ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

DN05134/D

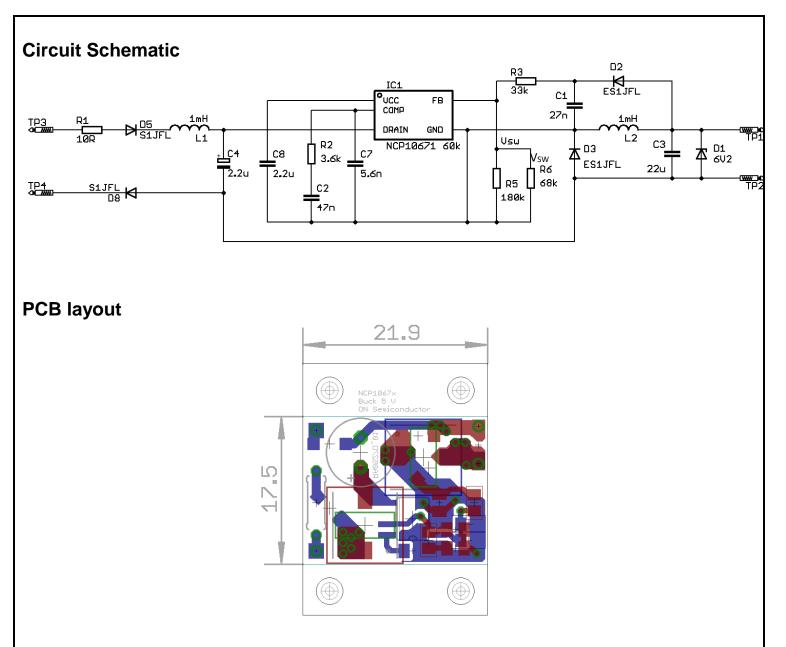
Design Note – DN05134/D

Universal AC Input, 0.45 Watt Non-isolated Power Supply

	e	Application	Input Voltage	Output Power	Topology	I/O Isolation	
NCP10671BD060G		White Goods, E-meter, etc.	90 to 265 Vac	0.45 W	Buck	No	
			[Output S			
		Output Vol	tage				
	Output Ripple			18 mV @			
	Max Current			9			
	Min Current						
		Efficience	су –	See E			
	Input Protection						
	Operating Temp. Range			0 to			
	Cooling Method			Cor			
	N	o-load Power Co	onsumption	See No			

Circuit Description text

This design note describes a simple 0.45 W, universal AC input, non-isolated buck converter. The key parameters of the power supply are dimensions and fast transient responds with given output filter. It is recommended to modify the power supply to fit application needs, like standby consumption, output voltage ripple etc.

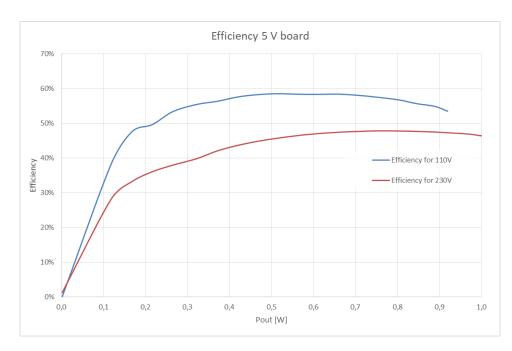

The power supply is a simple non-isolated buck topology utilizing ON Semiconductor's new NCP10671 monolithic switcher with integrated 34 Ω MOSFET in a SOIC7 package (IC1). This Design Note provides the complete circuit schematic and BOM.

The AC voltage is rectified (D5, D8) and connected to bulk capacitor C4. The rising voltage allows DSS to charge Vcc capacitor C8. Once the voltage on C8 crosses UVLO level, the NCP10671 starts to switch. When the internal MOSFET is on, the current flows from C4 to Drain pin, from GND pin through L2 into C3, then via negative line back to C4. When the MOSFET is turned off, the current flows from L2 to C3, then via D3 back to the coil. During demagnetization period the output voltage is copied on C1 (through D2). The C1 value affects no load

consumption, transient response etc. The reason is, the capacitor can be only charged via D2, but discharging is done by FB resistor divider. Moreover, the charging is done only during demagnetization period of L2. If lower value of C1 is used, in skip mode, the C1 is faster discharged so IC1 switches frequently to check the output value, on the other hand, if a bigger value is used, less switching period is placed. As a result the higher value of C1 decrease no load consumption and improves load regulation. The lower value of C1 increase transient response. The C1 value selection depends on designer's priorities. A resistor divider composed of R3, R5 and R6 reduces voltage for FB pin (3.3 V). Compensation network composes from R2, C2 and C7. The output diode D1 is a dummy load to clamp high output voltage in no load or low load conditions.

Key Features

- Universal AC input range (90 265 Vac).
- Small dimensions.
- Low no load consumption (it requires a device change)
- Over-voltage and over temperature protection.
- Frequency Jittering for Better EMI Signature (EMI not tested).


Demo-board Photo



Тор

Bottom

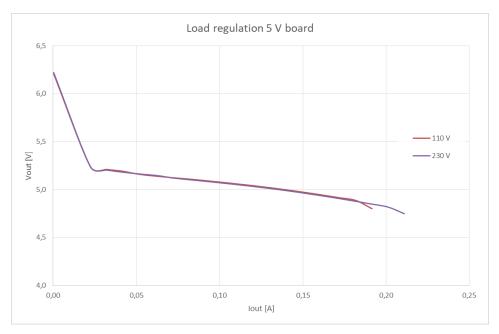


Figure 2 Load regulation for different input voltage

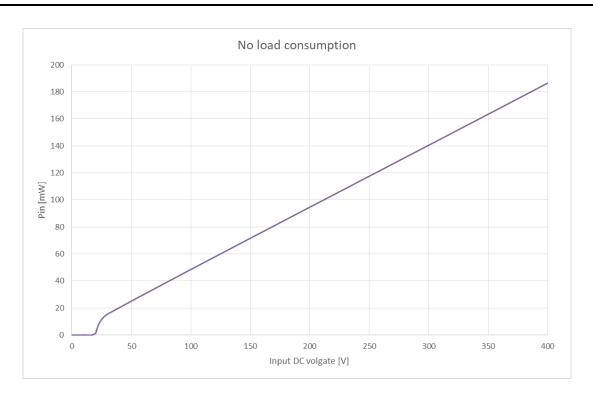
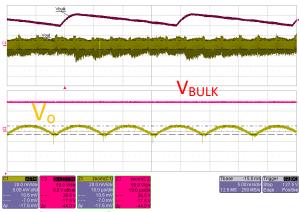



Figure 3 No load consumption.

Output Ripple Voltage

Figure 4 Vin 110 Vac, load 90 mA

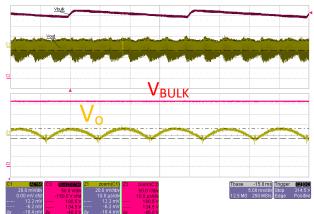
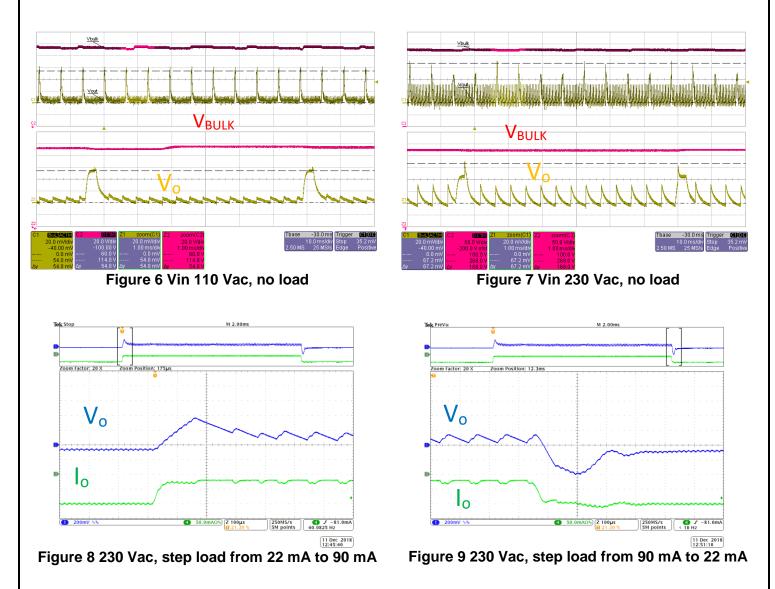



Figure 5 Vin 230 Vac, load 90 mA

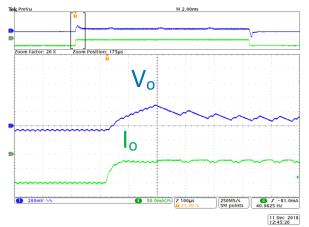


Figure 10 110 Vac, step load from 22 mA to 90 mA

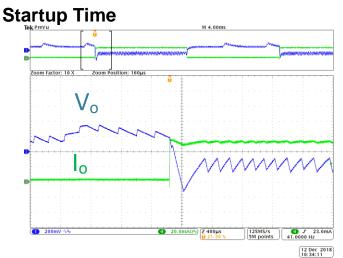
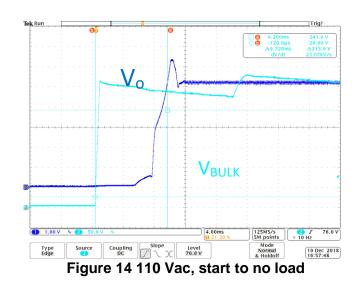



Figure 12 230 Vac, transient from 5 mA to 55 mA load

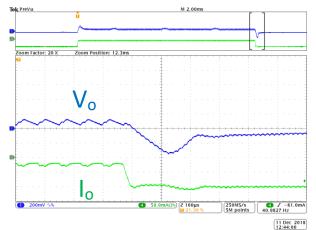


Figure 11 110 Vac, step load from 90 mA to 22 mA

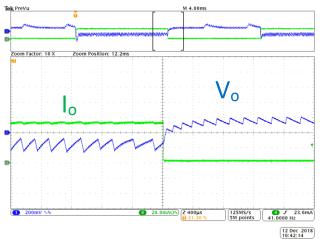
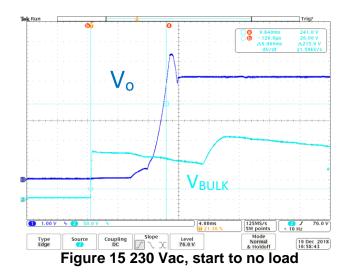



Figure 13 230 Vac, transient from 55 mA to 5 mA load

BOM

ON Semiconductor

Bill of Materials for the NCP10671 Buck SOIC7 Demo Board 5 V

								Substitution		
Designator	Quantity	Description	Value	Tolerance	Footprint	Manufacturer	Manufacturer Part Number	Allowed	Lead Free	Comments
							-	-		
C1	1	CAPACITOR	27 nF	10%	0603	Kemet	C0603C273K5RACTU	Yes	Yes	
C2	1	CAPACITOR	47 nF	10%	0603	Kemet	C0603C473K5RACTU	Yes	Yes	
C3	1	CAPACITOR	22 uF	20%	1206	Murata Electronics	GRT31CC81C226ME01L	Yes	Yes	
C4	1	ELECTROLYTIC CAPACITOR	2.2 µF / 400 V	20%	THROUGH HOLE	Yageo	SE400M2R20B3S-0811	Yes	Yes	
C7	1	CAPACITOR	5.6 nF	10%	0603	Kemet	C0603C562K5RACTU	Yes	Yes	
C8	1	CAPACITOR	2.2 uF	20%	0603	TDK	C1608JB1E225M080AB	Yes	Yes	
R1	1	RESISTOR	10 Ω	5%	0207	Yageo	KNP1WSJT-52-10R	Yes	Yes	
R2	1	RESISTOR	3.6 kΩ	1%	0603	Yageo	RT0603FRE073K6L	Yes	Yes	
R3	1	RESISTOR	33 kΩ	1%	0603	Yageo	RT0603FRE0733KL	Yes	Yes	
R5	1	RESISTOR	180 kΩ	1%	0603	Yageo	RT0603FRE07180KL	Yes	Yes	
R6	1	RESISTOR	68 kΩ	1%	0603	Yageo	RT0603FRE0768KL	Yes	Yes	
D1	1	ZENER DIODE	MM3Z6V2	5%	SOD323	ON Semiconductor	MM3Z6V2	No	Yes	
D2, D3	2	DIODE	ES1JFL	-	SOD123	ON Semiconductor	ES1JFL	No	Yes	
D5, D8	2	DIODE	S1JFL	-	SOD123	ON Semiconductor	S1JFL	No	Yes	
IC1	1	SWITCHER	NCP10671	-	SOIC7	ON Semiconductor	NCP10671BD060R2G	No	Yes	
L1, L2	2	INDUCTOR	1.0 mH	20%	SMD/SMT	Würth Elektronik	744777930	No	Yes	
BOARD STANDOFF	4	HEX STANDOFF M3 NYLON	8.0 mm	-	-	Harwin	R30-1610800	Yes	Yes	

References

ON Semiconductor datasheet for NCP1067x monolithic switcher.

ON Semiconductor Design Notes DN05012, DN05017, DN05018, DN05080, DN05129.

ON Semiconductor Design Note: https://www.onsemi.com/pub/Collateral/LOOP%20STABILIZATION%20FOR%20106X.PDF

Würth Electronic Website: https://www.we-online.com/web/en/wuerth_elektronik/start.php

Disclaimer: ON Semiconductor is providing this design note "AS IS" and does not assume any liability arising from its use; nor does ON Semiconductor convey any license to its or any third party's intellectual property rights. This document is provided only to assist customers in evaluation of the referenced circuit implementation and the recipient assumes all liability and risk associated with its use, including, but not limited to, compliance with all regulatory standards. ON Semiconductor may change any of its products at any time, without notice.