
Test Procedure for the NCP1342PD65WGEVB Evaluation Board

Figure 1: Test Setup

Table 1: Required Equipment

*Chroma 61604 AC	*Yokogawa WT-210	*Fluke 87V True RMS
Power Source	Power Analyzer	Multimeter
*Fluke 87V True RMS	*Chroma 6314	NCP1342PD65WGEVB
Multimeter	Electronic Load	Evaluation Board
USB-PD Programming		USB TYPE-C Cable
Board		

*Equivalent test equipment may be substituted.

Test Procedure:

- 1. Connect the Programming Board to the Eval board with the USB Type-C cable.
- 2. Connect the electronic load to the output of the load board.
- 3. Connect one of the multimeters in series with the output and load and set it to measure current.
- 4. Connect the second multimeter to the output and set it to measure voltage.
- 5. Connect the ac power source and power analyzer to the terminals labeled "Input". Set the current compliance limit to "Auto".
- 6. Set the ac power source to 90 Vac / 60 Hz.
- 7. Turn the AC source on.
- 8. Check for output voltage. If none, turn off the ac power source, reverse the polarity of the USB Type-C cable at the eval board end and go back to step 6.
- 9. Press the button on the programming board until the output voltage is 20V.
- 10. Remove the jumper on the programming board.
- 11. Set the electronic load to 3 A.
- 12. Allow the board to warm up for approximately 30 minutes.
- 13. Measure the output voltage (V_{OUT}) using the corresponding multimeter. Verify it is within the limits of Table 2.
- 14. Measure input power (P_{IN}) using the power analyzer.
- 15. Measure V_{OUT} and I_{OUT} using the corresponding multimeters.
- 16. Calculate efficiency (η) using the equation: $\eta = \frac{I_{OUT} \cdot V_{OUT}}{P_{IN}} \cdot 100\%$
- 17. Turn off the ac source.
- 18. Replace the jumper on the programming board.
- 19. Repeat steps 7-18 with the programming board button pressed until the output is 5 V. Use a 1 minute warm-up before each test instead of 30 minutes. Verify the results are within the limits of Table 2.
- 20. Repeat steps 6-19 with the ac source set to 265 Vac / 50 Hz. Verify the results are within the limits of Table 2.
- 21. Since high voltage will be present on the bulk capacitor (C1, C2) after the voltage is removed, use a dc voltmeter to verify the voltage is less than 30 V before continuing.
- 22. Disconnect the ac source.
- 23. Disconnect the power analyzer.
- 24. Disconnect the electronic load.
- 25. Disconnect the load board and type-c cable.
- 26. Disconnect both multimeters.
- 27. End of test.

Table 2: Desired Results

Table 2: Desired Results		
	$\mathbf{V}_{\mathrm{OUT}} = 20 \pm 0.25 \; \mathbf{V}$	
For 90 Vac / 60 Hz input,	$\eta > 92\%$	
	$\mathbf{V}_{\mathrm{OUT}} = 15 \pm 0.25 \; \mathbf{V}$	
	$\eta > 92\%$	
	$\mathbf{V}_{\mathrm{OUT}} = 12 \pm 0.25 \; \mathbf{V}$	
	$\eta > 92\%$	
	$V_{OUT} = 9 \pm 0.25 \text{ V}$	
	$\eta > 91\%$	
	$V_{OUT} = 5 \pm 0.25 \text{ V}$	
	$\eta > 90.5\%$	
For 265 Vac / 50 Hz input,	$\mathbf{V}_{\mathrm{OUT}} = 20 \pm 0.25 \; \mathbf{V}$	
	$\eta > 93\%$	
	$\mathbf{V}_{\mathrm{OUT}} = 15 \pm 0.25 \mathrm{V}$	
	$\eta > 93\%$	
	$V_{OUT} = 12 \pm 0.25 \text{ V}$	
	$\eta > 92.5\%$	
	$V_{OUT} = 9 \pm 0.25 \text{ V}$	
	η > 91%	
	$V_{OUT} = 5 \pm 0.25 \text{ V}$	
	η > 89%	