-17

LC87F1M16A <USB Application Notes>

4.5. Outline of Interrupt Transfer

Interrupt transfers are used to transfer small volumes of data at predetermined intervals.
Interrupt transfers include interrupt IN transfers from devices to the host and interrupt OUT
transfers from the host to devices. Like a bulk transfer, an interrupt transfer transaction
consists of token (IN or OUT), data (DATAO/1), and handshake packets. As many transactions
as required according to the volume of data are repeated in an interrupt transfer. In this case,
DATA1 and DATAO are used alternately as the PID of the data packets so that retransmitted

and new data packets can be distinguished (the first PID is DATADO).

Interrupt IN transaction

Interrupt OUT transaction

Device operation

Token Data Handshake
DATAO/L —P ACK
IN P NAK
P STALL
ACK
ouT DATA0/1 NAK
STALL

(1) Send data packets alternately starting at DATAQ.
(2) Respond with a NAK if the device is not readyto
send data or there is no data to send.
(3)(6) Respond with a STALL if a hostintervention is required.
(4) Receive data and return an ACK.
(5) Respond with a NAK if the device is not ready to accept data.

(1)[Note]
@)
©)
(4)

©)
(6)

[Note] It is possible to change the data PID, ignoring the handshake packet
after transmitting a data packet. In such a case, itis not guaranteed that
the host has received the data packet nomally.

Figure 4-7 Interrupt Transfer Transactions

4-18

09/05/12

Chapter 4 Data Transfers

4.5.1. Outline of Process

LC87F1M16A can achieve interrupt transfer processing through the initialization for initiating
interrupt transfers and the processing of endpoint n ACK interrupt which occurs on each
normal termination of each transaction. The figure below shows the outline of interrupt

transfer processing.

Interrupt IN Transfer

Endpoint n initialization
(interrupt transfer)

No

Transmit data present?

Write transmit data

v

Set transmit size

v

Turn on ACK mode

.
+]

]

]

]

]

IN :

DATAX :

ACK :

' e

Endpoint n ACK l '
interrupt '

p * _E

Interrupt IN processing

Interrupt OUT Transfer

Endpoint n initialization
(interrupt transfer)

~
ouT
DATAx
ACK
I
Endpoint n ACK :
interrupt *

Interrupt OUT processing

—

4-19

LC87F1M16A <USB Application Notes>

4.5.2. Endpoint n Initialization (interrupt transfer)

A device cannot perform data communications until it is configured and enters the Configured
state. This application note assumes that the devices are initialized during USB bus reset
interrupt processing and those endpoints 1-6 are disabled (see 2.4, “USB Bus Reset Interrupts”).
It is necessary to set up endpoints n (n=1-6) to perform interrupt transfers. Make sure that
endpoint n (n=1-6) is initialized when a request that will affect that endpoint (SetConfiguration

/ Setinterface / ClearFeature[ENDPOINT_HALT]) is accepted.

An example of endpoint n initialization processing is shown in Figure 4-8. When IN transfers,
set up EPnSTA and enable the endpoint n ACK interrupts. When OUT transfers, set up

EPnSTA and EPnCNT and enable the endpoint n ACK interrupts.

Endpoint 3 : interrupt IN

Endpoint 3 initialization
(interrupt transfer)

D

4

EP3STA (FE94h) < 84h <

A 4

AKS3EN (FE86h[6]) <

1

v

End of endpoint 3 initialization

7~ Use bank 0

Clear isochronous bit

IN transfer

Turn on NAK mode

Clear STALL bit

Clear payload size excess hit
Reset data toggle bhit to 0
Enable endpoint 3

Enable endpoint 3 ACK interrupt

Endpoint 4 : interrupt OUT

Endpoint 4 initialization
(interrupt transfer)

\ 4

EP4STA (FE95h) < 88

h

\ 4

EPACNT (FE9Eh) < 40h

v

AK4EN (FE87h[6]) <

1

v

End of endpoint 4 initializati@

Use bank 0

Clear isochtronous bit

OUT transfer

Turn on ACK mode

Clear STALL bit

Clear payload size excess hit
Reset data toggle bit 0
Enable endpoint 4

Set maximum payload size (64-bytes)

Enable endpoint 4 ACK interrupt

4-20

Figure 4-8 Example of Endpoint Initialization for Interrupt Transfers

09/05/12

Chapter 4 Data Transfers

4.5.3. Endpoint Descriptor Example

Endpoints 1-6 can be used in interrupt transfers. Since data is transferred in one direction in
interrupt transfers, it is necessary to specify the data direction (transmit or receive) for each
endpoint to be used. Specify the endpoint humber to be used and the data direction in the
endpoint address field (bEndpointAddress) in the endpoint descriptor and an integer value 0-64
in the maximum packet size field (bMaxPacketSize). Also specify an integer value 1 to 255 in
the required maximum period field (bInterval). When an integer value N is specified in
binterval, it is guaranteed that polling occurs at least once per N milliseconds.

Field Size (in Bytes) Value Description
bLength 1 07h Descriptor size
bDescriptorType 1 05h ENDPOINT descriptor
(One of the values listed below)
01h 01h: Endpoint 1 OUT
02h 02h: Endpoint 2 OUT
03h 03h: Endpoint 3 OUT
04h 04h: Endpoint 4 OUT
05h 05h: Endpoint 5 OUT
bEndpointAddress 1 06h 06h: Endpoint 6 OUT
81h 81h: Endpoint 1 IN
82h 82h: Endpoint 2 IN
83h 83h: Endpoint 3 IN
84h 84h: Endpoint 4 IN
85h 85h: Endpoint 5 IN
86h 86h: Endpoint 6 IN
bmAttributes 1 03h Interrupt transfer
The maximum packet
. (One of the values listed below) | Size (in bytes) must be set
wMaxpacketSize 2 0000h-0040h to an integer value
between 0 and 64.
binterval 1 (One of the values lsted below) Polling interval (in ms)
01h-FFh

Table 4-5 Endpoint Descriptor (Interrupt Transfer)

4-21

LC87F1M16A <USB Application Notes>

4.6. Interrupt IN Transfers

4.6.1. Interrupt IN Setup

Initialization must be performed before interrupt IN transfer starts.
(see 4.5.2, “Endpoint n Initialization (interrupt transfer)”).

The preparatory steps shown below are required to send data during the IN transactions in an
interrupt transfer.

I Writing data
Write data into the endpoint n transmit data area.

* This step is unnecessary when sending a null packet with a 0-byte data size.

I Setting the transmit size
Load EPNCNT with the byte count of data to be transmitted.

* Make sure that the byte count of the transmit data does not exceed the maximum
payload size of the endpoint n. Specify a 0 for a null packet. (Refer to 5.7.3, “Interrupt
Transfer Packet Size Constraints,” of the USB 2.0 Specification.)

I Turning on the ACK mode
Set the ACK bit in EPnSTA (EnACK=1).

When the newly data to be transmitted is present after initialization of endpoint or completion
of transfer, the interrupt IN transfer is started by performing the preparation processing listed
above. If the data is sent in multiple IN transactions, the above processing is performed after
each normal termination of the IN transaction. This application note assumes that this
processing is accomplished by Interrupt IN processing (see Section 4.6.3.).

4-22

09/05/12

Chapter 4 Data Transfers

4.6.2. Interrupt IN Operation

The interrupt IN transfer operation proceeds according to the settings of the status register
EPNnSTA and size register EPNCNT of the endpoint n used. If the endpoint n is configured in the
ACK mode (EnACK=1), the reception of an IN token is followed by the transmission of the data
stored in the endpoint n data area in the form of a data packet. After the transmission
processing, when an ACK is received, the endpoint n is automatically placed into the NAK mode
(EnACK=0) and the data toggle bit (EnTGL) is inverted. The endpoint n ACK interrupt occurs on
completion of the IN transaction and the endpoint n ACK interrupt processing routine must
perform the Interrupt IN processing. The Interrupt IN operation flow of the Interrupt IN

transfer is shown in Figure 4-9.

USB function

Receive IN token

Send data to host

A
Receive ACK
handshake

v
Invert TGL
EnACK =0

Firmware

Endpoint initialization
(interrupt transfer)

>
l
y

Transmit data present?

Write transmit data

v

Set transmit size

v

Turn on ACK mode

AKnFG =1

*n = 1-6(endpoint number)

Endpoint ACK
interrupt processing

4L

nterrupt IN processing

(interrupt IN complete)

Figure 4-9 Interrupt IN Operation Flow

4-23

LC87F1M16A <USB Application Notes>

4.6.3. Interrupt IN Processing

The endpoint n ACK interrupt flag (AKnFG) of the endpoint n interrupt register EPnINT is set
and an endpoint n ACK interrupt is generated when an interrupt transfer IN transaction
terminates normally.

The following actions are automatically taken when an endpoint n ACK interrupt occurs:
I Turn on the NAK mode (EnACK=0).
1 Invert the toggle bit (EnTGL).

The endpoint n ACK interrupt processing routine must perform the following interrupt IN
processing:

o Take preparatory actions for the next transmission.

The Interrupt IN processing to be performed during the endpoint n ACK interrupt processing
routine looks like as shown below (see 2.5.1, “Endpoint n ACK Interrupts”).

Qnterrupt IN processingD

No
Transmit data present?
Yes
Write transmit data Write data into the EPn data area
EPNCNT <-- [byte] Set transmit size
EnACK 3 1 Turn on ACK mode

»
'

v
*n = 1-6 (endpoint number) Gnd of Interrupt IN DrocessinD

Figure 4-10 Example of Interrupt IN Processing

4.6.4. Transmission Errors

1 Stall
The STALL bit (EnSTL) of the endpoint n status register EPNSTA must be set to 1 by
firmware if the endpoint HALT is set or the endpoint n can transmit no data packet for
some reason. This causes the LC87F1M16A to send STALL handshake packets for any
IN/OUT tokens received from the host.

1 Data retransmission
If the device fails to receive an ACK handshake packet from the host after sending a 0-byte
DATAL data packet normally, it is necessary to retransmit the data packet. Since the
LC87F1M16A performs retransmission automatically by hardware, there is no need for the
firmware to control the retransmission processing.

4-24

09/05/12 Chapter 4 Data Transfers

4.7. Interrupt OUT Transfers

4.7.1. Interrupt OUT Setup

Initialization must be performed before interrupt OUT transfer starts.
(see 4.5.2, “Endpoint n Initialization (interrupt transfer)”).

The preparatory steps shown below are required to receive data during the OUT transactions in
an interrupt transfer.

I Turning on the ACK mode
Set the ACK bit in EPnSTA to turn on the ACK mode (EnACK=1).

The interrupt OUT transfer is started by performing the preparation processing above. This
application note assumes that this processing is accomplished by endpoint n initialization (see
Section 4.5.2.) and interrupt OUT processing (see Section 4.7.3.).

4-25

LC87F1M16A <USB Application Notes>

4.7.2. Interrupt OUT Operation

The operation of the interrupt OUT transfer proceeds according to the settings of the endpoint
n status register EPnSTA. If the endpoint n is configured in the ACK (EnACK=1), the reception
of an OUT token is followed by the reception of a data packet and the received data is stored in
the endpoint n data area. When an ACK is transmitted after the receive processing, the
endpoint n is automatically configured into the NAK mode (EnACK=0) and the data toggle bit
(EnTGL) is inverted. The endpoint n ACK interrupt occurs on completion of the OUT transaction
and the endpoint n ACK interrupt processing routine must perform the Interrupt OUT
processing. The Interrupt OUT operation flow of the Interrupt OUT transfer is shown in Figure

4-11.

USB function

—

No

Receive OUT token

A 4

Receive data to host

No(send NAK) ¢

Yes

Send ACK handshake

v

Data toggle match?

Update receiving data
area

A 4

Update EPnRX
EnACK =0

Endpoint n ACK
interrupt

Firmware

Endpoint n initialization

(bulk transfer)

R LR R R P L L PP PP TR PP PRy

-

Invert EnTGL
AKNFG =1

*n = 1-6(endpoint number)

\4

A\
Endpoint n ACK
interrupt processing

11

Interrupt OUT
processing

4-26

Figure 4-11 Interrupt OUT Operation Flow

09/05/12 Chapter 4 Data Transfers

4.7.3. Interrupt OUT Processing

When the LC87F1M16A transmits an ACK handshake packet after receiving data in an OUT
transaction of an interrupt transfer, the endpoint n ACK interrupt flag (AKnFG) of the endpoint
n interrupt register EPNINT is set and an endpoint n interrupt is generated.

The following actions are automatically taken when an endpoint n ACK interrupt occurs:

1 Update the receive data area.

1 Update the receive data size (EPnRX).
I Turn on the NAK mode (EnACK=0).

1 Invert the toggle bit (EnTGL).

The endpoint n ACK interrupt processing routine must perform the following interrupt OUT
processing:

= Read the receive data.

o Take preparatory actions for the next reception.

The interrupt OUT processing to be performed during the endpoint n ACK interrupt processing
routine looks like as shown below (see Section 2.5.1, “Endpoint n ACK Interrupts”).

C Interrupt OUT processing >

Read EPnRx Get size of actually received data

Read specified number of data

Read receive data
bytes from EPn data area

v
EnACK 13 1 Turn on ACK mode

\4
*n = 1-6 (endpoint number) @nd of Interrupt OUT processi@

Figure 4-12 Example of Interrupt OUT Processing

4-27

LC87F1M16A <USB Application Notes>

4.7.4. Receive Errors

4-28

Data corruption

The LC87F1M16A makes error checks by hardware. When the LC87F1M16A detects an
error, it returns no response regardless of the transmission mode settings. In such a case,
the endpoint 0 error interrupt flag (ERnFG) of the endpoint O interrupt register EPnINT is
set to 1. Error recovery actions, then, must be taken as required. Normally, the routine can
continue data receive processing following the data retransmission from the host.

Toggle mismatch

The LC87F1M16A performs hardware toggle check when it receives data. The
LC87F1M16A responds with an ACK handshake if no error is found in the data. No
endpoint n ACK interrupt is generated, however, if a toggle mismatch is found. In this case,
neither the receive data area is updated nor the toggle bit (EnTGL) or ACK bit (EnACK) is
changed. Consequently, the routine can continue data receive processing.

Maximum payload exceeded

The payload excess bit (EnOVR) of the endpoint n status register EPnSTA is set to 1 even
when the LC87F1M16A receives data without an error if the byte count of the received data
exceeds the maximum payload size specified in EPnMP. In such a case, the routine must

take error recovery actions as required. Normally, the routine can continue data receive
processing.

Stall

The STALL bit (EnSTL) of the endpoint n status register EPNSTA must be set to 1 by
firmware if the endpoint HALT is set or the endpoint n can receive no data packet for some

reason. This causes the LC87F1M16A to send STALL handshake packets for any IN/OUT
tokens received from the host.

09/05/12 Chapter 4 Data Transfers

4.8. Outline of Isochronous Transfer

Isochronous transfers are used to transfer audio, image, and other multimedia data. It is
guaranteed that isochronous transfers distribute a certain amount (1023 bytes or less) of data
within a predetermined time (Maximum bytes of all endpoints in LC87F1M16A is 64 bytes).
Isochronous transfers include isochronous IN transfers from devices to the host and
isochronous OUT transfers from the host to devices. A transaction consists of token (IN or OUT)
and data (DATAO) packets; it has no handshake packet. Consequently, neither retransmission
is allowed nor error-free communication is guaranteed. Only DATAO is used as the data packet
PID and DATAL1 is not used.

Host Device
Token Data
Isochronous IN transaction IN » DATAO N
Isochronous OUT transaction ouT P DATAO @

Device operation
(1) Send DATAO data packet
(2) Receive DATAO data packet

Figure 4-13 Isochronous Transfer Transactions

The LC87F1M16A performs no data toggle check on the data that it received through
isochronous OUT transfers. The data packet is received normally whether its PID is DATAO or
DATAL and the endpoint data area is updated..

4-29

LC87F1M16A <USB Application Notes>

4.8.1. Outline of Process

LC87F1M16A can achieve isochronous transfer processing through the initialization for
initiating isochronous transfers and the processing of endpoint n ACK interrupt which occurs
on each normal termination of each transaction. The figure below shows the outline of
isochronous transfer processing.

Isochronous IN Transfer Isochronous OUT Transfer
Endpoint n initialization Endpoint n initialization
(isochronous transfer) (isochronous transfer)

No

Transmit data present?

Write transmit data (plane A) Endpoint n ACK
|

* interrupt +
Set bank/address
Isochronous OUT L__2
* processing

Turn on ACK mode

No
Next data present? o
I
]
]
)
Write transmit data (plane B) '
]

|
PR]
DE— ;

v

I
Endpointn ACK |
interrupt +

Isochronous IN L
processing

]

]

]

]

IN ;
DATAO !
:

]

]

]

]

]

]

4-30

09/05/12 Chapter 4 Data Transfers

4.8.2. Endpoint n Initialization (isochronous transfer)

A device cannot perform data communications until it is configured and enters the Configured
state. This application note assumes that the devices are initialized during USB bus reset
interrupt processing and those endpoints 1-6 are disabled (see 2.4, “USB Bus Reset Interrupts”).
It is necessary to set up endpoints n (n=1-6) to perform isochronous transfers. Make sure that
endpoint n (n=1-6) is initialized when a request that will affect that endpoint (SetConfiguration
/ Setinterface / ClearFeature[ENDPOINT_HALT]) is accepted.

An example of endpoint n initialization processing is shown in Figure 4-14. When IN transfers,
set up EPnSTA and enable the endpoint n ACK interrupts. When OUT transfers, set up
EPNnSTA and EPnCNT and enable the endpoint n ACK interrupts.

Endpoint5: isochronous OUT

Endpoint 5 initialization
(Isochronous transfer)

A 4
E5SBNK (FE96h[0]) 12 0 EP5 data area starting address : 300h

Set isochronous bit

OUT transfer
\ 4 Turn on ACK mode
EP5STA (FE96h) 13 8Ah Clear STALL bit

Clear payload size excess bit
Reset data toggle bit 0
Enable endpoint 5

A 4
EP5CNT (FEAOh) 3 40h Set maximum payload size (64 bytes)

\ 4
AKSEN (FE88[6]h) 13 1 Enable endpoint 5 ACK interrupt

A 4

Gnd of endpoint5 initializatioD

Figure 4-14 Example of Endpoint n Initialization for Isochronous Transfers

The toggle bit (EnTGL) in the endpoint n status register has no meaning during isochronous transfers.
The PID of the data packet to be transferred during an isochronous IN transfer is always DATAO
regardless of the value of EnTGL. Since the LC87F1M16A makes no toggle check during
isochronous OUT transfers, data packets with a PID of DATAO or DATAL are received normally
and the data areas are updated regardless of the value of EnTGL.

4-31

LC87F1M16A <USB Application Notes>

4.8.3. Endpoint Descriptor Example

Endpoints 1-6 can be used in isochronous transfers. Since data is transferred in one direction in
isochronous transfers, it is necessary to specify the data direction (transmit or receive) for each
endpoint to be used. Specify the endpoint number to be used and the data direction in the
endpoint address field (bEndpointAddress) in the endpoint descriptor and an integer value
0-1023 in the maximum packet size field (bMaxPacketSize). Also specify an integer value 1 in
the required maximum period field (binterval). Specifying 1 guarantees that periodic polls
occur every 1 millisecond. (Refer to 9.6.4, “Endpoint”, of USB 2.0 Specification.)

Field Size (in Bytes) Value Description
bLength 1 07h Descriptor size
bDescriptorType 1 05h ENDPOINT descriptor
(One of the values listed below)
01h 01h: Endpoint 1 OUT
02h 02h: Endpoint 2 OUT
03h 03h: Endpoint 3 OUT
04h 04h: Endpoint 4 OUT
05h 05h: Endpoint 5 OUT
bEndpointAddress 1 06h 06h: Endpoint 6 OUT
81h 81h: Endpoint 1 IN
82h 82h: Endpoint 2 IN
83h 83h: Endpoint 3 IN
84h 84h: Endpoint 4 IN
85h 85h: Endpoint 5 IN
86h 86h: Endpoint 6 IN
bmAttributes 1 0lh Isochronous transfer
The maximum packet size
. (One of the values listed below) | (in bytes) must be set to an
wMaxPacketSize 2 0000h-03FFh integer value between 0 and
1023.
binterval 1 01h Polling interval (in milli-

seconds)

Table 4-6 Endpoint Descriptor (Isochronous Transfer)

4-32

09/05/12 Chapter 4 Data Transfers

4.8.4. Endpoint Data Areas

In an isochronous transfer, a predetermined amount (specified in the wMaxPacketSize field of
the endpoint descriptor) is transferred without fail, once per frame (1ms). Since transfers occur
regardless of the device state (no NAK response can be made), the device must always be ready
for the next transfer. Accordingly, it is necessary to switch the active bank (bank0, bankl) on
each transaction.

See Table 1-2 - Table 1-10 about sizes of each endpoint and address mappings in RAM.

4-33

LC87F1M16A <USB Application Notes>

4.9. Isochronous IN Transfers

4.9.1. Isochronous IN Setup

Initialization must be performed before isochronous IN transfer starts.
(see 4.8.2, “Endpoint n Initialization (isochronous transfer)”).

The preparatory steps shown below are required to send data during the IN transactions in an
isochronous transfer.

I Writing data
Write the data to be transmitted first into the endpoint n transmit data area (plane A).

I Specifying the bank/address
Set up EnBNK to specify the bank and address of the area to be used for transmission. The
area specified here needs to contain the data to be transmitted in the next IN transaction.
(plane A is specified here).

I Turning on the ACK mode
Set the ACK bit in EPnSTA (EnACK=1).

I Writing data
Write the subsequent transmit data into the other area (plane B). (Switch between plan A
and plane B on each execution of transmission preparation processing.)

When the newly data to be transmitted is present, the isochronous IN transfer is started by
performing the preparation processing above. The above processing is performed on each
normal termination of the transaction so that the IN transaction is performed continuously.
This application note assumes that this processing is accomplished by Isochronous IN
processing (see Section 4.9.3.).

4.9.2. Isochronous IN Operation

The isochronous IN transfer operation proceeds according to the settings of the status register
EPNnSTA and size register EPNCNT of the endpoint n used. If the endpoint n is configured in the
ACK mode (EnACK=1), the reception of an IN token is followed by the transmission of the data
stored in the endpoint n data area in the form of a data packet. After the transmission
processing, the endpoint n is automatically placed into the NAK mode (EnACK=0). Since no
handshake packet is involved in isochronous transfers, the LC87F1M16A will transmit a data
packet with a length of 0 byte when it receives an IN token in the NAK mode. The Isochronous
IN operation flow is shown in Figure 4-15.

4-34

09/05/12

Chapter 4 Data Transfers

USB function

Receive IN token

v

No

Yes
v

Send 0-byte data Send data to host

A

(Plane A)

Endpoint n
ACK interrupt

Firmware

(isochronous

Endpoint n initialization

transfer)

!

Transmit data

No
present?

Write transmit data (plane A)
Set bank/address
Turn on ACK mode

v

Next data present?

Write transmit data (plane B)

Receive IN token

v

No

Yes

Send O-tlJyte data Send data to host

< A 4
EnACK =0
AKnFG =1

(Plane B)

Endpoint n
ACK interrupt

A 4

Endpoint n ACK
interrupt processing

i1

Isochronous IN
processing

4

(Setup for plane
A transmission)

A

In this example, planes A and B are
alternately used as the transmit area.

*n = 1-6(endpoint number)

A 4

Endpoint n ACK
interrupt processing

i1

Isochronous IN
processing

(Setup for plane
B transmission)

Figure 4-15 Isochronous IN Operation Flow

EnACK is cleared to 0 when an endpoint n ACK interrupt occurs. The LC87F1M16A
transmits a data packet with a length of O byte when it receives an IN token in this state.
This action, however, will not set AKnFG (no ACK interrupt is generated).

4-35

LC87F1M16A <USB Application Notes>

4.9.3. Isochronous IN Processing

The endpoint n ACK interrupt flag (AKnFG) of the endpoint n interrupt register EPnINT is set
and an endpoint n ACK interrupt is generated when an isochronous transfer IN transaction
terminates normally. The following actions are automatically taken when an endpoint n ACK
interrupt occurs:

I Turn on the NAK mode (EnACK=0).

The endpoint n ACK interrupt processing routine must perform the following isochronous IN
processing:
o Take preparatory actions for the next transmission.

The isochronous IN processing to be performed during the endpoint n ACK interrupt processing
routine looks like as shown below (see 2.5.1, “Endpoint n ACK Interrupts”).

Isochronous IN
processing

v

Transmit data is present?

Yes

The next data to transmit is
already written in data area?

(Set to plane A)

Set(swtich) bank/address When the transmit data is
stored in plane A

v
EnACK 31 Turn on ACK mode

v

The next data to transmit exists?

Next data present?

Write data into the EPn data area
(Plane B)

Write transmit data

A 4

*n = 1-6 (endpoint number) End of Isochronous IN
processing

Figure 4-16 Example of Isochronous IN Processing

4-36

09/05/12 Chapter 4 Data Transfers

4.10. Isochronous OUT Transfers

4.10.1. Isochronous OUT Setup

Initialization must be performed before isochronous OUT transfer starts.
(see 4.8.2, “Endpoint n Initialization (isochronous transfer)”).

The preparatory steps shown below are required to receive data during the OUT transactions in
an isochronous transfer.

I Specifying the bank/address
Set up EnBNK to specify the bank of the area to be used for receiving data. The area
specified here is loaded with the data that will be received in the next OUT transaction.

I Turning on the ACK mode
Set the ACK bit in EPnSTA (EnACK=1).

The isochronous OUT transfer is executed by performing the preparation processing above.
This application note assumes that this processing is accomplished by endpoint n initialization
(see Section 4.8.2.) and isochronous OUT processing (see Section 4.10.3.).

4-37

LC87F1M16A <USB Application Notes>

4.10.2. Isochronous OUT Operation

The operation of the isochronous OUT transfer proceeds according to the settings of the
endpoint n status register EPNnSTA. If the endpoint n is configured in the ACK (EnACK=1), the
reception of an OUT token is followed by the reception of a data packet and the received data is
stored in the endpoint n data area. When an ACK is transmitted after the receive processing,
the endpoint n is automatically configured into the NAK mode (EnACK=0). Since no handshake
packet is involved in isochronous transfers, the LC87F1M16A will never respond with a NAK
when it receives an OUT token in the NAK mode. The Isochronous OUT operation flow is

shown in Figure 4-17.

USB function

AA 4

No

Receive OUT token

A 4

Receive data to host

Yes

Update receive data
area

Update EPnRx

(Plane A)

Endpoint n
ACK interrupt

Firmware

Endpoint n Initialization
(isochronous transfer)

A reception)

S D’ GREEEEEEE R

(Setup for plane

EnACK =0
AKnFG =1

A 4

A

Receive OUT token

A 4

Receive data to host

Update receive data
area

Update EPnRx

(Plane B)

Endpoint n
ACK interrupt

A 4

Endpoint ACK
interrupt processing

Il

Isochronous OUT

processing

B reception)

v

(Setup for plane

EnACK =0
AKnFG =1

In this example, planes A and B are
alternately used as the transmit area.

*n = 1-6(endpoint number)

A 4

Endpoint ACK
interrupt processing

Il

Isochronous OUT
processing

A reception)

(Setup for plane

4-38

Figure 4-17 Isochronous OUT Operation Flow

09/05/12 Chapter 4 Data Transfers

4.10.3. Isochronous OUT Processing

When the LC87F1M16A transmits an ACK handshake packet after receiving data in an OUT
transaction of an isochronous transfer, the endpoint n ACK interrupt flag (AKnFG) of the
endpoint n interrupt register EPnINT is set and an endpoint n interrupt is generated.
The following actions are automatically taken when an endpoint n ACK interrupt occurs:

1 Update the receive data area.

1 Update the receive data size (EPnRX).

I Turn on the NAK mode (EnACK=0).

The endpoint n ACK interrupt processing routine must perform the following isochronous OUT
processing:

o Read the receive data.

o Take preparatory actions for the next reception.

The Isochronous OUT processing to be performed during the endpoint n ACK interrupt
processing routine looks like as shown below (see 2.5.1, “Endpoint n ACK Interrupts”).

Isochronous OUT
processing

A 4 (Set plane B)
Read EPnRx When the receive data has
stored in plane A

EnACK 13 1 Turn on ACK mode

Read data from the EPn data
area (from Plane A)

Read receive data

\ 4
*n = 1-6 (endpoint number) @d of Interrupt OUT processi@

Figure 4-18 Example of Isochronous OUT Processing

4-39

LC87F1M16A <USB Application Notes>

4-40

Chapter 5. Appendix

5.1. LCB7FIMLOA RAM MaAP ..ottt

5.2. Example of Control Program Configurationccccvveiiiiieeiiiiniiiiiieeeeee e -

5-1

LC87F1M16A <USB Application Note >

5.1. LC87F1M16A RAM Map

B Internal data memory space is 64K-bytes (Address : 0000h-FFFFh)
B Actually LC87F1M16A has 1024 bytes RAM.

Address Size
0000 [RO~R63] 128byte ~
_______ 00T
0080
~01FF
1 EPO-EPE |1 Max > 1024byte
0200 Transmit / Receive 512byte
~033F (Configure EPBMOD register
_____________________________________ andBank) | |~
0c00 not exists
~FDFF
FEOO SFR 256byte
~FEFF
FF
00 System 256byte
~FFFF

5-2

09/05/12 Chapter 5 Appendix

5.2. Example of Control Program Configuration

LC87 initialization Endpoint Interrupts

USB initialization L Endpoint n ACK interrupts

Control transfers processing

SETUP processing

—— STALL processing

| Request processing

—— Data IN setup
| Data OUT setup
USB Bus reset interrupt Status IN setup

L Endpoint O initialization

USB Bus active interrupt

Data OUT processing

Suspend interrupt —— Data OUT setup
L Suspend processing Status IN setup

Status IN processing

Remote wakeup interrupt

L Request processing
L Send resume signal

Data IN processing

—— Data IN setup
Status OUT setup

Status OUT processing

Bulk IN processing
L Bulk IN setup

Bulk OUT processing
L BulkouT setup

Interrupt IN processing
L Interrupt IN setup

Interrupt OUT processing
L Interrupt OUT setup

Isochronous IN processing
L 1sochronous IN setup

Isochronous OUT processing
L 1sochronous OUT setup

5-3

LC87F1M16A <USB Application Note >

In request processing, proper processing is performed according to the request which received
on the SETUP stage of Control transfer. A device starts request processing after a SETUP stage.
However, a SetAddress request must be performed after Status stage completion. The outline of
request processing is shown below.

Request processing

@ SetConfiguration
@ Setinterface

@ClearFeature (EP_HALT)

L Endpoint n initialization

| Bulk IN setup

— Bulk OUT setup

— Interrupt IN setup
— Interrupt OUT setup
— lIsochronous IN setup

— Isochronous OUT setup

@GetStatus
@ClearFeature(Remote wakeup)
@ SetFeature

@ GetDescriptor

@ SetDescriptor

@ GetConfiguration
@Getinterface

@®SynchFrame

L [Corresponding processing]

@ SetAddress

L Set Address

These setup processing are
performed if needed.

When SetConfiguration, Setlnterface, or ClearFeature(ENDPOINT_HALT) request is
received, it is necessary to initialize the related endpoint n(n=1-6). In initialization, reset the
data toggle bit to 0 and enable the endpoint. Furthermore, if the endpoint can start transfers,
proper setup processing can be performed.

5-4

