

http://onsemi.jp

ホームオーディオ機器向け FM/AM 1チップチューナIC

概要

LV23401Vは、ホームオーディオ機器向けFM/AM 1チップチューナICである。

機能

- ・AMチューナ
- ・FMチューナ
- ・MPXステレオデコーダ
- ・FLLチューニングシステム

特長

- ・チューナIC、PLL ICが1チップ
- · MPX-VCO内蔵無調整
- ・FM/AM出力レベル独立設定可能
- ・アクティブLPF用MOSトランジスタ内蔵

特長

- ・外付け部品の調整作業が一切不要
- ・簡単コマンドベースによるCCBコントロール
- ・LOW-IF周波数(FM=225kHz、AM=53kHz)採用により外付け部品削減
- ・低雑音MIX入力回路で高感度受信実現
- ・ソフトプログラム変更により、日米欧の全バンドを受信可能(76MHz~108MHz)
- ·FLL(Frequency Locked Loop)同調機能内蔵
- ・ソフトミュート、ステレオブレンド機能(7段階プログラム制御可能)
- ・隣接チャンネル妨害除去機能内蔵
- ・ステレオパイロットキャンセル機能内蔵
- ・EN55020-S1規格対応(欧州イミニティー)
- ・パワーセーブ機能内蔵

最大定格/Ta=25 、GND1=GND2=GND3=GND4=0V

項目	記号	条件	定格値	unit	
最大電源電圧	V _{CC} max	アナログ部供給電圧	10.0	V	
最大出力電圧	V _O max	DO	4.5	V	
最大入力電圧	V _{IN} 1 max	CE, DI, CL	*1) Vref2+0.35	V	
	V _{IN} 2 max	CLK IN	4.5	V	

前ページより続く。

項目	記号	条件	定格值	un i t
許容消費電力	Pd max	Ta 70 *2)	450	mV
動作周囲温度	Topr		- 20 ~ + 70	
保存周囲温度	Tstg		- 40 ~ + 125	

^{*1):}Vref2=22ピン電圧

最大定格を超えるストレスは、デバイスにダメージを与える危険性があります。最大定格は、ストレス印加に対してのみであり、推奨動作条件を超えての機能 的動作に関して意図するものではありません。推奨動作条件を超えてのストレス印加は、デバイスの信頼性に影響を与える危険性があります。

動作条件/Ta=25 、GND1=GND2=GND3=GND4=0V

項目	記号	条件	定格値	unit
推奨電源電圧	VCC	アナログ部供給電圧 *)	9.0	V
動作電源電圧範囲	ACC ob	Resister 1Eh Bit 1(LEVSHIF)=0	4.5~6.5	V
		Resister 1Eh Bit 1(LEVSHIF)=1	8.5~9.5	V

^{*} ノイズ等による電圧変動が生じないよう供給電圧の安定化を推進すること。

インターフェース部許容動作範囲/Ta=-20~+70 、VSS=0V

1 > > > T > \tag{1 + 0 \text{Eq} \(\tag{1.0} \)							
項目	記号	条件	min	typ	max	Unit	
入力「H」レベル電圧	V _I H1	CE,DI,CL	2.3	ı	3.435	٧	
	V _I H2	CLK IN	2.3	ı	3.435	٧	
入力「L」レベル電圧	V _I L1	CE,DI,CL	0	1	0.5	٧	
	V _I L2	CLK IN	0		0.3	V	
出力電圧	Vo	DO	0	-	4.0	V	
水晶周波数	fIN	CLK IN	-	32.768	-	kHz	
水晶周波数偏差	f devi1	ヨーロッパ・イミニティー規格対応時	-50	-	+50	ppm	
	f devi2	ヨーロッパ・イミニティー規格非対応時	-150	1	+150	ppm	
水晶振動子負荷容量	CL	*	4	12.5	-	pF	

^{*} 使用する基板、回路定数により変化するため、水晶メーカへの評価依頼を推奨する。

動作特性/Ta=25 ,Vcc=9.0V, 指定測定回路に於いて

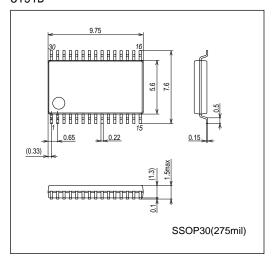
新下行生/1d=25 , V(()=9.0V, 自足病を自由に次V1C							
項目	記号	条件	min	typ	max	unit	
消費電流(無入力時)	I _{CC} FM	15Pin供給電流 FM時無入力	32	42	52	mA	
	ICCAM	15Pin供給電流 AM時無入力	30	40	50	mA	
パワーセーブ消費電流	I standby	15Pin供給電流 パワーセーブ:	-	0.25	0.7	mA	
		Register1Fh_bit0=0					
VDD出力電圧	V _{DD}	22Pin端子電圧 参考値	(2.772)	3.3	(3.435)	٧	
VDD出力電圧	VDD_drop	22Pin端子電圧、10mAドライブ時	-	0.15		٧	
		*最大ドライブ電流=10mA					

[FM受信特性]:fc=98MHz, V_{IN}=60dBμV, fm=1kHz, De-emphasis=50μs, IF=225kHz, BW=50%

MONO: 75kHz dev.

STEREO: L+R=67.5kHz drv, Pilot=7.5kHz dev.

Volumn level=3, Soft muto=off, Soft stereo=off, Resister 1Eh Bit 1(LEVSHIF)=1, 9ピン出力, IHF-BPF


S/N50dB感度	SN50	S/N=50dBとなる入力レベル	ı	17	24	dB μ V
S/N30dB感度	SN30	S/N=30dBとなる入力レベル	-	12	18	dB μ V
IHF感度	IHF	THD=3%となる入力レベル	-	12	20	dB μ V

^{*2):}指定基板付き:114.3mm×76.1mm×1.6mm ガラスエポキシ基板

<u> </u>	-0	• *	٠ ـ	10	<i>"</i> +	_	
-11	\sim	_ ~ /			2=	•	
HII	ぺ・	ージ	Φ.	٠,	ボソに	•	•

項目	記号	条件	min	tvn	may	un i t
信号対雑音比	SN	MONO	62	t yp 70	max	dB
后与对推自比	SN-ST1	STEREO			-	
	THD1	MONO	58	66	1 5	dB _{0/}
全高調波歪率			-	0.5	1.5	%
	THD1-ST	STEREO	-	0.5	2.5	%
	THD2	MONO, 150kHz dev.	-	1.5	5	%
作 細山力	THD3	MONO, V _{IN} =120dBμV	(240)	0.6	2.5	%
復調出力	V ₀ 0	MONO, V _O L=0 参考値	(218)	(327)	(489)	mVrms
	V ₀ 1	MONO, V _O L=1 参考値	(291)	(436)	(652)	mVrms
	V ₀ 2	MONO, V _O L=2 参考値	(366)	(549)	(821)	mVrms
	V ₀ 3	MONO, V _O L=3 *社内管理=Typ±3.0dB	518	775	1160	mVrms
MPX出力	V _O _MPX	6Pin出力	100	200	300	mVrms
チャンネルバランス	СВ	10ピン出力/9ピン出力	-1	0	+1	dB
SD動作レベル	SD	F\$_\$=4	17	25	33	dB µ V
ステレオ動作レベル	ST	FS_S=4	17	25	33	dB μ V
ステレオセハ゛レーション	Sep	9ピン及び10ピンの両チャンネル を測定 *社内管理値 25dB	25	40	-	dB
ディエンファシス偏差	Deemp50	fm=10kHz, 15kHz LPF OFF	-12.5	-10	-7.5	dB
	Deemp75	fm=10kHz, 15kHz LPF OFF	-	-13	-	dB
キャリアリーク	CL	STEREO S/N, 15kHz LPF OFF	30	40	-	dB
パイロットマージン (パイロット点灯感度)	ST-ON	L+R=67.5kHz, Pilot-mod	0.6	-	5.5	%
AM抑圧比	AMR	400kHz AM 30% mod.	40	65	-	dB
ミュート減衰度	MUTE		60	75	-	dB
	•	, fm=400Hz, 30% mod, IF=53kHz, B				
	I	ster 1Eh Bit 1(LEVSHIF)=1, 9ピン	出力,15kH			
S/N20dB感度	SN20	S/N=20dBとなる入力レベル	-	49	65	dB µ V
	SN20-L	fc=603kHz 参考値	-	(55)	(65)	dB μ V
	SN20-H	fc=1404kHz 参考値	-	(49)	(65)	dB μ V
信号対雑音比	SN		42	50	-	dB
全高調波歪	THD1		-	0.6	2.8	%
	THD2	V _{IN} =104dB μ V	-	0.8	2.8	%
検波出力	V ₀ 0	V ₀ L=0 参考值	(55)	(78)	(109)	mVrms
	V ₀ 1	V _O L=1 参考値	(69)	(98)	(138)	mVrms
	V ₀ 2	V _O L=2 参考値	(87)	(123)	(173)	mVrms
	V ₀ 3	V ₀ L=3	110	155	218	mVrms
チャンネルバランス	СВ	10ピン出力/9ピン出力	-1	0	+1	dB
AGC特性	AGC1	出力いいいが-10dBとなる入力いい 差 Soft_mute=3 参考値	(52)	(62)	-	dB
	AGC2	Soft_mute=4	47	57	-	dB
周波数特性	Hi-cut	fm=4kHz	-22	-17	-12	dB
SD動作レベル1	SD	AGC=ON, FS=4	46	54	65	dB μ V
 ミュート減衰度	MUTE	*社内管理=46~65dB µ V 15kHz LPF 0N	50	65		dB
- ユード - 成長反	MUIE	IONIZ LFF UN	50	CO	-	ub

外形図 unit:mm 3191B

ピン配置

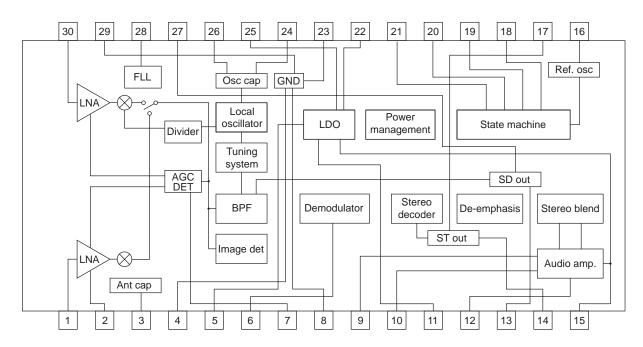
E ノ間 Pin	<u>ピー</u> ピン名	Description	Remark	DC_bias
1	AM ANT	AMアンテナ	マッチング コイル、若しくはパーアンテナを介して2Pinと接合する。	-
2	AM ref	AMリファレンス電圧	マッチング コイル、若しくはパーアンテナを介して1Pinと接合する。	2.0V
3	AM CAP	AMキャパ・シタ・パ・ンク	推奨240 μ Hの外部インタ・クタを介してGNDに接地	-
4	GND1	AMアンテナGND	GNDに接地	0.0V
5	Vref1	アナログ・部リファレンス電圧	1µF容量を介してGNDに接地	4.3V
6	MPX OUT	検出出力	RDS使用時は、LC72725と接続	2.5V
7	AM AGC	AM AGC	4.7 µ F容量を介してGNDに接地	-
8	GND2	アナロク [*] 部GND	GNDに接地	0.0V
9	L OUT	Lchオーディオ出力	VCC電圧により出力レペルを調整するため、Register 1Eh	3.5V
10	R OUT	Rchオーディオ出力	Bit 1(LEVSHIF)の設定によりDCレペルが変化する。	
11	VCC Low	低電圧モードVCC電圧供給	V _{CC} <6.0V以下で使用する場合に、15pinとショートする。	-
12	AM LCF	AMローカット・フィルタ	0.047 μ F容量を介してGNDに接地	2.2V
13	SD OUT	SD検出結果出力	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-
14	ST OUT	ST検出結果出力		-
15	Vcc	VCC電圧供給		-
16	CLK IN	リファレンス・クロック入力	クリスタルを使用することを推奨する。	-
			クロック信号を直接入力することも可能(矩形波GND基準)	
17	ST ADJ	パイロット・マージン調整端子	180K を介してGNDに接地	4.0V
18	CE	アドレス/データ切替タイミング		-
19	CL	通信クロック		-
20	DI	データ・イン		-
21	DO	データ・アウト	10k を介して22Pinに接続	-
22	Vref2	VDD電圧出力	3.3√電圧出力端子。	3.3V
			10mAまで他のICへ電流を供給することも可能。	
23	GND3	ロシ゛ック部GND	GNDに接地	0.0V
24	L1	局部発振回路	33nHを介して25Pinに接続	-
25	Vref3	局部発信回路用リファレンス電圧	100 µ F容量を介してGNDに接地	4.3V
26	L2	局部発振回路	33nHを介して25Pinに接続	-
27	SD ADJ	SD=ON感度調整端子	22k を介してGNDに接地	0.3V
28	FLL CAP	FLLO-N° ス・フィルタ	0.1 µ Fを介して25Pinに接地	-
29	GND4	FMアンテナGND	GNDに接地	0.0V
30	FM ANT	FMアンテナ	入力インピー ダ ンス75	1.0V

端子機能

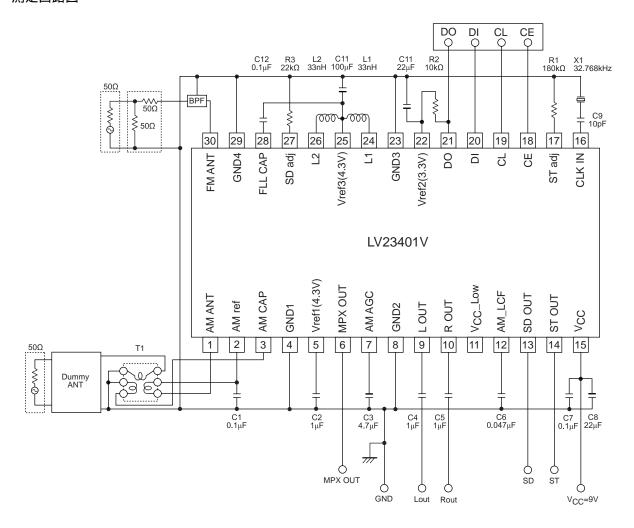
端子機	能			
端子 番号	端子名	端子電圧	等価回路図	端子説明
1	AM-ANT	2.2V	1 2 R	AMアンテナ入力端子 対2ピン間にAMアンテナコイ ルを接続する R=100Ω
2	AM-REF	2.2V	2.2V Regulator	AM部基準バイアス端子 VAM-REF=2.2V
3	AM-CAP	-	CAP-BANK	AM部同調用チューニング端子 (AM Capacitor Bank)
4	GND1	OV	-	アナログ部(AM-FE部)GND端子
5	VREF1	4.3V	4.3V Regulator	アナログ部(チューナ部)基準 バイアス端子 VREF1=4.3V
6	MPX-OUT	2.5V	R1 R2	FM検波出力端子 R1=100 R2=23k R3=1k
7	AM RF-AGC		R2 R4 R4 R3 R3	AM-RF部ゲイン制御用AGC端子R1=2M Ω R2=5k Ω R3=250 Ω R4=1k Ω
8	GND2	OV	-	アナログ部(チューナ部)GND 端子

前ページより続く。

	·シより続く。 「			
端子 番号	端子記号	端子電圧	等価回路図	端子説明
9 10	L-OUT R-OUT	2.5V (LEVSHIF= 1時は 3.3V)	(15) R (9)	L-ch(R-ch)出力端子。 R=100Ω R _{OUT} =150Ω
11	V _{CC} -Low	-	15 Regulator	V _{CC} ·6.0V で使用する場合、 11pin-15pinをショートする
12	AM LCF	2.2V	12—R1 R2 R3 R3 R5	AM Low-cut Filter用端子。 $R1=250\Omega$ $R2=100k\Omega$ $R3=100k\Omega$ $R4=50k\Omega$ $R5=50k\Omega$
13	SD-OUT	V _{DD}	22 R \$ SD SW 13	SDインジケータ出力端子。 アクティプLow出力 R=100kΩ
14	ST-OUT	VDD	R ST SW M	FMステレオインジケータ出力 端子。 アクティブLow出力 R=100kΩ
15	Vcc	VCC		アナログ部電源端子。 Register 1Eh Bit1(LEVSHIF)= 1時は8.5~9.5を印加し、「0」 時はV _{CC} _Lowとショートする。
16	CLK_IN	2.1V	R Crystal oscillator	内部基準用クロック接続端子。 32.768kHz水晶振動子を接続する。 R=100kΩ

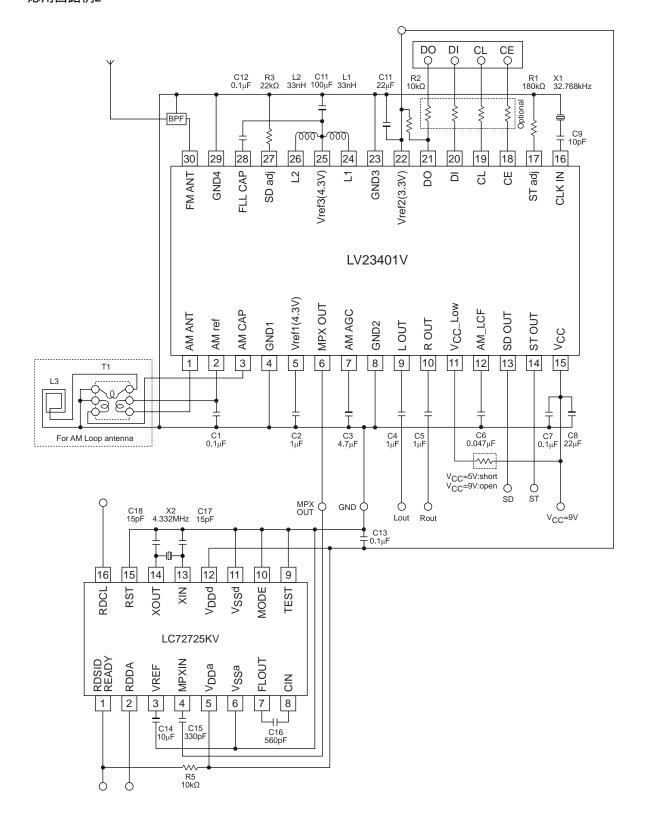

前ページより続く。

端子	-ジより続く。 │			
番号	端子記号	端子電圧	等価回路図	端子説明
17	ST-ADJ	3.7V	R R	ステレオ点灯感度調整端子。 180kΩを介してGNDへ接続する R=24kΩ
18	CE	-	18	チップイネーブル端子。 シリアルデータ入力(DI)時や シリアルデータ出力(DO)時に ハイレベルとする端子。
19	CL	-	19	データクロック入力端子。 シリアルデータ入力(DI)時や シリアルデータ出力(DO)時に データと同期を取るクロッ ク。
20	DI	-	20	シリアルデータ入力端子。 コントローラから転送される シリアルデータの入力端子。
21	DO	-	21	シリアルデータ出力端子。 コントローラへのシリアルデ ータ出力端子。
22	V _{DD}	3.3V	3.3V Regulator	ロジック部基準バイアス端 子。 VCC=3.3V
23	GND3	0	-	デジタル部(制御部)GND端子


前ページより続く。

	·シより続く。 ·			Г
端子 番号	端子記号	端子電圧	等価回路図	端子説明
24 26	L1 L2	4.3V	24 26 CAP BANK	OSCコイル接続端子。 対25pin間に33nHを接続する。
25	VREF2	4.3V	4.3V Regulator	OSC部基準バイアス端子。 VREF2=4.3V
27	SD-ADJ	0.1V	COMP R 27	SD点灯感度調整端子。 22kΩを介してGNDへ接続する R=100Ω
28	FLL-CAP	-	28	内部FLL制御用LPF端子。 R=80kΩ
29	GND4	OV	<u>-</u>	アナログ部(FMRF部)GND端子。
30	FM-ANT	0.9V	30 R	FMアンテナ入力端子。 R=1.5kΩ R _{IN} =75Ω

ブロック図


測定回路図

応用回路例1

応用回路例2

使用部品

Component	Parameter	Value	Tolerance	Туре	Supplier
L1	Local Osc Coil	33nH	5%	LL2012-FHL33NJ	TOKO
L2	Local Osc Coil	33nH	5%	LL2012-FHL33NJ	ТОКО
L3	AM Loop antenna	18.1μΗ	5%	4910-CSL18R1JN1	SAGAMI
T1	AMPE 41			A90326057	COILS
T1	AM RF matching	-	-	#7003RNS-A1109YZS	TOKO
C1	Ripple Filter	0.1μF			
C2	Ripple Filter	1μF			
C3	AM RF AGC Capacitor	4.7μF			
C4	Coupling Capacitor	1μF			
C5	Coupling Capacitor	1μF			
C6	AM Low-cut Filter	0.047μF			
C7	Supply Bypass Capacitor	0.1μF			
C8	Supply Bypass Capacitor	22μF			
C9	Correction Capacitor	10pF			
C10	Supply Bypass Capacitor	22μF			
C11	Ripple Filter	0.1μF			
C12	Osc Filter	0.1μF			
C13	Ripple Filter	0.1μF			
C14	Ripple Filter	10μF			
C15	Coupling Capacitor	330pF			
C16	Coupling Capacitor	560pF			
C17	Correction Capacitor	15pF			
C18	Correction Capacitor	15pF			
R1	Reference Resistor	180Ω			
R2	Pulled-up Resistor	10kΩ			
R3	Reference Resistor	22kΩ			
R4	Reference Resistor	33kΩ			
R5	Pulled-up Resistor	10kΩ			
BPF	FM ANT BPF	-	-	GFMB7	SOSHIN
X1	Crystal	32.768kHz	100ppm	VT-200-F(12.5pF)	SEIKO
X2	Crystal	4.332MHz	100ppm	AT-49	DAISHINKI
LO1	AM Ferrite antenna	260μΗ	TBD	-	-

^{*}東欧バンド(65MHz~75MHz)を受信する場合はL1、L2は39nHを使用すること。

^{*}X1,X2クリスタルのマッチィング(C9,C17,C18)は使用する基板と合わせてクリスタルメーカへ問い合わせすること。

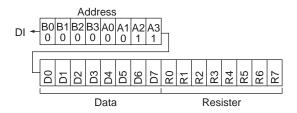
インターフェース仕様

(1)LV23401インターフェース仕様

LV23401はC²B(Computer Control Bus)シリアル・バス・フォーマットにより制御される。

C²Bは、複数のLSIによるシステムにおけるLSI間のコミュニケーションを確実に、経済的に実現する為のバス・フォーマットである。シングルマスタのシステムであるため、煩雑なアービトレーションの処理が不要である。このため、ハードウエアの負担が軽減され、経済性に富んだシステム構成が可能となる。

また、ソフトウエアにより、あるいはシリアルI/Oにより、容易に多くの種類のコントローラとインターフェースし、特殊なハードウエアは必要としない。


C²Bは、機器内部のLSI間について考えられており、長いラインを必要とする機器間のコミュニケーションは対象としない。

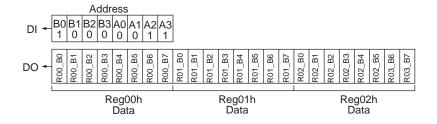
(2)C²Bデータ構成

DI制御データ(シリアルデータ入力)の構成

DI control data (serial data input) composition

1) INモード(IN mode)

LV23401は8ビットのデバイスアドレス(アドレス)と、各8ビットのデータを格納するサブアドレス(レジスタ)で構成されるバス・フォーマットにより制御される。


LV23401へシリアルデータを入力する場合、始めにアドレスとして[CO]をLSBより入力し、制御を行うデバイスを特定すると共に、データ入力としてのモードを確定させる。

アドレス入力後、データクロック(CL)に同期してデータ(ビット設定) レジスタの順にLSBより入力し、データ入力を完結させることが出来る。

DO制御データ(シリアルデータ出力)の構成

Composition of the DO control data (serial data output)

2)OUTモード(OUT mode)

LV23401よりシリアルデータを出力させる場合、始めにアドレスとして[C1]をLSBより入力し、制御するデバイスを特定すると共に、データ出力としてのモードを確定させる。

アドレス入力後、ロック(CL)に同期してレジスタ番号の小さい方からLSBより順次データがDO端子より出力される。CE端子をLowに設定することによりデータの出力は終了される。

(3)LV23401Vレジスタ説明(Description of the Resister of LV23401V)

Resister OOh-DHIP_ID-Chip identity register (Read-Only)

7	6	5	4	3	2	1	0
ID[7:0]							
Bit7-0: ID[7:0]:8-bit チップID.							
LV23400:18h							
*このレジスタに任意値を書き込みする事により動作中のコマンドが停止する。							

Register O1h-SHIP_REV-Chip Revision identity register (Read-Only)

7	6	5	4	3	2	1	0
Revision[7:0]							
Bit7-0	Bit7-0 ID[7:0]:8-bit チップレビジョン						
ES1:00h							
*このレジ	*このレジスタに任意値を書き込みする事により動作中のコマンドが停止する。						

Register O2h-RADIO_STAT-Radio station status (Read-Only)

7	6	5	4	3	2	1	0
IM_STAT	IM_FS[1:0]		MO_ST	FS[2:0]			TUNED
Bit7:	IM_STAT:イメージ回避コード状態						

0 = 常動作(書込み可)

1 = イメージ回避処理中(書込み不可)

このビットはRegister14h_bit7(IM_EVAS)が「1」に設定されている場合にのみ動作する。 本ビットが「1」となっている場合のLV23401へのデータ書込み処理を禁止する。

Bit6-5: IM FS:イメージ局電界強度

0: イメージ局なし

1:0

2: 希望局と比較し0dB~+10dB

3: 希望局と比較し+10dB以上イメージ局のレベルが強い

Bit4: MO ST:モノラル/ステレオ 表示

0 = モノラル受信(強制モノラル設定も同じ)

1 = ステレオ受信

Bit3-1: FS[2:0]: 電界強度表示

> 0: 電界強度 ← 10dB μ V 1: 電界強度 10-20dB µ V 2: 電界強度 20-30dB µ V

3: 電界強度 →70dB µ V

Bit0: TUNED: ラジオ・チューニングフラグ

0 = チューニングされていない

1 = チューニングされている

note:このビットは周波数チューニングが成功した時にセットされる。

このフラグは以下3条件にてクリアされる

1. PW RAD=0

2. 周波数のチューニング中

3. FLLが補正範囲外となった場合

RAD_IFインターラプトフラグはTUNEDフラグが1から0に変化した時のみ設定される。 TUNEDのステータスが0から1に変化した際は、インターラプトは発生しない。

Pogiator 04	th TNDL Tub	nonition	low (Pood On	Lv)			
7	6	5	low (Read-On	3	2	1	0
TUNEPOS[7:0] 3	4] 3		1	10
Bit 7-0:	-	·01·珇左のDI		0h;+\			
BIL 7-0.	TUNEFUS[1	. 0] . 2元1王 0 2 1 1	问从数(下位	0011)			
Register OF	Sh-TNPL STA	T-Tune nosi:	tion high/st	atus (Read-	On Lv.)		
7	6	5	4	3	2	1	0
ERROR[1:0]		TUNEPOS[12					1 5
Bit7-6:	ERROR[1:0	<u> : エラーコー</u> :エラーコー					
		•	Remark				
	ERROR[1:	.0]		·終了(ノー:	r = _ \		
	1		DACリミット	•			
	2		コマンド強				
	3		コマンドbu				
	<u> </u>		1 () 50	3)(×11.1.)			
Bit5:0:	TUNEPOS[1;	3:81:現在のF	RF周波数(上位	ל5bit)			
Register 06	Sh-COUNT_L-	Counter low	(Read-Only)				
7	6	5	4	3	2	1	0
COUNT[7:0]							
Bit7-1:	COUNT[7:0]: カウンタ	7 一 値(下位8b	it)			
			n (Read-Only			T	1
7	6	5	4	3	2	1	0
COUNT[15:8]			4. 4 4 4.1 43				
Bit7-0:	COUNT[15-8	8]: カウン [,]	ター値(上位8	bit)			
Pogiator 09	DE LE OCC D	AC for IE O	C (Pood/Wri	+0)			
7	6	5	C (Read/Wri	3	2	1	0
IF0SC[7:0]	0	J	7	13		1	10
Bit7 - 0:	IFOSCI7:0)AC				
B117 0.	11 000[7.0]. 11 /03/10 11	<i>51</i> (0				
Register 09	h-IFBW-DAC	for IF Filt	ter Band wid	th (Read/Wr	ite)		
7	6	5	4	3	2	1	0
IFBW[7:0]			•	_•	•	.	1
Bit7-0:	IFBW[7:0]	: IFバンドパ:	スフィルタ帯	域DAC			
· · · · · · · · · · · · · · · · · · ·							
Register OE	Sh-STEREO_0	SC-DAC for S	Stereo Decod	er OSC (Rea	d/Write)		
7	6	5	4	3	2	1	0
SDOSC[7:0]							
Bit7:0:	SDOSC[7:0]:ステレオテ	「コーダ発振器	몸DAC			
	Register OCh-RF_OSC-DAC for RF OSC (Read/Write)						
7	6	5	4	3	2	1	0
RFCAP[7:0]	DE00017 0	1 . DE36 += 00 - 4	10				
Bit7-0:	KFUSU[7:0]:RF発振器D/	1 C				

Register ODh-RFCAP-RF Cap bank (Read/Write)

		<u> </u>	, , , , , , , , , , , , , , , , , , , ,				
7	6	5	4	3	2	1	0
RFCAP[7:0]							
Bit7-0: RFCAP[7:0]:RF発振器キャパシタバンク							

Register OEh-AMCAP1-AM-ANT Cap bank1 (Read/Write)

7	6	5	4	3	2	1	0
AMCAP[7:0]							

AMCAP[7:0]:AMアンテナキャパシタバンク Bit7-0:

Note:

AMアンテナキャパシタバンクは12ビットで構成されている。

上位4ビットはAMCTRL registerに配置されている。

Register OFh-AMCTRL-AM Station Control (Read/Write)

7	6	5	4	3	2	1	0
AMDIV[2:0]			AM_CAL	ACAP11	ACAP10	ACAP9	ACAP8

AMDIV[2:0]:AMクロックディバイダ Bit7-5: AM CD2: AMクロックディバイダbit2. Bit7: Bit6: AM_CD1: AMクロックディバイダbit1. AM_CDO: AMクロックディバイダbitO. Bit5:

Note:

AM_CD[2:0]はFM帯の周波数をAM帯にまで下げるために使用する。

FMモード時は、AM分周器はOFFに設定すること。

AM_CD[2:0]	分周率	概算AM-RF周波数(In kHz)
0,1	Divider OFF	0(FMモード)
2	224	338-483
3	160	474-676
4	112	676-966
5	80	947-1353
6	64	1183-1692
7	48	1578-2256

Bit4: NA(0固定)

AMCAP[11:8]:AM-アンテナキャパシタバンク Bit3-1:

Bit3: AMCAP_bit11 Bit2: AMCAP_bit10 Bit1: AMCAP_bit9 AMCAP_bit8 Bit0:

Register 10h-DO_REF_CLK_CNF-DO output mode and reference clock configuration (Read/Write)

7	6	5	4	3	2	1	0
IPOL	DO_SEL[1:0]]	EXT_CLK_CF	G[1:0]	FS_S[2:0]		

Bit7: IPOL:インジケータ(DO端子_SD/STモード)極性

0 = SD/STアクティブ・ロー(13Pin-SD端子/14Pin端子と同じステート変化)

1 = SD/STアクティブ・ハイ(13Pin-SD端子/14Pin端子と逆のステート変化)

*本ビットはシリアルデータの極性には影響しない。

Bit6-5: DO_SEL:DO端子セレクト(DO端子出力モード選択)

DO_SEL[1:0]	DO端子
00	シリアルデータ出力モード
01	ST端子モード
10	SD端子モード
11	ローカル・ポジション確認モード

DO端子はシリアルデータ出力の他にSD端子/ST端子の状態及びローカルOSCのポジション (Upperヘテロダイン/Lowerヘテロダイン)の監視にて使用される。

*DO_SELが(01b)若しくは(10b)に設定されている場合、SD端子/ST端子と同期してDO端子のステートが変化する。

*DO_SELが(11b)に設定されている場合、ローカルOSCのポジションによりDO端子のステートが変化する。

Lowerヘテロダイン=0、Upperヘテロダイン=1

*シリアルデータ出力の際は必ずDO_SELを(00b)に設定すること。

Bit4-3: EXT_CLK_CFG[1:0]:外部クロック設定

EXT_CLK_CFG[1:0]	基準クロック
00	Off
01	外部クロックを供給
10	32768Hzクリスタル発振
11	未使用

Bit2-0: FS_S[2:0]:SD(Station Detector)動作レベル設定(FSレベルにて判別)

Register 11h-IF_SEL-IF frequency selection (Read/Write)

7	6	5	4	3	2	1	0
FLL_MOD	AMIF[2:0]			FMIF[3:0]			

Bit7: FLL MOD:FLL動作モード

0:スムージングフィルタ=0FF 1:スムージングフィルタ=0N

Bit6-4: AMIF[2:0]:AMモード選択時IF周波数設定

	AMIF[2:0]									
0	1	2	3	4	5	6	7			
20kHz	31kHz	42kHz	53kHz	64kHz	75kHz	86kHz	97kHz			

Bit3-0: FMIF[3:0]:FMモード選択時IF周波数設定(kHZ)

SE_AM	RF_SEL								FM1F	[3:0]							
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	112.5	125	137.5	150	162.5	175	187.5	212.5	225	237.5	250	262.5	275	287.5	312.5	325
0	1	112.5	127.5	142.5	157.5	157.5	172.5	187.5	202.5	217.5	232.5	247.5	262.5	277.5	292.5	307.5	322.5

Register 12h-REF_CLK_MOD-Slope correction (Read/Write)

7	6	5	4	3	2	1	0
REFMOD[7:0]						
Bit7-0:	REFMOD[7:0]:基準クロッ	/ク補正				
	Note:						
	本レジスタに	は16pinに接続	売するクリス?	タルや入力さ	れるクロック	により設定値	₫が異なる。
	本データシ	ート中の応用	回路図例及7	び推奨部品以	外のアプリ	ケーションを	採用する場
	合、本レジス	スタの設定値	に関して問い	合わせするこ	ے۔		

	合、本レジ	スタの設定値	[に関して問し	1合わせする	こと。		
Register 1	I3h-SM CTRL-	Statemachine	control (R	aad/Write)			
7	6	5	4	3	2	1	0
FLL_ON	CLKS_SE[2:	:0]	<u> </u>	nSD_PM	nIF_PM	CM_SE[1:0]	1 -
Bit7:	FLL_ON:FL 0=FLL OFF 1=FLL ON	Lコントロール	V				
Bit6-4:	0=無選択 1=ステレ 2=IF発振器 3=AMアンラ 4=FM RF発	7 ロック・ソ- オデコーダ発技 器のソースを7 テナ発振器の2 振器のソース 振器のソース R	辰器のソース 有効 ソースを有効 を有効				
Note		は発振器のソ・ 定を行いたい(を選択するこ	<u>ا</u> د.		
Bit3:	0=SD PLL	テレオデコー Off(調整) On(通常動作)		PLLミュート	-		
Bit2:	nIF_PM:IF O=IF PLL 1=IF PLL						
Bit1-0:	CM_SE:コマント 0=コマント 1=測定モ- 2=調整モ-	- F	選択				

3=ラジオチューニング(受信周波数調整)モード

Note: 本ビットはコマンドモードの選択に使用する。

実行したい任意のコマンドを選択すること。

コマンドはTARGET_VAL_L/Hを設定することにより実行される。

コマンド実行時間:

SDキャリブレーション=540ms

IFキャリブレーション=134ms

RF(FM)チューニング=105ms

RF(AM)チューニング=158ms

*コマンド実行後は、レジスタ値の読み込みも含めた全ての処理の前に上記規定した時間 待機すること。

Register 14h-REF_CLK_PRS-Reference clock pre-scaler (Read/Write)

7	6	5	4	3	2	1	0
IM_EVAS	Reserved	WAIT_SEL	AM_FINE	REFORE[3:0]	l	l
Bit7:	IM_EVAS:イ	メージ回避機	と と 能 ON/OFF		-		
	0=イメージ	局を回避した	<i>l</i>				
	1=イメージ	局を回避する	6 (推奨)				
Bit6:	Reserved:0	固定					
Bit5:	WAIT_SEL: 5 0=8ms待機 1=4ms待機	チューニング	後ミュート解	않待機時間 遺	選択		
Bit4:	0=DAC切替	I_ANT調整待機 え後無待機 え後2ms待機	熋時間選択				
Bit3-0:	REFPRE[3:0 0=1:1 1=1:2 2=1:4)]:基準クロッ	ック・プリス [・]	ケーラ			
	15=1:32768	;					

Register 15h-REF_CLK_DIV-Reference clock divider (Read/Write)

	•··· ··· <u></u> •••··				, ,		
7	6	5	4	3	2	1	0
REFDIV[7:0]						
Bit7-0:	REFDIV[7:0 0:分周率=1 1:分周率=2 ····· 255:分周率	2	ク・ディバイ	· ダ			

Register 16h-TARGET VAL L-Target Value Low Register (Read/Write)

7	6	5	4	3	2	1	0		
TARGET[7:0]]								
Bit7-0:	Bit7-0: TARGET[7:0]:ターゲット周波数 下位8bit:								
9	ジオチューニ	ニング及び発	振器調整の目	標値:下位by	yte				

Register 17h-TARGET_VAL_H-Target Value High Register (Read/Write)

7	6	5	4	3	2	1	0
TARGET[15:8	8]						

Bit7-0: TARGET[15:8]:ターゲット周波数 上位8bit:

ラジオチューニング及び発振器調整の目標値:上位byte

ラジオパワーオン時、ターゲット周波数下位8ビットを設定、その後このレジスタにターゲット周波 数上位8ビットを設定するとコマンドが実行される。

TUNEPOS and TARGET:

- AM時は1kHz間隔
- FM時は10kHz間隔

Register 18h-RADIO CTRL1-Radio control 1 (Read/Write)

7	6	5	4	3	2	1	0
IQC CTR	I FPOL	OSC LEV[1:0	01	DEEM	V0L[1:0]		EN AMHC

Bit7: IQC_CTR:I/Q位相变換

0=通常動作モード(アッパー・ヘテロダイン)

1=I/Q位相変換:イメージ対策(ローワー・ヘテロダイン)

Note:イメージ対策として、ローカルの切り替えを行う際に使用する。

Bit6: State MachineにおけるIF極性変換

0=IF周波数はローカル周波数に加算される(通常動作時) 1=IF周波数はローカル周波数に減算される(イメージ対策)

Bit5-4: OSC_LEV[1:0]:RF-OSC発振レベル設定

0=最小発振レベル 3=最大発振レベル

*各3dB間隔でレベル調整可能、「2」を推奨値とする

Bit3: DEEM: ディエンファシス時定数切り替え

0=50 μ s: 日本、韓国、中国、ヨーロッパ

1=75 µ s:アメリカ

Bit2-1: VOL[1:0]:ボリューム設定

0=最小(VOL0)

.

3=最大(VOL3)

BitO: EN_AMHC: AMハイ・カット・フィルタON/OFF

O=AMハイ・カット・フィルタ機能オフ 1=AMハイ・カット・フィルタ機能オン

Register 19h-RADIO_CTRL2-Radio control 2 (Read/Write)

7	6	5	4	3	2	1	0				
Reserved	Reserved	EN_AMM	Reserved	IF_AGC_LEV	RF_AGC_LEV	[1:0]	EN_RFAGC				
Bit7:	Reserved:0	deserved:0固定									
Bit6:	Reserved:1	Reserved:1固定									
Bit5:	0=AM≥⊐-	EN_AMM: AMミュートON/OFF 0=AMミュート機能オフ 1=AMミュート機能オン									
Bit4:	Reserved:0	Reserved:0固定									
Bit3:	O=AGCスロ・		ル・コントロ	Iール							
Bit2-1:	0=AGCスロ・ 1=AGCノー	RF_AGC_LEV[1:0]:RF-AGCレベル・コントロール 0=AGCスローモード 1=AGCノーマルモード 3=AGCファーストモード									
Bit0:	EN_RFAGC:F 0=AGCオフ 1=AGCオン(RF-AGC ON/OF (通常動作)	F								

Register 1Ah-RADIO_CTRL3-Radio control 3 (Read/Write)

7	6	5	4	3	2	1	0	
AMOSC_GA[2:0]			AMOSC_DL[2:0] AMAGC_SP[1			:0]		
D: (7.5 ANOO OATO OLANDO). 二十秒								

Bit7-5: AMOSC_GA[2:0]:AMアンテナ発振器ゲインコントロール

0=最小レベル 1=最大レベル

Bit4-2: AMOSC_DL[2:0]:AM発振器検知レベル

0=最小レベル 7=最大レベル

Bit1-0: AMAGC_SP[1:0]:AM発振器AGCスピード

0=スローモード 3=ファーストモード

Register 1Ch-STEREO CTRL1-Stereo control 1 (Read/Write)

II OTENEO_OT	NET OTOTOO	Register 1Ch-SIEREO_CIRL1-Stereo control 1 (Read/Write)									
6	5	4	3	2	1	0					
	SS_SP2	SS_SP1	NA	PICAN_EN	FOSTEREO	ST_M					
CRC[1:0]:キャプチャーレンジ・コントロール											
0=狭帯域モード											
1=推奨値											
3=広帯域モード											
t5: SS SP2:ステレオ感度スピード2(ファーストモード)											
		•	ーストモート	~)							
	-	• • • • • • • • • • • • • • • • • • • •									
1:ファース											
SS SP1·ス=	テレオ感度ス	ピード1(スロ	ーモード)								
		•	L 1)								
		/ _									
	•										
NA											
_	パイロットキ	マンセル機能	能ON/OFF								
1=オン											
FOOTEDEO.	3分生11 7 一 1 —	L									
	レカヒード										
ST M:ステし	レオ/モノラル	レ設定									
_											
	`	,									
	CRC[1:0]:= 0=(2:1:0]:= 1=(3:	CRC[1:0]:キャプチャー 0=狭帯域モード 1=推奨値 3=広帯域モード SS_SP2:ステレオ感度スの:ファーストモード=ON SS_SP1:ステレオ感度スの:ステレオ感度スの:ステレオ感度スの:ステレオが悪度スの:スローモード=ON NA PICAN_EN:パイロットキの=オン 1=オン FOSTEREO:強制ステレオ 0=通常動作 1=強制ステレオ/モノブ(通	6 5 4 SS_SP2 SS_SP1 CRC[1:0]:キャプチャーレンジ・コン 0=狭帯域モード 1=推奨値 3=広帯域モード SS_SP2:ステレオ感度スピード2(ファ 0:ファーストモード=OFF-推奨値 1:ファーストモード=ON SS_SP1:ステレオ感度スピード1(スロ 0:スローモード=OFF-推奨値 1:スローモード=ON NA PICAN_EN: パイロットキャンセル機能 0=オフ 1=オン FOSTEREO: 強制ステレオ 0=通常動作	6	6	6					

Register 1Dh-STEREO_CTRL2-Stereo control 2 (Read/Write)

7	6	5	4	3	2	1	0
NA			FOAMAGC	Reserved	NA	CPAJ[2:0]	

Bit7-5: NA

Bit4: FOAMAGC

0=強制AGC=OFF 1=強制AGC=ON

Bit3: Reserved:0固定

Bit2: NA

Bit1-0: CPAJ[1:0]:チャンネル・セパレーション調整

0=サブ・キャリアレベル最小 7=サブ・キャリアレベル最大

Register 1Eh-RADIO_CTRL4-Radio control 4 (Read/Write)

7	6	5	4	3	2	1	0
S0FTST[2:0]		SOFTMU[2:0]		LEVSHIF	F0_S0FTT	

Bit7-5: SOFTST[2:0]:ソフトステレオ機能設定

0:ソフトステレオ機能=オフ 7:ソフトステレオ機能=Lev7(Max)

Bit4-2: SOFTMU[2:0]:ソフトオーディオミュート機能設定

0:ソフトミュート機能=オフ 7:ソフトミュート機能=Lev7(Max)

Bit1: LEVSHIF:オーディオラインDCレベルシフト

0=ノーマルDCレベル(V_{CC}=5.0V供給) 1=DCレベルシフト(V_{CC}=9.0V供給)

Bit0: FO_SOFTST:強制ソフトステレオ機能設定

0:強制ソフトステレオ機能=ON1:強制ソフトステレオ機能=OFF

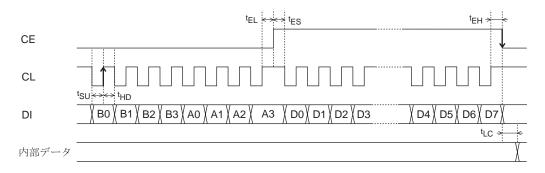
*ヨーロッパ・イミュニティー規格に対応する場合は「0」に設定すること。

Register 1Fh-RADIO_CTRL5-Radio control 5 (Read/Write)

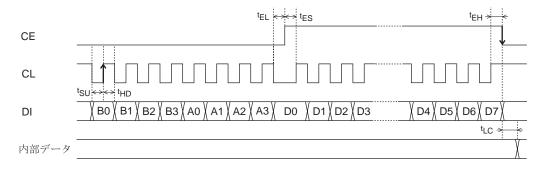
7	6	5	4	3	2	1	0			
RF_SEL	IFRIM	nAGC_SPD	SE_FM/AM	AMP_CTR	MUTE	NA	PW_RAD			
Bit7:	RF_SEL:RF周波数範囲設定 0=ノーマル(japan/USA/Europe) 1=東欧(65MHz~74MHz)									
Bit6:	IFRIM:IF発振器リミット設定 0:Max=350kHz(FM mode) 1:Max=150kHz(AM mode)									
Bit5:	0:ハイスピ	nAGC_SPD:IF AGCスピード設定 0:ハイスピード(FMモード) 1:ノーマル(AMモード)								
Bit4:	0=FMモード	SE_FM/AM:AM/FMモード選択 0=FMモード 1=AMモード								
Bit3:	AMP_CTR:オーディオアンプON/OFF 0=オフ 1=オン									
Bit2:	MUTE: オーディオミュート機能ON/OFF 0=ミュートオン 1=ミュートオフ									
Bit1:	AM_CAL:AMキャリブレーション(発振モード) 0=AMキャリブレーション不可(通常動作時) 1=AMキャリブレーションモード(AMアンテナ周波数設定時) AMアンテナ周波数を測定する場合は、本ビットを「1」に設定すること。									

Bit0: PW_RAD: ラジオ回路パワー

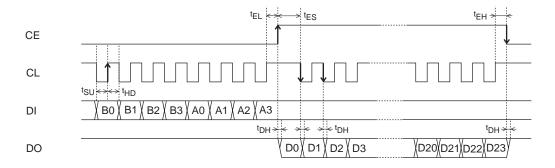
0=パワーオフ(パワーセーブ)

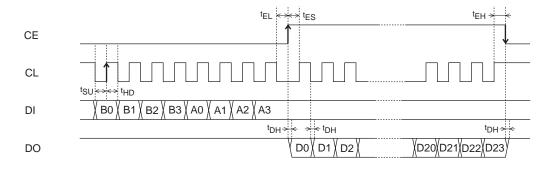

1=パワーオン

*1:VCC電圧印加後50ms内にRegister 1Fh_Bit0のPW_RADが自動的に「0」に設定される。

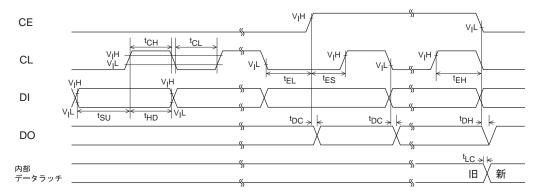

- *2:VCC電圧を一度落とすと、PW_RAD以外のレジスタ内容は不定となる。
- *3:パワーセーブ時に設定したレジスタ変更内容は有効となるが、如何なるコマンド処理も実行出来ない。
- *4:パワーセーブ復帰後(PW_RAD=0 1)は、回路安定までに1200msの待機時間が必要である。
- *5:パワーセーブ復帰後にRFを再同調すること。
- *6:パワーセーブ時はRF局発を含む各内蔵発振器と、その他全てのアナログ部回路動作が停止する。
- *7:AMへバンド切替え時、最初のRF調整後は、IFカウント前に200msの待機時間が必要。

(4)C2B通信タイミング仕様

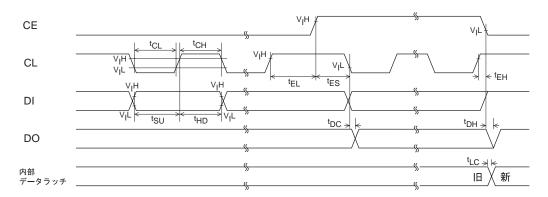

シリアルデータ入力(IN1/IN2) t_{ST} , t_{HD} , t_{EL} , t_{ES} , $t_{EH} \geq 0.75\,\mu\,s$ $t_{LC} < 0.75\,\mu\,s$ CL: ノーマルHi


CL: ノーマルLow

シリアルデータ出力(OUT) t_{ST} , t_{HD} , t_{EL} , t_{ES} , $t_{EH} \geq 0.75\,\mu\,s$ $t_{LC} < 0.35\,\mu\,s$ CL: ノーマルHi



CL: ノーマルLow



(注)DO端子は、Nchオープンドレイン端子のため、プルアップ抵抗値や基板容量によって、データ変化時間(t_{DC} , t_{DH})は異なる。

シリアルデータのタイミング

CLが「L」レベルで停止している場合

CLが「H」レベルで停止している場合

項目	記号	端子	条件	Min	Тур	Max	Unit
データセットアップ時間	tsu	DI, CL		0.75			μs
データホールド時間	tHD	DI, CL		0.75			μs
クロック「L」レベル時間	tCL	CL		0.75			μs
クロック「H」レベル時間	tCH	CL		0.75			μs
CEウェイト時間	t _{EL}	CE, CL		0.75			μs
CEセットアップ時間	tES	CE, CL		0.75			μs
CEホールド時間	tEH	CE, CL		0.75			μs
データラッチ変化時間	tLC					0.75	μs
データ出力時間	tDC	DO, CL	プルアップ抵抗値、基板容量によっ			0.05	
	t _{DH}	DO, CE	て異なる			0.35	μs

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equ

NO Semi-conductor及びONのロゴはSemi-conductor Components Industries, LLC (SCILLC)の登録商標です。SCILLCは持許、商標、著作権、トレードシークレット(営業秘密)と他の知的所有権に対する権利を保有します。SCILLCの製品/特許の適用対象リストについては、以下のリンクからご覧いただけます。www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLCは通告なしで、本書記載の製品の変更を行うことがあります。SCILLCは、いかなる特定の目的での製品の適合性について保証しておらず、また、お客様の製品において回路の応用や使用から生じた責任、特に、直接的、間接的、偶発的な損害に対して、いかなる責任も負うことはできません。SCILLCデータシートや仕様書に示される可能性のある「標準的」パラメータは、アプリケーションによっては異なることもあり、実際の性能も時間の経過により変化する可能性があります。「標準的」パラメータを含むすべての動作パラメータは、で使用になるアプリケーションに応じて、お客様の専門技術者において十分検証されるようお願い致します。SCILLCは、その特許権やその他の権利の下、いかなるライセンスも許諾しません。SCILLC製品は、人体への外科的移植を目的とするシステムへの使用、生命維持を目的としたアプリケーション、また、SCILLC製品の不具合による意場等の事故が起こり得るようなアプリケーションなどへの使用を意図した設計はされておらず、また、これらを使用対象としておりません。お客様が、このような意図されたものではない、許可されていないアプリケーション用にSCILLC製品を購入または使用した場合、たとえ、SCILLCがその部品の設計または製造に関して過失があったと主張されたとしても、そのような意図せぬ使用、また未許可の使用に関連した死傷等から、直接、又は間接的に生じるすべてのクレーム、費用、損害、経費、および弁護土料などを、お客様の責任において補償をお願いいたします。また、SCILLCとその役員、従業員、そ会社、関連会社、代理店に対して、いかなる損害も与えないものとします。

SCILLCは雇用機会均等/差別撤廃雇用主です。この資料は適用されるあらゆる著作権法の対象となっており、いかなる方法によっても再販することはできません。