Voltage Regulators, Peak Power Zener Surge Rated, 600 Watt

BZG03C15 Series

The SMA series is supplied in ON Semiconductor's exclusive, cost-effective, highly reliable SURMETIC $^{\text{\tiny{TM}}}$ package and is ideally suited for use in communication systems, automotive, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/consumer applications. This new line of 1.5 watt Zener diodes offers the following advantages:

Specification Features

- Standard Zener Breakdown Voltage 15 V to 150 V
- Peak Power 600 Watts @ 100 μs
- ESD Rating of Class 3 (> 16 KV) per Human Body Model
- Response Time is Typically < 1.0 ns
- Flat Handling Surface for Accurate Placement
- Package Design for Top Slide or Bottom Circuit Board Mounting
- Low Profile Package
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Mechanical Characteristics

CASE: Void-free, transfer-molded plastic

FINISH: All external surfaces are corrosion resistant and leads are readily solderable

MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES:

260°C for 10 Seconds

POLARITY: Cathode indicated by molded polarity notch or polarity

1

band

MOUNTING POSITION: Any

ON Semiconductor®

www.onsemi.com

PLASTIC SURFACE MOUNT ZENER VOLTAGE REGULATORS 600 WATTS PEAK POWER

SMA CASE 403D

MARKING DIAGRAM

XXX = Specific Device Code (See Table on Page 2)

A = Assembly Location

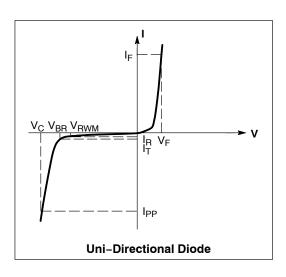
Y = Year WW = Work Week

= Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
BZG03C15G	SMA (Pb-Free)	5000/Tape & Reel
BZG03C150G	SMA (Pb-Free)	5000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.


BZG03C15 Series

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Power Dissipation (Note 1) @ T_L = 25°C, t_P = 100 μs	P _{ZSM}	600	W
DC Power Dissipation @ T _L = 75°C Measured Zero Lead Length (Note 2) Derate Above 75°C Thermal Positones I water to Lead	P _D	1.5	W mW/°C °C/W
Thermal Resistance, Junction-to-Lead Forward Surge Current (Note 3) @ T _A = 25°C	R _{0JL}	50 40	A A
Operating and Storage Temperature Range	T _J , T _{stg}	-65 to +150	°C

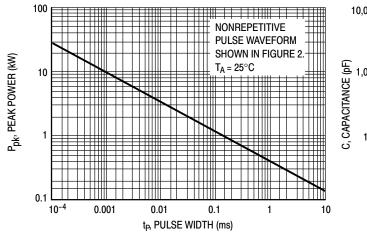
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. 100 μs, non-repetitive square pulse
- 2. 1 in. square copper pad, FR-4 board
- 3. 1/2 sine wave (or equivalent square wave), PW = 8.3 ms, duty cycle = 4 pulses per minute maximum

SYMBOLS DEFINITIONS

Symbol	Parameter				
I _{PP}	Maximum Reverse Peak Pulse Current				
V _C	Clamping Voltage @ I _{PP}				
V _{RWM}	Working Peak Reverse Voltage				
I _R	Maximum Reverse Leakage Current @ V _{RWM}				
V_{BR}	Breakdown Voltage @ I _T				
I _T	Test Current				
Ι _F	Forward Current				
V _F	Forward Voltage @ I _F				

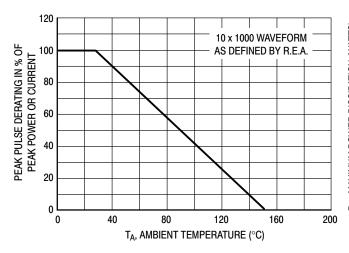
ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted, $V_F = 1.2 \text{ V Max.}$ @ $I_F = 0.5 \text{ A}$ for all types)


		V _{RWM}		Breakdown Voltage			Z _{zt} @ I _T		
	Device	(Note 4)		V_{BR} (V) (Note 5)			@ I _T	Тур	Max
Device*	Marking	Volts	μΑ	Min	Nom	Max	mA	Ω	Ω
BZG03C15, G	G15	11	1	13.8	15.0	15.6	50	5.0	10.0
BZG03C150, G	G150	110	1	138	150	156	5	130	300

^{4.} A transient suppressor is normally selected according to the working peak reverse voltage (V_{RWM}), which should be equal to or greater than the DC or continuous peak operating voltage level

^{5.} V_{BR} measured at pulse test current I_T at an ambient temperature of 25°C *The "G" suffix indicates Pb–Free package available.

BZG03C15 Series


RATING AND TYPICAL CHARACTERISTIC CURVES

10,000 $T_J = 25^{\circ}C$ f = 1 MHz **MEASURED AT** V_{sig} = 50 m V_{p-p} C, CAPACITANCE (pF) 000 001 **ZERO BIAS** MEASURED AT STAND-OFF $VOLTAGE,\,V_{WM}$ 10 2 5 10 20 50 100 200 V(BR), BREAKDOWN VOLTAGE (VOLTS)

Figure 1. Pulse Rating Curve

Figure 3. Typical Junction Capacitance

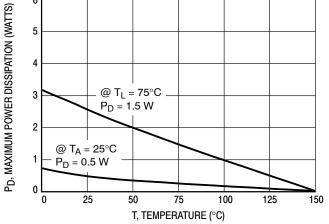


Figure 2. Pulse Derating Curve

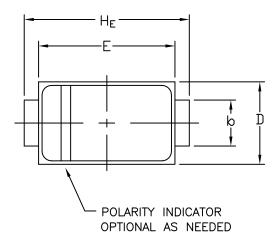
Figure 4. Steady State Power Derating

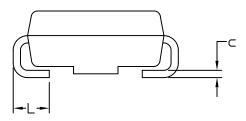
SURMETIC is a trademark of Semiconductor Components Industries, LLC.



STYLE 1 STYLE 2

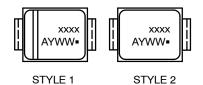
SCALE 1:1



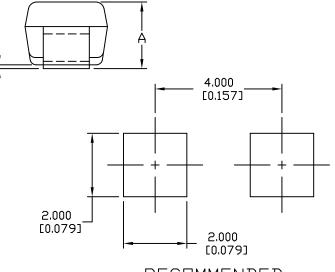

DATE 22 OCT 2021

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCHES
- 3. DIMENSION 6 SHALL BE MEASURED WITHIN DIMENSION L.


	MILLIMETERS			INCHES		
DIM	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.
Α	1.97	2.10	2.20	0.078	0.083	0.087
A1	0.05	0.10	0.20	0.002	0.004	0.008
b	1.27	1.45	1.63	0.050	0.057	0.064
С	0.15	0.28	0.41	0.006	0.011	0.016
D	2.29	2.60	2.92	0.090	0.103	0.115
Ε	4.06	4.32	4.57	0.160	0.170	0.180
HE	4.83	5.21	5.59	0.190	0.205	0.220
L	0.76	1.14	1.52	0.030	0.045	0.060

STYLE 1: STYLE 2:
PIN 1. CATHODE (POLARITY BAND) NO POLARITY
2. ANODE


GENERIC MARKING DIAGRAM*

xxxx = Specific Device Code A = Assembly Location

Y = Year WW = Work Week ■ = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

RECOMMENDED MOUNTING FOOTPRINT

DOCUMENT NUMBER:	98AON04079D	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SMA		PAGE 1 OF 1		

onsemi and ONSemi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales