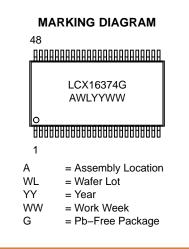
onsemi

Low-Voltage CMOS 16-Bit D-Type Flip-Flop

With 5 V–Tolerant Inputs and Outputs (3–State, Non–Inverting)

MC74LCX16374

The MC74LCX16374 is a high performance, non-inverting 16-bit D-type flip-flop operating from a 2.3 V to 3.6 V supply. The device is byte controlled. Each byte has separate Output Enable and Clock Pulse inputs. These control pins can be tied together for full 16-bit operation. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_I specification of 5.5 V allows MC74LCX16374 inputs to be safely driven from 5.0 V devices.


The MC74LCX16374 consists of 16 edge-triggered flip-flops with individual D-type inputs and 5.0 V-tolerant 3-state true outputs. The buffered clocks (CPn) and buffered Output Enables (\overline{OEn}) are common to all flip-flops within the respective byte. The flip-flops will store the state of individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the \overline{OE} LOW, the contents of the flip-flops are available at the outputs. When the \overline{OE} is HIGH, the outputs go to the high impedance state. The \overline{OE} input level does not affect the operation of the flip-flops.

Features

- Designed for 2.3 to 3.6 V V_{CC} Operation
- 6.2 ns Maximum t_{pd}
- 5.0 V Tolerant Interface Capability With 5.0 V TTL Logic
- Supports Live Insertion and Withdrawal
- I_{OFF} Specification Guarantees High Impedance When $V_{CC} = 0 V$
- LVTTL Compatible
- LVCMOS Compatible
- 24 mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States (20 μA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance:
 - Human Body Model >2000 V
 - ♦ Machine Model >200 V
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

CASE 1201

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet. NOTE: Some of the devices on this data sheet have been **DISCONTINUED**. Please refer to the table on page 3.

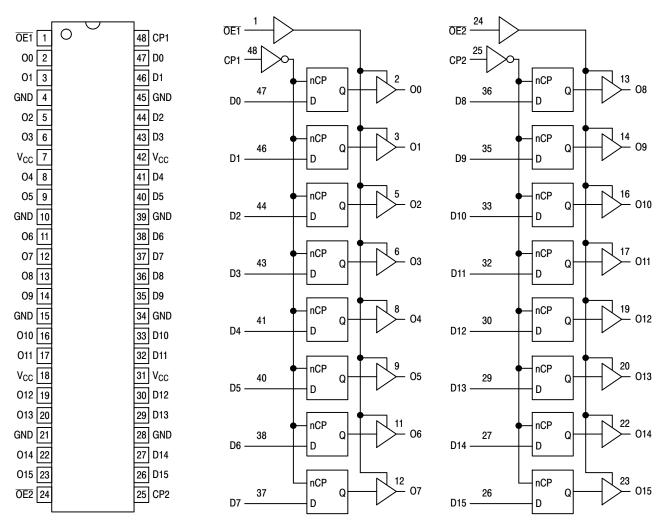


Figure 1. Pinout: 48–Lead (Top View)

Figure 2. Logic Diagram

Table	1.	PIN	NA	MES
14610				

Pins	Function
OEn	Output Enable Inputs
CPn	Clock Pulse Inputs
D0-D15	Inputs
O0–O15	Outputs

TRUTH TABLE

	Inputs		Outputs	Inputs			Outputs
CP1	OE1	D0:7	O0:7	CP2	OE2	D8:15	O8:15
\uparrow	L	Н	Н	1	L	Н	Н
\uparrow	L	L	L	1	L	L	L
L	L	Х	O0	L	L	Х	O0
Х	Н	Х	Z	Х	Н	Х	Z

H = High Voltage Level

L = Low Voltage Level

Z = High Impedance State

 \uparrow = Low–to–High Transition

X = High or Low Voltage Level and Transitions Are Acceptable; for I_{CC} reasons, DO NOT FLOAT Inputs

ORDERING INFORMATION

Device	Package	Shipping [†]
M74LCX16374DTR2G	TSSOP–48 (Pb–Free)	2500 / Tape & Reel

DISCONTINUED (Note 1)

MC74LCX16374DTG	TSSOP-48	39 Units / Rail
	(Pb-Free)	

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

1. **DISCONTINUED:** This device is not recommended for new design. Please contact your **onsemi** representative for information. The most current information on this device may be available on <u>www.onsemi.com</u>.

MAXIMUM RATINGS

Symbol	Parameter	Value	Condition	Units
V _{CC}	DC Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage	$-0.5 \le V_{I} \le +7.0$		V
Vo	DC Output Voltage	$-0.5 \le V_O \le +7.0$	Output in 3–State	V
		$-0.5 \leq V_O \leq V_{CC} + 0.5$	Output in HIGH or LOW State. (Note 2)	V
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
		+50	V _O > V _{CC}	mA
Ι _Ο	DC Output Source/Sink Current	±50		mA
I _{CC}	DC Supply Current Per Supply Pin	±100		mA
I _{GND}	DC Ground Current Per Ground Pin	±100		mA
T _{STG}	Storage Temperature Range	-65 to +150		°C
MSL	Moisture Sensitivity		Level 1	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

2. I_O absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Тур	Max	Units
V _{CC}	Supply Voltage Operating Data Retention Only	2.0 1.5	2.5, 3.3 2.5, 3.3	3.6 3.6	V
VI	Input Voltage	0		5.5	V
V _O	Output Voltage (HIGH or LOW State) (3–State)	0 0		V _{CC} 5.5	V
I _{OH}				-24 -12 -8	mA
I _{OL}	$ LOW Level Output Current \\ V_{CC} = 3.0 V - 3.6 V \\ V_{CC} = 2.7 V - 3.0 V \\ V_{CC} = 2.3 V - 2.7 V $			+24 +12 +8	mA
T _A	Operating Free–Air Temperature	-55		+125	°C
$\Delta t / \Delta V$	Input Transition Rise or Fall Rate, V _{IN} from 0.8 V to 2.0 V, V _{CC} = 3.0 V	0		10	ns/V

DC ELECTRICAL CHARACTERISTICS

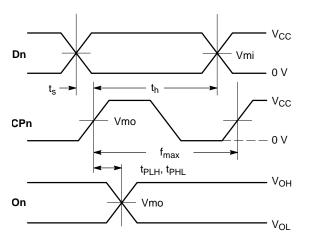
			T _A = −55°C		
Symbol	Characteristic	Condition	Min	Max	Units
VIH	HIGH Level Input Voltage (Note 3)	$2.3 \text{ V} \leq \text{V}_{\text{CC}} \leq 2.7 \text{ V}$	1.7		V
		$2.7 \text{ V} \leq \text{V}_{\text{CC}} \leq 3.6 \text{ V}$	2.0		1
VIL	LOW Level Input Voltage (Note 3)	$2.3 \text{ V} \leq \text{V}_{\text{CC}} \leq 2.7 \text{ V}$		0.7	V
		$2.7 \text{ V} \leq \text{V}_{\text{CC}} \leq 3.6 \text{ V}$		0.8	1
V _{OH}	HIGH Level Output Voltage	2.3 V \leq V_{CC} \leq 3.6 V; I_{OL} = 100 μA	V _{CC} – 0.2		V
		$V_{CC} = 2.3 \text{ V}; \text{ I}_{OH} = -8 \text{ mA}$	1.8		1
		$V_{CC} = 2.7 \text{ V}; I_{OH} = -12 \text{ mA}$	2.2		1
		$V_{CC} = 3.0 \text{ V}; \text{ I}_{OH} = -18 \text{ mA}$	2.4		1
		$V_{CC} = 3.0 \text{ V}; \text{ I}_{OH} = -24 \text{ mA}$	2.2		1
V _{OL}	LOW Level Output Voltage	2.3 V \leq V_{CC} \leq 3.6 V; I_{OL} = 100 μA		0.2	V
		V _{CC} = 2.3 V; I _{OL} = 8 mA		0.6	1
		V _{CC} = 2.7 V; I _{OL} = 12 mA		0.4	1
		V _{CC} = 3.0 V; I _{OL} = 16 mA		0.4	1
		V _{CC} = 3.0 V; I _{OL} = 24 mA		0.55	1
I _{OZ}	3-State Output Current	$V_{CC} = 3.6 \text{ V}, \text{ V}_{\text{IN}} = \text{V}_{\text{IH}} \text{ or } \text{V}_{\text{IL}}, \\ \text{V}_{\text{OUT}} = 0 \text{ to } 5.5 \text{ V}$		±5	μΑ
I _{OFF}	Power Off Leakage Current	V_{CC} = 0, V_{IN} = 5.5 V or V_{OUT} = 5.5 V		10	μΑ
I _{IN}	Input Leakage Current	V_{CC} = 3.6 V, V_{IN} = 5.5 V or GND		±5	μA
I _{CC}	Quiescent Supply Current	V_{CC} = 3.6 V, V_{IN} = 5.5 V or GND		10	μΑ
ΔI_{CC}	Increase in I _{CC} per Input	$2.3 \leq V_{CC} \leq 3.6$ V; V_{IH} = V_{CC} – 0.6 V		500	μΑ

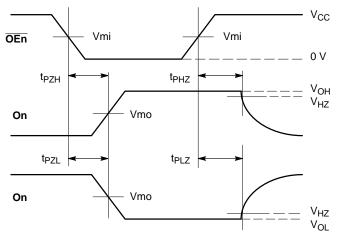
3. These values of V_I are used to test DC electrical characteristics only.

AC CHARACTERISTICS (t_R = t_F = 2.5 ns; C_L = 50 pF; R_L = 500 Ω)

			T _A = −55°C to +125°C						
			V _{CC} = 3.3 C _L = 5	V ± 0.3 V 50 pF	V _{CC} = C _L =		V _{CC} = 2.5 C _L = 3	V ± 0.2 V 30 pF	
Symbol	Parameter	Waveform	Min	Max	Min	Max	Min	Max	Units
f _{max}	Clock Pulse Frequency	1	170						MHz
t _{PLH} t _{PHL}	Propagation Delay CP to O _n	1	1.5 1.5	6.2 6.2	1.5 1.5	6.5 6.5	1.5 1.5	7.4 7.4	ns
t _{PZH} t _{PZL}	Output Enable Time to High and Low Level	2	1.5 1.5	6.1 6.1	1.5 1.5	6.3 6.3	1.5 1.5	7.9 7.9	ns
t _{PHZ} t _{PLZ}	Output Disable Time From High and Low Level	2	1.5 1.5	6.0 6.0	1.5 1.5	6.2 6.2	1.5 1.5	7.2 7.2	ns
t _s	Setup Time, HIGH or LOW D ⁿ to CP	1	2.5		2.5		3.0		ns
t _h	Hold Time, HIGH or LOW D ⁿ to CP	1	1.5		1.5		2.0		ns
t _w	CP Pulse Width, HIGH	3	3.0		3.0		3.5		ns
t _{OSHL} t _{OSLH}	Output-to-Output Skew (Note 4)			1.0 1.0					ns

4. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.

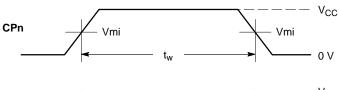

DYNAMIC SWITCHING CHARACTERISTICS

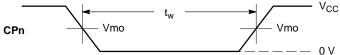

			T _A = +25°C			
Symbol	Characteristic	Condition	Min	Тур	Max	Units
V _{OLP}	Dynamic LOW Peak Voltage (Note 5)			0.8 0.6		V
V _{OLV}	Dynamic LOW Valley Voltage (Note 5)			-0.8 -0.6		V

5. Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Units
C _{IN}	Input Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	7	pF
C _{OUT}	Output Capacitance	V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	10 MHz, V_{CC} = 3.3 V, V_I = 0 V or V_{CC}	20	pF

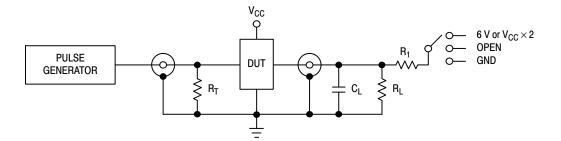




WAVEFORM 1 – PROPAGATION DELAYS, SETUP AND HOLD TIMES t_{R} = t_{F} = 2.5 ns, 10% to 90%; f = 1 MHz; t_{W} = 500 ns

WAVEFORM 2 - OUTPUT ENABLE AND DISABLE TIMES

 t_{R} = t_{F} = 2.5 ns, 10% to 90%; f = 1 MHz; t_{W} = 500 ns



 $\label{eq:WAVEFORM 3-PULSE WIDTH} \begin{array}{l} t_R = t_F = 2.5 \text{ ns (or fast as required) from 10\% to 90\%;} \\ \text{Output requirements: } V_{OL} \leq 0.8 \text{ V}, \ V_{OH} \geq 2.0 \text{ V} \end{array}$

Table 2. AC WAVEFORMS

	V _{CC}					
Symbol	3.3 V \pm 0.3 V	2.7 V	2.5 V \pm 0.2 V			
Vmi	1.5 V	1.5 V	V _{CC} / 2			
Vmo	1.5 V	1.5 V	V _{CC} / 2			
V _{HZ}	V _{OL} + 0.3 V	V _{OL} + 0.3 V	V _{OL} + 0.15 V			
V _{LZ}	V _{OH} – 0.3 V	V _{OH} – 0.3 V	V _{OH} – 0.15 V			

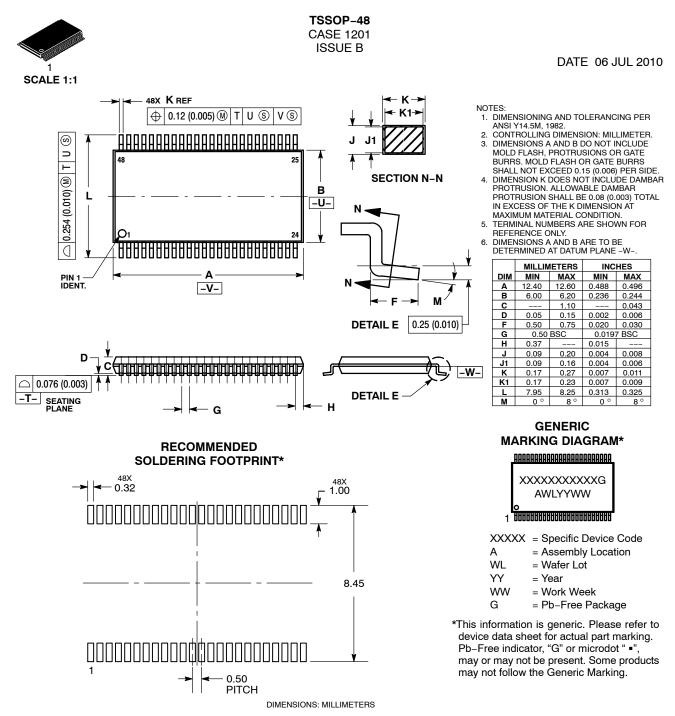


Table 3. TEST CIRCUIT

Test	Switch
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	6 V at V _{CC} = 3.3 ± 0.3 V 6 V at V _{CC} = 2.5 ± 0.2 V
Open Collector/Drain t_{PLH} and t_{PHL}	6 V
t _{PZH} , t _{PHZ}	GND

 $\begin{array}{l} C_L = 50 \ \text{pF} \ \text{at} \ V_{CC} = \ 3.3 \pm 0.3 \ \text{V} \ \text{or equivalent} \ (\text{includes jig and probe capacitance}) \\ C_L = \ 30 \ \text{pF} \ \text{at} \ V_{CC} = \ 2.5 \pm 0.2 \ \text{V} \ \text{or equivalent} \ (\text{includes jig and probe capacitance}) \\ R_L = \ R_1 = \ 500 \ \Omega \ \text{or equivalent} \\ R_T = \ Z_{OUT} \ \text{of pulse generator} \ (\text{typically 50 } \Omega) \end{array}$

<u>Onsemi</u>

*For additional information on our Pb–Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98ASH70297A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TSSOP-48		PAGE 1 OF 1
onsemi and ONSEMi, are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves			

the right to make changes without further notice to any products herein. **onsemi** makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>