ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

Design Note – DN06017/D

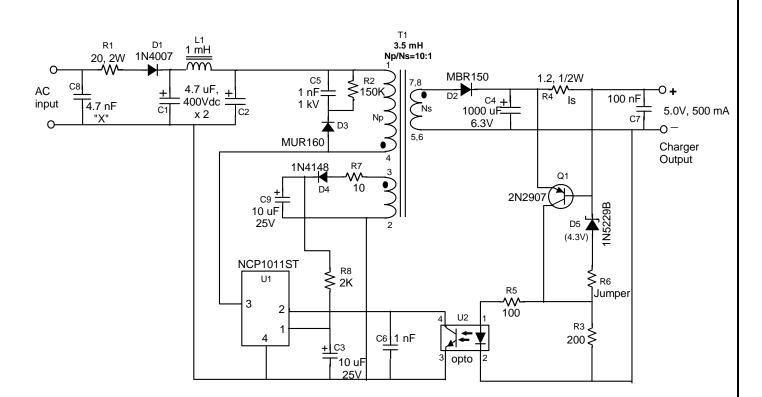
Efficient, Low Cost, Low Standby Power (<100 mW), 2.5 W Cell Phone Charger

Device	Application	Input Voltage	Output Power	Topology	I/O Isolation	
NCP1011	Cell Phone Charger	90 – 270 Vac	2.5 W	Flyback	Yes	
Other Specifications						
		Output 1	Output 2	Output 3	Output 4	
Output Voltage		5.0 V (adjustable)	N/A	N/A	N/A	
Ripple		100 mV max	N/A	N/A	N/A	
Nominal Current		500 mA	N/A	N/A	N/A	
Max Current		620 mA	N/A	N/A	N/A	
Min Current		Zero	N/A	N/A	N/A	
PFC (Yes/No)		/No)	No			
Minimum Ef		iciency	65%		1	

PFC (fes/No)	INU	
Minimum Efficiency	65%	
Inrush Limiting / Fuse	Yes	
Operating Temp. Range	0 to +50°C	
Cooling Method/Supply Orientation	Convection	
Signal Level Control	No	

Others Standby (no load) input power = 90 mW @ 230 Vac

Circuit Description


This design note features a very simple, yet highly effective low power cell phone charger designed around ON Semi's NCP1011 very high voltage switching regulator. The topology is a discontinuous mode flyback with a constant current - constant voltage (CCCV) output profile with better than 100 mA current regulation and 2 % voltage regulation. Plots of the efficiency curves and output current/voltage profile are shown on page 4 of this document. The circuit also includes an input pi filter for conducted EMI compliance. The existing circuit can easily be modified to accommodate other voltage and current combinations and is applicable up to 5 watts output if the NCP1014 is used for U1 with the appropriate rating and/or value changes to C4, D2, D5, R4 and R6.

Key Features

- Constant current constant voltage output profile suitable Lithium Ion batteries
- Over-current, over-voltage and over-temperature protection
- Conducted EMI filter
- Simple half-wave input rectifier
- < 100 mW input standby power when auxiliary winding on transformer used
 - 90 mW @ 230 Vac
 - 75 mW @ 120 Vac
- Very low cost components
- Circuit easily tailored for other voltage/current combinations

DN06017/D

Schematic

Notes:

- 1. D5 and R6 sets Vout (R6 = jumper for 5V; R6 increases voltage)
- R4 sets Imax (Imax = .65/R4)
 U1 is SOT223, 100 kHz version of NCP1011
- 4. L1 is Coilcraft RFB0807-102L (1 mH, 300 mA)
- 5. U2 is Vishay SFH-615A-4 or similar optocoupler

NCP1011 CVCC Cell Phone Charger 5.0 Vout, 500 mA

DN06017/D

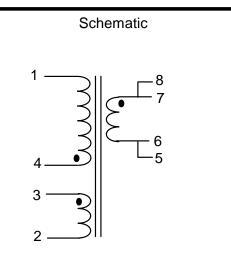
MAGNETICS DESIGN DATA SHEET

Project / Customer: ON Semiconductor - NCP1011/1014 Generic CP charger Part Description: 5 watt flyback transformer, 4 - 9 volts out (REV 3) Schematic ID: T1

Core Type: EF16 (E16/8/5); 3C90 material or similar

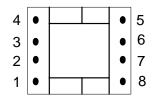
Core Gap: Gap for 3.5 mH

Inductance: 3.5 mH +/-5%


Bobbin Type: 8 pin horizontal mount for EF16

Windings (in order): Winding # / type	Turns / Material / Gauge / Insulation Data
Vcc/Boost (2 - 3)	28 turns of #35HN spiral wound over 1 layer. Insulate with 1 layer of tape (500V insulation to next winding)
Primary (1 - 4)	150 turns of #35HN over 3 layers. Insulate for 3 kV to the next winding.
5V Secondary (5, 6 - 7, 8)	14 turns of #25HN spiral wound over one layer with 0.050" (1.3mm) end margins.

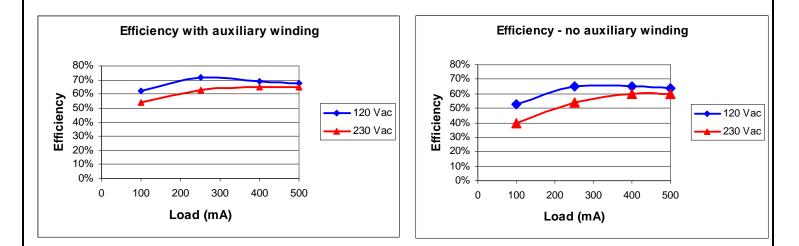
Vacuum varinish assembly.

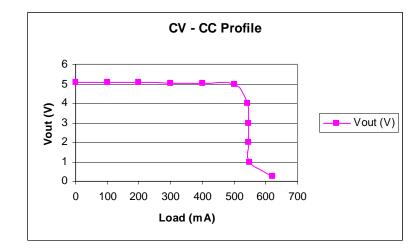

Hipot: 3 kV from boost/primary to secondary for 1 minute.

Vendor for xfmr: Mesa Power Systems (Escondido, CA) part # 131296

(Bottom View - facing pins)

Lead Breakout / Pinout




DN06017/D

Test Results

Results

- Configuration: Half-wave input rectifier; no EMI inductor
- Transformer Np/Ns: 10:1; Lprimary = 3.5 mH
- Vout nominal: 5.065 V
- Current limit : 530 mA (Vout at 4.90 V)
- I short circuit: 620 mA @ 120 Vac; 606 mA @ 230 Vac
- Vac regulation dropout: 85 Vac with 500 mA load; Vout = 4.90 V
- Output Ripple (500 mA load): 90 mV p/p
- Standby Input Power: < 100 mW
 - 90 mW @ 230 Vac
 - 75 mW @ 120 Vac

© 2006 ON Semiconductor.

Disclaimer: ON Semiconductor is providing this design note "AS IS" and does not assume any liability arising from its use; nor does ON Semiconductor convey any license to its or any third party's intellectual property rights. This document is provided only to assist customers in evaluation of the referenced circuit implementation and the recipient assumes all liability and risk associated with its use, including, but not limited to, compliance with all regulatory standards. ON Semiconductor may change any of its products at any time, without notice.

Design note created by Frank Cathell, e-mail: f.cathell@onsemi.com

www.onsemi.com