300 W Lighting Solution with NCL30125 Evaluation **Board User's Manual**

Circuit Description

This user's manual provides elementary information about a two-switch forward converter built with the NCL30125 operated in current-mode control. This controller offers many features to build an energy efficient converter with all the needed protections like cycle-by-cycle current limit with a 500-mV sense voltage, over temperature protection with a dedicated NTC pin and brown-out feature. In addition to the low side MSOFET drive, the controller integrates also a high-side section to drive the floating N-channel power MOSFET. Dedicated pins are available to adjust the switching frequency (RT pin - pin 6) or the soft-start duration (SS pin - pin 7). Finally, a high-voltage current source with Dynamic-Self Supply (DSS) is embedded to quickly start the power supply and maintain the Vcc voltage in light load or standby. The primary-side section drives a transformer whose primary inductance is 3 mH. The energy accumulated in this inductance is sending back to the bulk capacitor thanks to the

ON Semiconductor®

www.onsemi.com

EVAL BOARD USER'S MANUAL

freewheel components. One of the classical freewheel diode has been replaced by a MOSFET Q3 driven by the controller in order to refresh the bootstrap capacitor. The current is sensed via a 83-m Ω resistance. The switching frequency of 100 kHz and the soft-start duration are set by two individual components (R8 for fSW and C5 for SS).

The power stage is made of two switching N-channel transistors Q1 and Q2. These two transistors are switched in same time and seen the input voltage as maximum. In the secondary side, D13 and D15 constitute Rectifier and Freewheel part. The regulation is ensured by a TL431.

Table 1.

Device	Application	Input Voltage	Output Power	Topology	I/O Isolation
NCL30125	Lighting	180 to 264 Vac	300 W	Two-Switch Forward	Isolated

Table 2.

	Output Specification
Output Voltage	12 V
Nominal Current	12 V/25 A
Max Current	12 V/30 A
Min Current	zero

Table 3.

Avg. Efficiency	>88% @ 12 V 25 A at board end, 230 Vac				
Ripple	<240 mV				
Standby Power	<0.3 W @ 12 V & 230 Vac				
Power Density	2 W/cm ³				
Protection	OCP, OVP				
Size	L x W x H = 300 x 50 x 35 mm				

Key Features

- Two-Switch topology current mode control
- A simple control circuit without a driver transformer
- Rated Output power: 300 W
- Standby power: <0.3 W in Universal AC input voltage
- Full load Efficiency: >88% @ at board end, 230 Vac input
- Completed protection: OCP,OVP
- Brown-out protection
- Switching frequency: ~100 kHz

Block Diagram and BOARD Photos

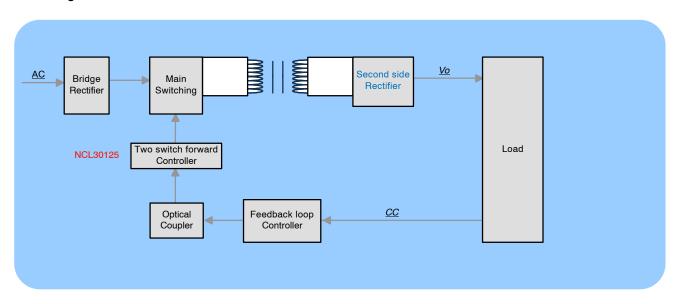


Figure 1. Overall Circuit of 300 W Lighting Solution

Figure 2. Demo Board Pictures

Circuit Schematic

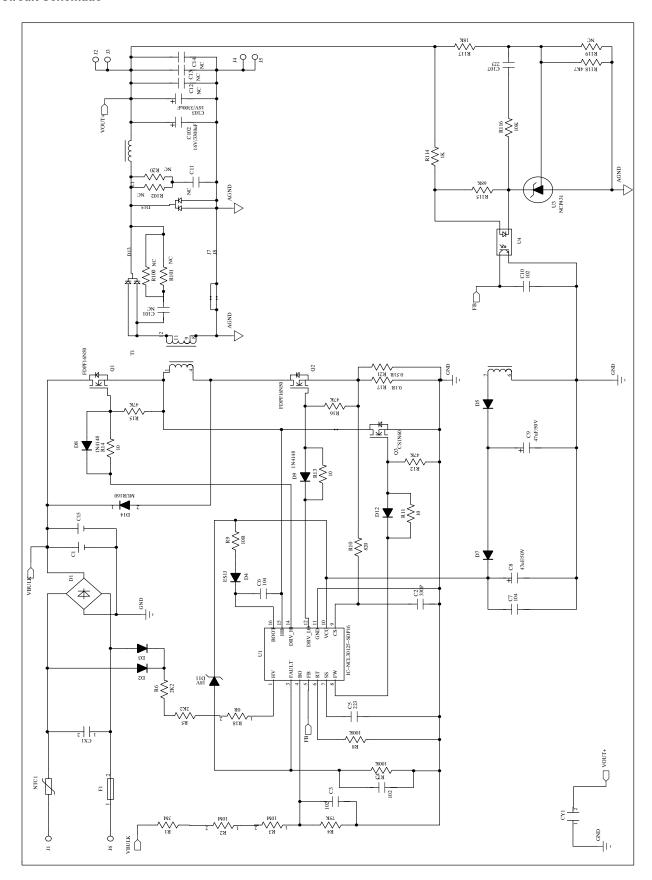


Figure 3. Circuit Schematic

PCB

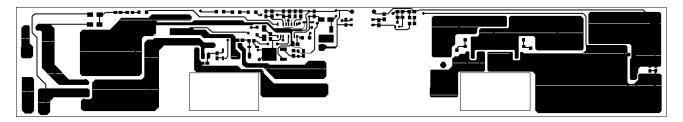


Figure 4. Bottom View of PCB

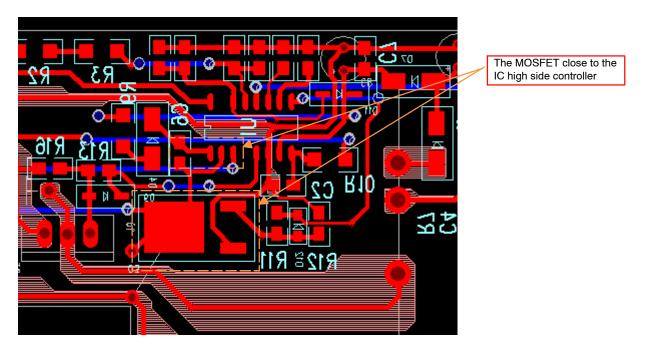


Figure 5. PCB Layout Pay Attention to Q3 MOSFET Position

Transformer Designs

Table 4.

				Turns in		Winding	Tensile Force		Windin	Winding Point	
Pos.	Identification	Material	Turns	Total	Size	Allowance	Required	Speed	Beginning	End	Remarks
1	NP	THL-F	12	12	0.5 mm	-	_	-	9	11	
2	Z1	Tape	1	1	7 mm	-	_	-	-	_	
3	NH	THL-F	1	1	0.2 mm	-	-	1	7	6	
4	Z2	Tape	2	2	7 mm	-	-	-	-	-	
5	NS	Litz wire	3	3	0.1 mm x 150 x 2	_	-	ı	4, 5 start, 1, 2 end		
6					150 X Z	_	-	-			
7	Z3	Tape	2	2	7 mm	-	-	ı	-	ı	
8	NP	THL-F	7	7	0.5 mm	-	-	1	11	12	
9	Z4	Tape	1	1	7 mm	-	-	-	-	-	

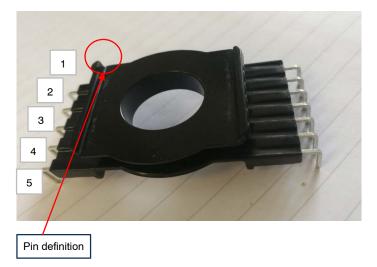


Figure 6.

Efficiency Curve in different AC Input Voltage

Test condition: all efficiency are tested at board end

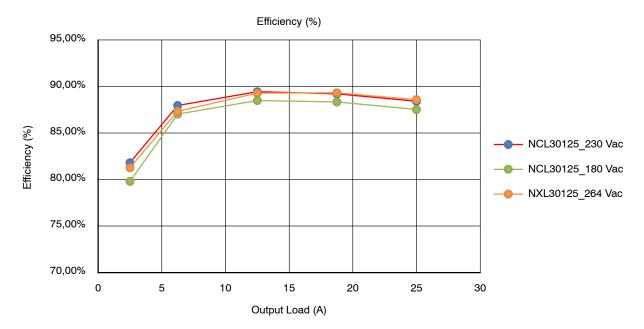


Figure 7.

No Load Input Power

Test condition: no load

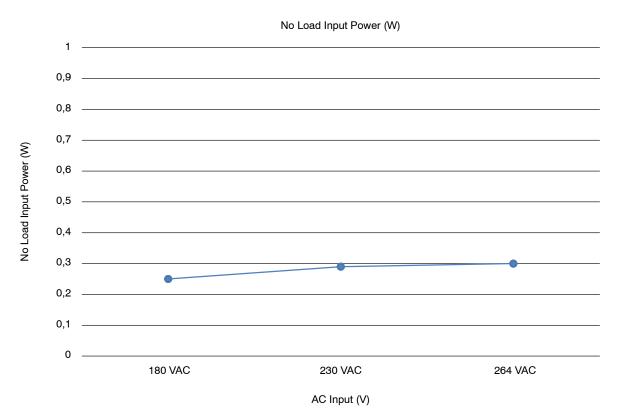


Figure 8.

Start up time and Hold-up Time

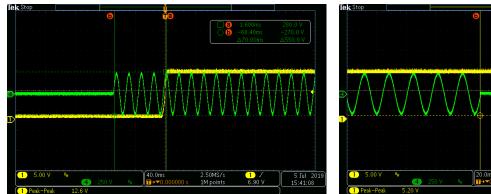


Figure 9. Start Up Time

Figure 10. Hold-up Time

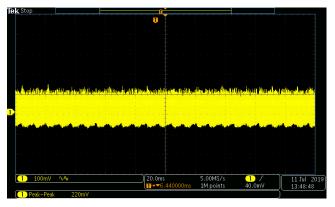


Figure 11. Output Ripple @ 180 Vac Input, 25 A Output

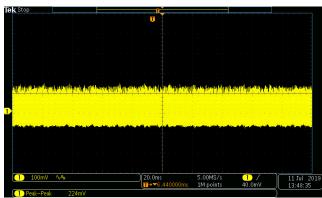


Figure 12. Output Ripple @ 230 Vac Input, 25 A Output

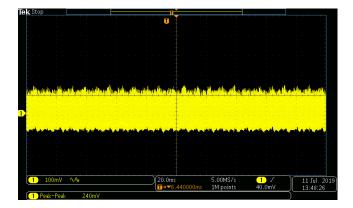


Figure 13. Output Ripple @ 264 Vac Input, 25 A Output

Start Up @ 230 Vac Input, 12 Vdc Output

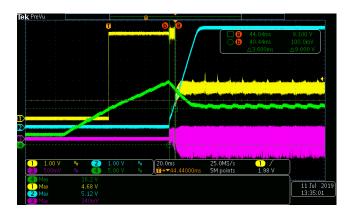


Figure 14. CH1: FB, CH2: SS, CH3: Current Sense, CH4: Vcc

Switch MOSFET Wave Form

Figure 15. 230 Vac Input, 12 V 25 A Output (CH1 – Low Side Vdrain, CH3 – Current Sense, CH4 – High Side Vdrain)



Figure 16. 264 Vac Input, 12 V 25 A Output (CH1 – Low Side Vdrain, CH3 – Current Sense, CH4 – High Side Vdrain)

Output OVP, OCP & Short Circuit Protection

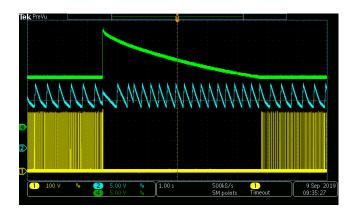


Figure 17. Output OVP: CH1 - VHB, CH2 - Vcc, CH4 - Output Voltage

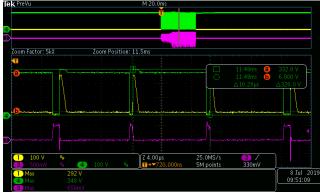


Figure 18. Output OCP: CH1 – Low side Vdrain, CH3 – Primary Current Sense C2 Voltage, CH4 – High Side Vdrain

BOM

Table 5. BILL OF MATERIALS

ltem	Qty	Reference	Type	Part Name	MFR	Value	Package	Description	
1	1	NTC1	NTC	SPNL09D1R5MBI	SUNLORD	1.5 Ω			
2	1	F1	FUSE	3.15 A/250 VAC	littelfuse	Micro Fuse 3.15 A/250 VAC		L8.5 mm x W4 mm x H8 mm	
3	1	L1	choke	Choke	Yongjieling	35uH	MKS270125	MKS270125/14TS	
4	1	W	Forward transformer	Transformer	Yongjieling	3mH	PQ4020		
5	1	R1	Resistor	Std	Std	3 MΩ/1206	1206		
6	2	R2, R3	Resistor	Std	Std	10 MΩ/1206	1206		
7	1	R4	Resistor	Std	Std	75 kΩ/0805	0805		
8	1	R18	Resistor	Std	Std	0 Ω/1206	1206		
9	2	R5, R6	Resistor	Std	Std	2.2 kΩ/0805	0805		
10	2	R7, R8	Resistor	Std	Std	100 kΩ/0805	0805		
11	1	R9	Resistor	Std	Std	10 Ω/0805	0805		
12	1	R10	Resistor	Std	Std	820 Ω/1206	1206		
13	3	R11, R13, R14	Resistor	Std	Std	10 Ω/0805	0805		
14	3	R12, R15, R16	Resistor	Std	Std	47 kΩ/0805	0805		
15	1	R17	Resistor	ERJ1TRSJR10U	Panasonic	0.1 Ω	2512	Panasonic NO.: ERJ1TRSJR10U	
16	1	R21	Resistor	ERJ1TRQFR51U	Panasonic	0.51 Ω	2512	Panasonic NO.: ERJ1TRQFR51U	
17	1	R114	Resistor	Std	Std	1 kΩ/0805	0805		
18	1	R116	Resistor	Std	Std	10 kΩ/0805	0805		
19	1	R117	Resistor	Std	Std	18 kΩ/0805	0805		
20	1	R118	Resistor	Std	Std	4.7 kΩ/0805	0805		
21	1	C15	Е-сар	861011385023	WE	400 V/330 μF	E-CAP	WE ORDER NO.: 861011385023	
22	2	C102, C103	E-cap	860080575018	WE	16 V/3300 μF	E-CAP	WE ORDER No.: 860080575018	
23	2	C8,C9	E-cap	860010673012	WE	50 V/47 μF	E-CAP	WE ORDER NO.: 860010673012	
24	1	C2	Ceramic cap	Std	Std	330 pF/25 V	0805		
25	3	C3, C4, C10	Ceramic cap	Std	Std	102/25 V	0805		
26	2	C5, C107	Ceramic cap	Std	Std	223/25 V	0805		
27	2	C6, C7	Ceramic cap	Std	Std	104/25 V	0805		
28	2	Q1, Q2	MOSFET	FDP26N50	ON	500 V/20 A/TO-220	TO-220		
29	1	Q3	MOSFET	CS1N60	ON	600 V/1 A/D-PARK	D-PARK		
30	2	D13, D15	DIODE	MBR30L60CTG	ON	60 V/30 A/TO-220	TO-220		
31	3	D2, D3, D4	Diode	ES1J	ON	1 kV/1 A/SMA	SMA		
32	3	D8, D9, D12	DIODE	MMSD4148T1G	ON	100 V/200 mA	SOD123		
33	2	D5, D7	Diode	RS1D	ON	1 kV/1 A/SMA	SMA		
34	1	D1	Diode bridge	GBU8K	ON	8 A Bridge Rectifier	Micro-DIP		
35	1	D14	DIODE	MUR160	ON	Ultra-Fast Recovery/ 600 V/1 A	Axial Lead-2		
36	1	U1	Controller	NCL30125B2	ON	Two switch forward Controller			
37	1	U4	Optical coupler	FODM1007	ON	Optical coupler	LSOP4		

Table 5. BILL OF MATERIALS (continued)

Item	Qty	Reference	Туре	Part Name	MFR	Value	Package	Description
38	1	U3	Programmable Precision Reference	NCP431	ON	NCP431	SOT-23	
39	1	D11	Zener	MMSZ22T1G	ON	NC	SOD123	
40	5	M3 screw	M3 screw	Std	Std	M3 screw		For D1, Q1, Q2, D13, D15 assemble to heatsink
41	2	Isolation pads		Std	Std		TO-220	For D13, D15 assemble to heatsink
42	2	Insulating rubber particles		Std	Std			For D13, D15 assemble to heatsink

References

ON Semiconductor datasheet for NCL30125.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

The evaluation board/kit (research and development board/kit) (hereinafter the "board") is not a finished product and is not available for sale to consumers. The board is only intended for research, development, demonstration and evaluation purposes and will only be used in laboratory/development areas by persons with an engineering/technical training and familiar with the risks associated with handling electrical/mechanical components, systems and subsystems. This person assumes full responsibility/liability for proper and safe handling. Any other use, resale or redistribution for any other purpose is strictly prohibited.

THE BOARD IS PROVIDED BY ONSEMI TO YOU "AS IS" AND WITHOUT ANY REPRESENTATIONS OR WARRANTIES WHATSOEVER. WITHOUT LIMITING THE FOREGOING, ONSEMI (AND ITS LICENSORS/SUPPLIERS) HEREBY DISCLAIMS ANY AND ALL REPRESENTATIONS AND WARRANTIES IN RELATION TO THE BOARD, ANY MODIFICATIONS, OR THIS AGREEMENT, WHETHER EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING WITHOUT LIMITATION ANY AND ALL REPRESENTATIONS AND WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, AND THOSE ARISING FROM A COURSE OF DEALING, TRADE USAGE, TRADE CUSTOM OR TRADE PRACTICE.

onsemi reserves the right to make changes without further notice to any board.

You are responsible for determining whether the board will be suitable for your intended use or application or will achieve your intended results. Prior to using or distributing any systems that have been evaluated, designed or tested using the board, you agree to test and validate your design to confirm the functionality for your application. Any technical, applications or design information or advice, quality characterization, reliability data or other services provided by **onsemi** shall not constitute any representation or warranty by **onsemi**, and no additional obligations or liabilities shall arise from **onsemi** having provided such information or services.

onsemi products including the boards are not designed, intended, or authorized for use in life support systems, or any FDA Class 3 medical devices or medical devices with a similar or equivalent classification in a foreign jurisdiction, or any devices intended for implantation in the human body. You agree to indemnify, defend and hold harmless onsemi, its directors, officers, employees, representatives, agents, subsidiaries, affiliates, distributors, and assigns, against any and all liabilities, losses, costs, damages, judgments, and expenses, arising out of any claim, demand, investigation, lawsuit, regulatory action or cause of action arising out of or associated with any unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of any products and/or the board.

This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and may not meet the technical requirements of these or other related directives.

FCC WARNING – This evaluation board/kit is intended for use for engineering development, demonstration, or evaluation purposes only and is not considered by **onsemi** to be a finished end product fit for general consumer use. It may generate, use, or radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment may cause interference with radio communications, in which case the user shall be responsible, at its expense, to take whatever measures may be required to correct this interference.

onsemi does not convey any license under its patent rights nor the rights of others.

LIMITATIONS OF LIABILITY: **onsemi** shall not be liable for any special, consequential, inclidental, indirect or punitive damages, including, but not limited to the costs of requalification, delay, loss of profits or goodwill, arising out of or in connection with the board, even if **onsemi** is advised of the possibility of such damages. In no event shall **onsemi**'s aggregate liability from any obligation arising out of or in connection with the board, under any theory of liability, exceed the purchase price paid for the board, if any.

The board is provided to you subject to the license and other terms per **onsemi**'s standard terms and conditions of sale. For more information and documentation, please visit www.onsemi.com.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales