48 W Server AUX Power Supply Solution Evaluation Board User's Manual

Circuit Description

This design note describes a 48 W, wide range DC input, constant voltage power supply, NCP1568DC48WGEVB, intended for Server AUX power supply and others DC input applications requiring fixed voltage output, low profile, high efficiency and high power density.

The NCP1568DC48WGEVB uses an Active Clamp Flyback (ACF) topology utilizing ON Semiconductor NCP1568 ACF controller, NCP51530A half-bridge driver, NCP4306 synchronous rectified controller and secondary NTMFS6B03 synchronous MOSFET. This Design Note provides the complete circuit schematic details, PCB and BOM for the NCP1568 48 W DC input Power adapter solution that supports fixed 12 V output voltage and 4 A current.

This design uses an ACF topology to implement a Zero Voltage Switching (ZVS) operation with high switching frequency and secondary CLC circuitry to implement secondary Zero Current Switching (ZCS). In order to keep cost low, (2) SJ MOSFETs are used on the primary side for power switching.

Key Features

- DC Input from 120 V to 400 V
- ACF Topology with ZVS Operation
- High Voltage Startup Current eliminates Startup Resistor
- High Frequency Operation to allow Low Profile Transformer: RM7 Transformer
- ACF Operation Frequency Range from 110 kHz to 400 kHz
- Quite Skip and Flyback DCM Operation with Frequency Foldback at No Load and Light Load
- Rated Output Power: 12 V, 4 A
- Ripple and Noise <80 mV
- Efficiency: >94% at 156 Vdc and 320 Vdc @ Full Load
- Output OVP
- Output OCP, SCP
- Open Loop Protection
- Board Size: 40 mm x 24 mm x 17 mm
- Power Density: 48 W/inch^3

ON Semiconductor®

www.onsemi.com

EVAL BOARD USER'S MANUAL

	Output Specification			
Output Voltage	12 V			
Nominal Current	4 A			
Max Current	4 A			
Min Current	Zero			
Avg. Efficiency	>94% @ 12 V / 4 A at board end, 160 & 320 Vdc			
Ripple	<80 mV			
Standby Power	<150 mW			
Power Density	48 W/in^3			
Protection	Adaptive UVP, OVP, OVP, SCP, OTP			
Size	40 mm x 24 mm x 17 mm			

Device	Application	Input Voltage	Output Power	Topology	I/O Isolation
NCP1568S02DBR2G NCP51530AMNTWG NCP4306AADZZZAMNTWG NTMFS6B03NT1G	Server AUX power supply and other DC input applications	120 Vdc to 400 Vdc	48 W	Flyback	lsolated (3 kV)

Top View

Bottom View

Figure 1. Evaluation Board Photos

<u>CIRCUIT SCHEMATIC</u>

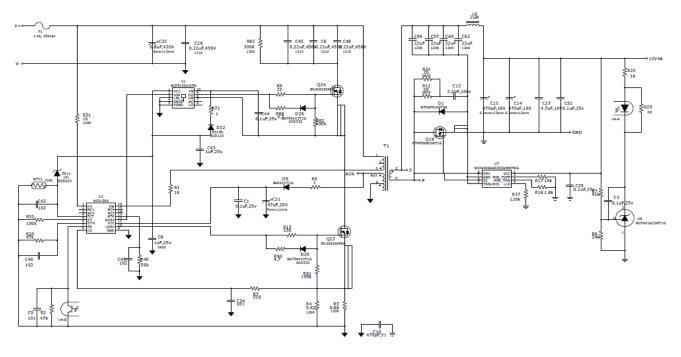


Figure 2. Circuit Schematic

PCB

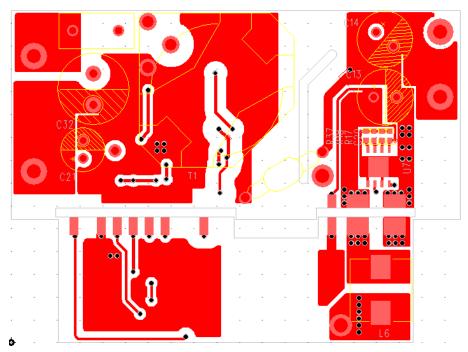


Figure 3. Top View of Mainboard PCB

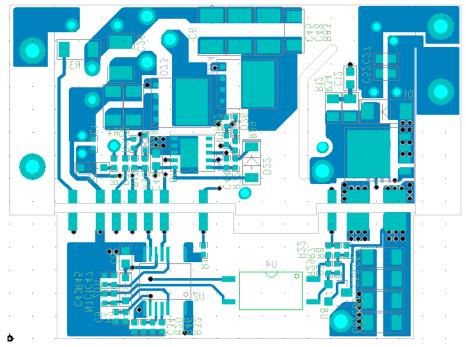
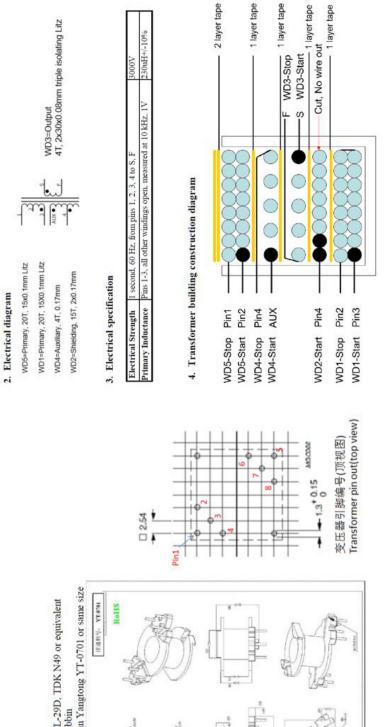
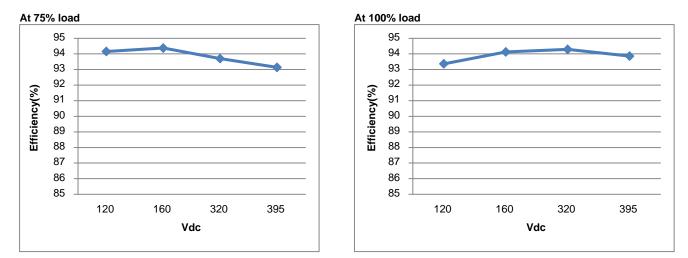
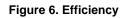



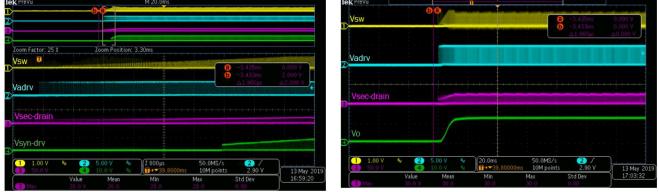
Figure 4. Bottom View of Mainboard PCB

T1 TRANSFORMER DESIGNS

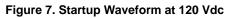
1. Core and Bobbin

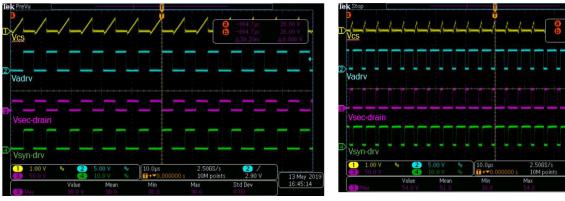

Bobbin vendor: Dongguan Yangtong YT-0701 or same size Core Type: RM7 Core material: Hitachi ML-29D, TDK N49 or equivalent Bobbin: 8Pin TH type bobbin


A REAGING AN ACCUPAN NAME



Efficiency


Test Condition: all efficiency are tested at board end



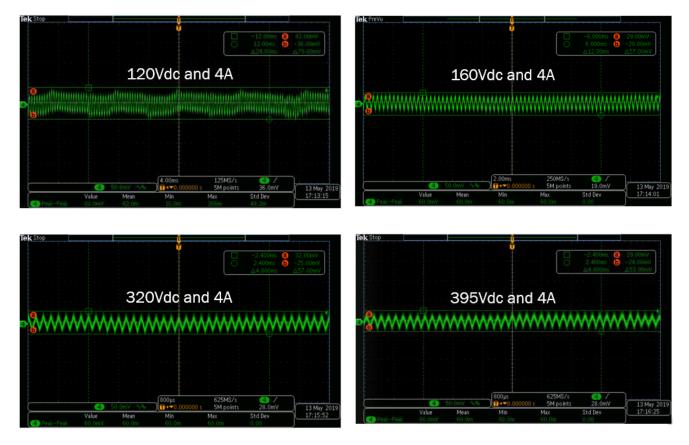
(CH1 Vsw, CH2: Vadrv, CH3: Vsec-drain, CH4: Vsyn-drv)

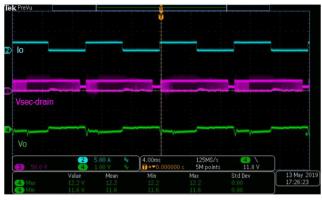
120 Vdc (CH1 Vsw, CH2: Vadrv, CH3: Vsec-drain, CH4: Vsyn-drv)

395 Vdc (CH1 Vsw, CH2: Vadrv, CH3: Vsec-drain, CH4: Vsyn-drv)

13 Maj 16:46

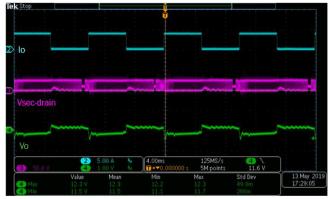
Figure 8. Working Waveform at Full Load



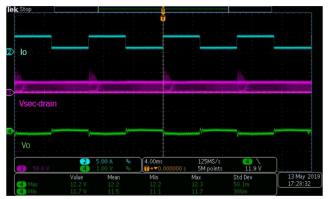

Figure 9. Output Ripple at Full Load

(CH2: Io, CH3: Vsec-drain, CH4: Vo)

Test condition: 0 – 4 A, 10 ms cycle, 125 mA/µs, 1 m cable, tested at E–load


(CH2: Io, CH3: Vsec-drain, CH4: Vo)

Test condition: 0 – 2 A, 10 ms cycle, 125 mA/ $\mu s,$ 1 m cable, tested at E–load


Figure 10. Dynamic Test at 160 Vdc

(CH2: Io, CH3: Vsec-drain, CH4: Vo)

Test condition: 0.1 A – 4.0 A, 10 ms cycle, 125 mA/µs, 1 m cable, tested at E–load

(CH2: Io, CH3: Vsec-drain, CH4: Vo)

Test condition: 1 A – 4 A, 10 ms cycle, 125 mA/ $\mu s,$ 1 m cable, tested at E–load

Figure 11. Dynamic Test at 160 Vdc

395 Vdc input, 500 MHz BW (CH2: Vadrv, CH3: Vsec-drain) 395 Vdc input, 20 MHz BW (CH2: Vadrv, CH3: Vsec-drain)

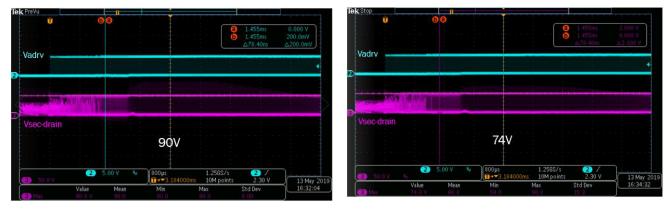
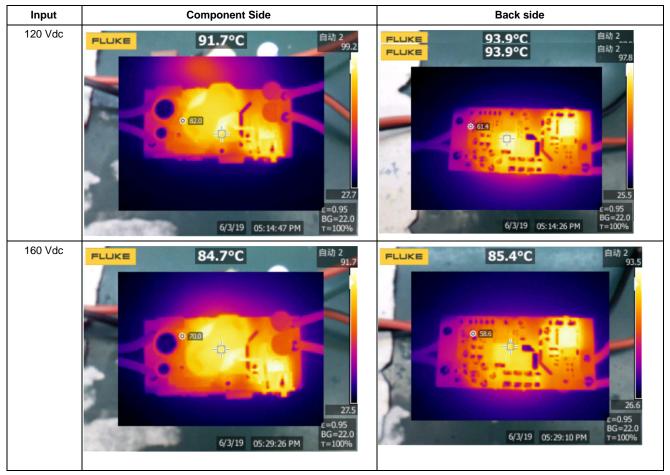
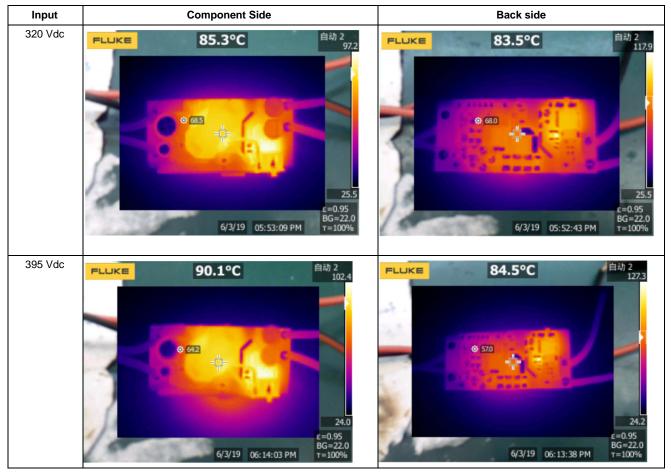




Figure 12. Secondary Voltage Stress during DCM to ACF Mode Transition

Table 1. THERMAL IMAGE @ 12 V / 4 A Output

Table 1. THERMAL IMAGE @ 12 V / 4 A Output (continued)

Table 2. BILL OF MATERIAL

ltem	Qty	Reference	Туре	Part Name	Package	MFR	Value	Description
1	4	C1 C3 C29 C44	Ceramic Capacitor	/885012105018	402	Wurth	0.1 uF, 25 V	Capacitor, Ceramic, 25 V, 10%
2	1	C52	Ceramic Capacitor	/885012206071	603	Wurth	0.1 uF, 25 V	Capacitor, Ceramic, 25 V, 10%
3	4	C6 C26 C45 C48	Ceramic Capcitor	C3225X7T2W224K	1210	TDK	0.22 uF, 450 V	Capacitor, Ceramic, Chip, 10%
4	2	C9 C34	Ceramic Capacitor	/885012205055	402	Wurth	101	Capacitor, Ceramic, 50 V, 10%
5	1	C42	Ceramic Capacitor	/885012205061	402	WE	102	Capacitor, Ceramic, 50 V, 10%
6	2	C46–47	Ceramic Capacitor	/885012205061	402	WE	102	Capacitor, Ceramic, 50 V, 5%
7	1	C8	Ceramic Capacitor	/885012206076	603	Wurth	1 uF, 25 V	Capacitor, Ceramic, 10%
8	1	C43	Ceramic Capacitor	/885012206076	603	WE	1 uF, 25 V	Capacitor, Ceramic, 25 V, 10%
9	1	C12	Ceramic Capacitor	C1608X7R2A222K	603	TDK	2.2 nF, 100 V	Capacitor, Ceramic, SMD, 5%
10	4	C56–57 C60 C62	Ceramic Capcitor	C3216X5R1V226M 160AC	1206	TDK	22 uF	Capacitor, Ceramic, SMD, 5%
11	1	C27	Ceramic Capacitor	C1608X6S1C475M	603	TDK	4.7 uF, 16 V	Capacitor, Ceramic, 16 V, 10%
12	1	C10	Ceramic Capcitor	CS65–B2GA101K- YNKA	Lead type	ТDК	470 pF, Y1	Y Capacitor,safety standard approved, 10%
13	1	D6	Switching diode	BAS21HT1G	SOD323	ON	0.2 A, 250 V	Swiching diode, 0.2 A, 250 V
14	2	D26 D29	Schotty diode	BAT54XV2T1G	SOD523	ON	0.2 A, 30 V	Schotty diode, SMD
15	1	D22	Ultrafast diode	ES1JFL	SOD123	ON	1 A, 600 V	Ultrafast diode, SMD
16	1	D1	Schotty rectifier	NTSAF5100T3G	SOD123FL	ON	5 A, 100 V	Schotty Rectifier, 5 A, 100 V
17	1	F1	Fuse	20T–016H	Axial lead	Hollyfuse	1.6 A, 250 Vac	Micro Fuse, 1.6 A / 250 V
18	1	U8	voltage reference	NCP431ACSNT1G	SOT23	ON		PROGRAMMABLE PRECISION REFER- ENCE
19	1	U2	ACF con- troller	NCP1568S02AD- BR2G	TSSOP16	ON		ACF controller
20	1	U7	Syn. recti- fied con- troller	NCP4306AADZZ- ZAMNTWG	SO8	ON		Syn. Rectified Con- troller
21	1	U1	HB driver	NCP51530AMN- TWG	DFN10 4X4	ON		HB driver
22	1	NTC1	NTC	SD- NT1608X104J4250- HTF	603	Shunlord	100k	replaced by 13k resis- tor
23	1	U4	Optical coupler	FODM1009	LSOP4	ON		optical coupler, stan- dard SOP package
24	1	L6	SMD In- ductor	/744314200	7050	WE	2.2 uH	WE-HCI SMD Flat Wire High Current In- ductor
25	2	R6 R72	Resistor	Std	402	Std	1	Resistor, Chip, 1/16W, 1%
26	1	R18	Resistor	Std	402	Std	1.8k	Resistor, Chip, 1/16W

ltem	Qty	Reference	Туре	Part Name	Package	MFR	Value	Description
27	3	R32 R91–92	Resistor	Std	402	Std	100k	Resistor, Chip, 1/16W, 1%
28	1	R37	Resistor	Std	402	Std	120k	Resistor, Chip, 1/16W, 1%
29	1	R13	Resistor	Std	402	Std	150	Resistor, Chip, 1/16W, 1%
30	1	R17	Resistor	Std	402	Std	16k	Resistor, Chip, 1/16W, 1%
31	2	R1 R22	Resistor	Std	402	Std	1K	Resistor, Chip, 1/16W, 1%,
32	1	R9	Resistor	Std	402	Std	22	Resistor, Chip, 1/16W, 1%
33	1	R8	Resistor	Std	603	Std	24k	Resistor, Chip, 1/16W, 1%
34	2	R89–90	Resistor	Std	402	Std	4.7	Resistor, Chip, 1/16W, 1%
35	2	R2 R20	Resistor	Std	402	Std	47k	Resistor, Chip, 1/16W, 1%
36	1	R3	Resistor	Std	402	Std	510	Resistor, Chip, 1/16W, 1%
37	1	R45	Resistor	Std	402	Std	56k	Resistor, Chip, 1/16W, 1%
38	1	R7	Resistor	Std	402	Std	91k	Resistor, Chip, 1/16W, 1%
39	1	R29	Resistor	Std	402	Std	nc	Resistor, Chip, 1/16W, 1%,
40	1	R4	Resistor	ERJ8BQFR062V	1206	Panasonic	0.62	Resistor, Chip, 1/2W, 1%
41	1	R5	Resistor	ERJ8BQFR068V	1206	Panasonic	0.68	Resistor, Chip, 1/2W, 1%
42	1	R31	Resistor	Std	1206	Std	1k	Resistor, Chip, 1/4W, 1%
43	2	R12 R34	Resistor	Std	805	Std	20	Resistor, Chip, 1/5W, 1%
44	1	R83	Resistor	Std	1206	Std	300K	Resistor, Chip, 1/4W, 1%
45	1	T1	Trans- former	RM7	TH type	Wurth		RM7, 8Pin
46	2	C13–14	Electrolyt- ic solid capacitor	PX471M016E120P	6.3 mm x 12 mm	CapXon	470 uF, 16 V	size: 6.3 mm x 12 mm
47	1	C21	ECAP	KF Series	5 mm x 11 mm	CapXon	47 uF, 25 V	size: 6.3 mm x 11 mm
48	1	C32	ECAP	KF Series	8 mm x 12 mm	CapXon	6.8 uF, 420 V	size: 8 mm x 12 mm
49	1	Q18	MOSFET	NTMFS6B03NT1G	QFN5X6	ON		MOSFET, NChan, 100 V
50	2	Q23–24	MOSFET	IPL60R360P6S	ThinkPAK5- X6	INFINEON		MOSFET, NChan, 600 V
51	1	ZD11	zener	MM3Z11VT1G	SOD323	ON	16v	GENERIC ZENER- DIODE
52	4	12V4A GND V+ V–	connec- tion terni- mal	Std	Ø1mm	Std		connection ternimal or wire

Table 2. <u>BILL OF MATERIAL</u> (continued)

References

ON Semiconductor datasheet for NCP1568, NCP51530, NCP4306, NTMFS6B03 ON Semiconductor Design Notes DN05043 onsemi, ONSEMi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

The evaluation board/kit (research and development board/kit) (hereinafter the "board") is not a finished product and is not available for sale to consumers. The board is only intended for research, development, development, development, and evaluation purposes and will only be used in laboratory/development areas by persons with an engineering/technical training and familiar with the risks associated with handling electrical/mechanical components, systems and subsystems. This person assumes full responsibility/liability for proper and safe handling. Any other use, resale or redistribution for any other purpose is strictly prohibited.

THE BOARD IS PROVIDED BY ONSEMI TO YOU "AS IS" AND WITHOUT ANY REPRESENTATIONS OR WARRANTIES WHATSOEVER. WITHOUT LIMITING THE FOREGOING, ONSEMI (AND ITS LICENSORS/SUPPLIERS) HEREBY DISCLAIMS ANY AND ALL REPRESENTATIONS AND WARRANTIES IN RELATION TO THE BOARD, ANY MODIFICATIONS, OR THIS AGREEMENT, WHETHER EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING WITHOUT LIMITATION ANY AND ALL REPRESENTATIONS AND WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, AND THOSE ARISING FROM A COURSE OF DEALING, TRADE USAGE, TRADE CUSTOM OR TRADE PRACTICE.

onsemi reserves the right to make changes without further notice to any board.

You are responsible for determining whether the board will be suitable for your intended use or application or will achieve your intended results. Prior to using or distributing any systems that have been evaluated, designed or tested using the board, you agree to test and validate your design to confirm the functionality for your application. Any technical, applications or design information or advice, quality characterization, reliability data or other services provided by **onsemi** shall not constitute any representation or warranty by **onsemi**, and no additional obligations or liabilities shall arise from **onsemi** having provided such information or services.

onsemi products including the boards are not designed, intended, or authorized for use in life support systems, or any FDA Class 3 medical devices or medical devices with a similar or equivalent classification in a foreign jurisdiction, or any devices intended for implantation in the human body. You agree to indemnify, defend and hold harmless onsemi, its directors, officers, employees, representatives, agents, subsidiaries, affiliates, distributors, and assigns, against any and all liabilities, losses, costs, damages, judgments, and expenses, arising out of any claim, demand, investigation, lawsuit, regulatory action or cause of action arising out of or associated with any unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of any products and/or the board.

This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and may not meet the technical requirements of these or other related directives.

FCC WARNING – This evaluation board/kit is intended for use for engineering development, demonstration, or evaluation purposes only and is not considered by **onsemi** to be a finished end product fit for general consumer use. It may generate, use, or radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment may cause interference with radio communications, in which case the user shall be responsible, at its expense, to take whatever measures may be required to correct this interference.

onsemi does not convey any license under its patent rights nor the rights of others.

LIMITATIONS OF LIABILITY: **onsemi** shall not be liable for any special, consequential, incidental, indirect or punitive damages, including, but not limited to the costs of requalification, delay, loss of profits or goodwill, arising out of or in connection with the board, even if **onsemi** is advised of the possibility of such damages. In no event shall **onsemi**'s aggregate liability from any obligation arising out of or in connection with the board, under any theory of liability, exceed the purchase price paid for the board, if any.

The board is provided to you subject to the license and other terms per **onsemi**'s standard terms and conditions of sale. For more information and documentation, please visit www.onsemi.com.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS: Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales