ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

Design Note – DN06075/D

12V Input, 5A DC-DC PWM Buck Controller + FET w/Ceramic Capacitors on the Output

Device	Application	Input Voltage	Output Voltage	Output Current	Topology
NCP3011	Test & Medical Equipment	9-18V	1.8V	0.01-5A	Buck

Characteristic	Min	Тур	Max	Unit
Input Voltage	9	12	18	V
Output Voltage		1.8		V
Output Current	.01	3	5	А
Oscillator Frequency	350	400	450	kHz
Output Voltage Ripple		10		mVpk-pk

Table 1: Buck Power Supply

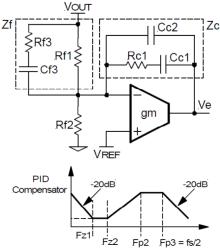
Circuit Description

This circuit is proposed for a wide varying +12V input (9V-18V) where there is a need to step-down the voltage to +5V @ 5A. The requirement specified a low output voltage ripple and all ceramic output capacitors for low noise environments such as medical devices and automated test equipment. Input capacitance can also be optimized for all ceramic but in this demo configuration board two electrolytic capacitors are used. Target efficiency is >85%.

The PCB for the NCP3011 is a 2-layer board for use in applications up to 50W. The synchronous buck converter uses voltage mode control, which can be compensated externally with a transconductance amplifier and type-III compensation which enables ceramic capacitors on the output. The soft start time is fixed. The NCP3011 demonstration board is a flexible design allowing the use of electrolytic capacitors or ceramic capacitors. It also allows the use of SO8-FL or D-PAK MOSFETs.

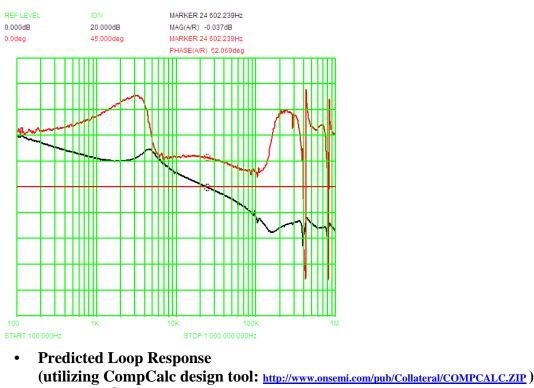
Key Features

- High Efficiency
- Adjustable Current Limit
- Output Overvoltage and Output Undervoltage protection
- Short Circuit Protection
- Fixed Switching Frequency

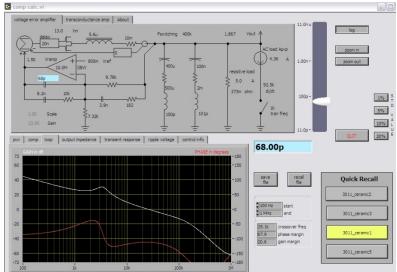


Rev 0, January 2011

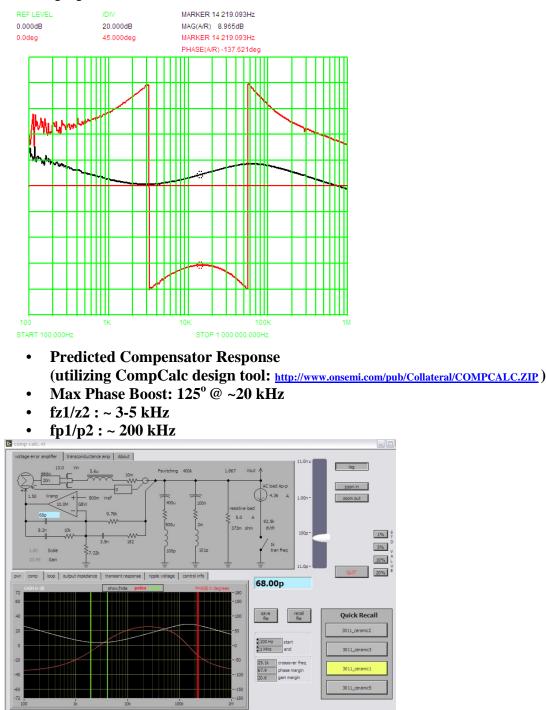
Theory of Operation


One feature of the NCP3011 controller is that when one follows a few simple design rules, the transconductance amplifier can be employed as a voltage feedback Error Amplifier. Theoretically, a transconductance amplifier is an equivalent voltage controlled current source. It multiplies the difference of input voltage with a certain gain and generates a current into the output node. It features high output impedance and it is stable by most of the output compensation components. The goal of the design is to provide a loop gain function with a high bandwidth (high zero-crossover frequency) and adequate phase margin. As a result, fast load response and good steady state output can be achieved.

- Used when loop bandwidth is beyond the LC resonance and ceramic capacitors are used
- Rc1 > 2/gm (required)
- 1/gm > Rf1//Rf2//Rf3 (desired)



When conditions met (especially Rc1 > 2/gm), behavior is similar to a voltage amp


- Measured Loop Response
- $PM = 52^{\circ}$
- f_cross = 24.6 kHz
- f0 ~ 3-4 kHz

- $PM = 67.9^{\circ}$
- f_cross = 25.1 kHz
- f0 ~ 3.4 kHz

- Measured Compensator Response
- Max Phase Boost: 128° @15 kHz
- fz1/z2 : ~ 2-5 kHz
- fp1/p2 : ~ 50-70 kHz

Note: CompCalc files with these values pre-loaded are available from the NCP3011 web page under "Design & Development Tools"

Performance

The following figures show typical performance of the NCP3011 demonstration boards.

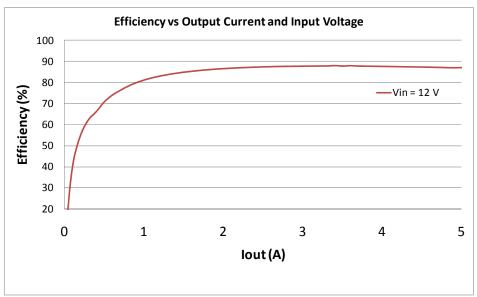
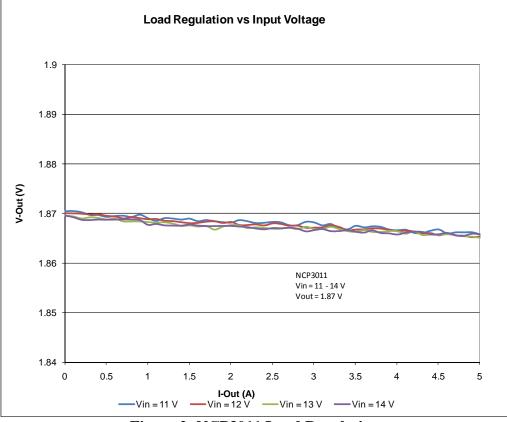
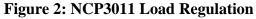




Figure 1: NCP3011 Efficiency at 12V with a 1.8V Output Voltage

Rev 0, January 2011

ON Semiconductor Schematics VIN VIN-S VIN-P GND-P GND-S C3 C2 C1 . ___ C1A ~470uF 22uF 25V 22uF 25V VREF BST <rs EN C6 1uF JP-1 JP-2 VCC 14 Q1 TMF4873NFT1G BST HCDP VSW vsw NC 10 _____ C9 _____ 0.1 uF R9 10k FQ VPG OMP LSDRV - ~ ~ VOUT GND L1 R16 22.1k /OUT-P NCP3011 C8 FT F PG DNP C11 C12 _ C14 __ C15 __ C16 _ 0.1uf __ DNP __ DNP COMP 200uF 200uF 20R NI1 Q2 NTMF4873NFT1G C7 FB DNP ____ C10 ____ DNP FR GND-P1 GND-S1 GND-4 GND Soro GND-3 GND-2 GND-1 C18 Figure 4: NCP3011 Schematic

Rev 0 - January, 2011

ON Semiconductor Table 2: NCP3011 BOM (1.8Voutput)

Qty	Reference	Value	Part Number	Description	PCB DECAL
	1 C1	470uF			ECA_12.5
	1 C1A	470uF			ECA_12.5
	1 C2	22uF 25V	C4532X7R1E226M	Ceramic Chip Capacitor	2220CAP
	1 C3	22uF 25V	C4532X7R1E226M	Ceramic Chip Capacitor	2220CAP
	1 C4	1uF		Ceramic Chip Capacitor	1206CAP
	1 C5	0.1uF		Ceramic Chip Capacitor	1206CAP
	1 C6	1uF		Ceramic Chip Capacitor	1206CAP
	1 C7	27pF		Ceramic Chip Capacitor	0603CAP
	1 C8	2.7nF		Ceramic Chip Capacitor	0603CAP
	1 C9	0.1 uF		Ceramic Chip Capacitor	0805CAP
	1 C10	1.5 nF		Ceramic Chip Capacitor	0805CAP
	1 C11	100uF*2	C3225X5R0J107M	Ceramic Chip Capacitor	1210CAP
	1 C12	100uF*2	C3225X5R0J107M	Ceramic Chip Capacitor	1210CAP
	1 C13	DNP			ECA_12.5
	1 C14	0.1uF		Ceramic Chip Capacitor	
	1 C15	DNP		Ceramic Chip Capacitor	0805CAP
	1 C16	DNP		Ceramic Chip Capacitor	0805CAP
	1 C17	1.8nF		Ceramic Chip Capacitor	0603CAP
	1 C18	DNP		Ceramic Chip Capacitor	0603CAP
	1 L1	5.6 uH		SMT Inductor	MSS1260
	1 Q1	NTMS4873NF	HSFET	Dual Use Footprint; SOPFL and DPAK MOSFET	COMBO2_SO8FL-DPAK
	1 Q2	NTMS4873NF	LOFEI	Dual Use Footprint; SOPFL and DPAK MOSFET	COMBO2_SO8FL-DPAK
	1 R1	13.3k		SMT Resistor	0603RES
	1 R2	10k		SMT Resistor	0603RES
	1 R3	22.1k		SMT Resistor	0603RES
	1 R4	499		SMT Resistor	0603RES
	1 R5	DNP		SMT Resistor	0603RES
	1 R6	12k	CRCW12060000Z0EA	Resistor	1206RES
	1 R7	0R0	CRCW06030000Z0EA	SMT Resistor	0603RES
	1 R8	0R0	CRCW12068R06FNEA	Resistor	1206RES
	1 R9	10k	CRCW060310K0FKEA	SMT Resistor	0603RES
	1 R10	1.18		Resistor	1206RES
	1 R11	0R0	CRCW12060000Z0EA	Resistor	1206RES
	1 R12	22.1k	CRCW060322K1FKEA	SMT Resistor	0603RES
	1 R13	0R0	CRCW060310K0FKEA	SMT Resistor	0603RES
	1 R14	0R0	CRCW06030000Z0EA	SMT Resistor	0603RES
	1 R15	DNP		SMT Resistor	0603RES
	1 R16	22.1k	CRCW0603750RFKEA	SMT Resistor	0603RES
	1 R17	DNP		SMT Resistor	0603RES
	1 R18	20R	CRCW060320R0FKEA	SMT Resistor	0603RES
	1 U1	28 V 400 kHz	NCP3011	Synchronous PWM Controller	TSSOP-14
	1 D1	DNP		Schottky Barrier Diodes	SOD_123_BAT54T1
	1 D2	BAT54T1G	Svnc Diode	Schottky Barrier Diodes	SOD_123_BAT54T1

Rev 0 - January, 2011

ON Semiconductor

Vout	C7	C8	C10	C17	L1	R1	R2	R3	R4	R10	C11	C12
1.0V	27pF	2.7nF	1.5nF	1.8nF	5.6uH	15.8k	52.3k	22.1k	599	1.18	100uF*2	100uF*2
1.8V	68pF	8.2nF	1.5nF	3.9nF	5.6uH	9.76k	7.32k	10k	182	1.18	100uF*2	100uF*2
2.5V	27pF	2.7nF	1.5nF	1.8nF	5.6uH	15.8k	7.15k	22.1k	499	1.18	100uF*2	100uF*2
3.3V	27pF	2.7nF	1.5nF	2.7nF	5.6uH	10.5k	3.24k	22.1k	340	1.18	100uF*3	100uF*2
5.0V	27pF	2.7nF	1.5nF	1.8nF	6.8uH	15.4k	2.87k	22.1k	499	1.18	47uF*3	47uF*3

 Table 3: Component Recommendations for Different Output Voltages

© 2011 ON Semiconductor.

Disclaimer: ON Semiconductor is providing this design note "AS IS" and does not assume any liability arising from its use; nor does ON Semiconductor convey any license to its or any third party's intellectual property rights. This document is provided only to assist customers in evaluation of the referenced circuit implementation and the recipient assumes all liability and risk associated with its use, including, but not limited to, compliance with all regulatory standards. ON Semiconductor may change any of its products at any time, without notice.

Design note created by Tim Kaske and Jim Hill, e-mail: Tim.Kaske@onsemi.com ; Jim.Hill@onsemi.com