Product Preview

Dual 500 mA / 250 mA LDO for Camera Modules, Low Iq, Very Low Dropout, Ultra Low Noise

The NCP156 is Dual Output Linear Voltage Regulator optimized for camera module application. The device offers unique combination of High Current Low Voltage Bias Rail Topology for supplying digital block and very precise second output for powering analog sensor block. This combination allows achieving the best performance and power efficiency.

Features

- High Current Bias Rail Topology for OUT1
- High PSRR, Ultra Low Noise LDO for OUT2
- Output voltage range: OUT1 0.8 V to 1.8 V (Factory trimmed) OUT2 1.8 V to 3.6 V
- Low I_Q of typ. 100 μA
- Slow V_{OUT} Slew Rate for Camera Modules (Optional) typ. ≤30 mV/ms
- Ultra–Low Dropout: OUT1 typ. 140 mV @ 1.1 V/500 mA OUT2 typ. 95 mV @ 2.8 V/250 mA
- ±1% Typical Accuracy
- High PSRR: OUT1 typ. 70 dB at 1 kHz OUT2 typ. 92 dB at 1 kHz
- Thermal Shutdown and Current Limit Protections
- Stable with a Small Ceramic Capacitor
- Available WLCSP-6 1.2x0.8 mm Package
- Active Output Discharge for Fast Output Turn-Off
- These are Pb-free Devices

Typical Applications

- Camera Modules
- Smartphones, Tablets

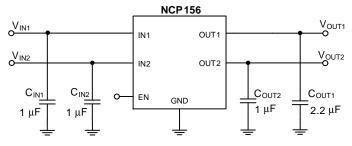
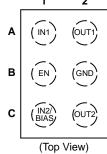


Figure 1. Typical Application Schematic

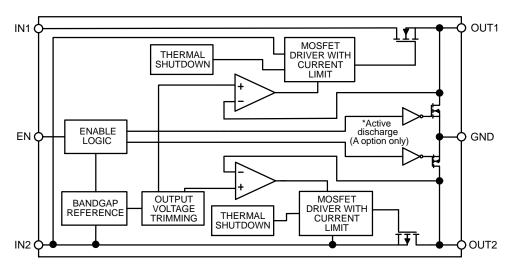
This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

ON Semiconductor™

www.onsemi.com


MARKING DIAGRAM

WLCSP6, 1.2x0.8 CASE 567MV


- XX = Specific Device Code
- M = Month Code
- = Pb–Free Package

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page TBD of this data sheet.

Table 1. PIN FUNCTION DESCRIPTION

Pin No.	Pin Name	Description
A1	IN1	Output 1 – Power Supply pin
A2	OUT1	Regulated Output 1 Voltage pin
B1	EN	Applying V_{EN} < 0.4 V disables the regulator; Pulling V_{EN} > 0.9 V enables both voltage outputs.
B2	GND	Common ground connection
C1	IN2	Output 2 – Power Supply pin, Output 1 – Control Supply pin
C2	OUT2	Regulated Output 2 Voltage pin

Table 2. THERMAL CHARACTERISTICS (Note 1)

Rating	Symbol	Value	Unit
Thermal Characteristics, WLCSP6 1.2x0.8mm, Thermal Resistance, Junction-to-Air Thermal Characterization Parameter, Junction-to-Board	θJA ΨJB	TBD TBD	°C/W

1. Single component mounted on 1 oz, FR4 PCB with 645mm2 Cu area

Table 3. ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input Voltage 1 (Note 2)	V _{IN1}	–0.3 to 6	V
Input Voltage 2 (Note 2)	V _{IN2}	–0.3 to 6	V
Output Voltage 1	V _{OUT1}	–0.3 to V _{IN1} + 0.3	V
Output Voltage 2	V _{OUT2}	–0.3 to V _{IN2} + 0.3	V
Enable Input	V _{EN}	V _{EN} -0.3 to 6	
Output Short Circuit Duration	t _{SC}	Indefinite	S
Maximum Junction Temperature	T _{J(MAX)}	150	°C
Storage Temperature	T _{STG}	T _{STG} –55 to 125	
ESD Capability, Human Body Model (Note 3)	ESD _{HBM}	ESD _{HBM} 2000	
ESD Capability, Machine Model (Note 3)	ESD _{MM}	200	V
ESD Capability, Charged Device Model (Note 3)	ESD _{CDM}	1000	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

2. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.

3. This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per AEC–Q100–002 (EIA/JESD22–A114)

ESD Machine Model tested per AEC-Q100-003 (EIA/JESD22-A115)

ESD Charged Device Model tested per EIA/JESD22-C101, Field Induced Charge Model

Latchup Current Maximum Rating tested per JEDEC standard: JESD78.

Table 4. ELECTRICAL CHARACTERISTICS $-40^{\circ}C \le T_J \le 125^{\circ}C$; $V_{IN1} = V_{OUT1(NOM)} + 0.3 \text{ V}$, $V_{IN2} = 2.7 \text{ V}$ or $(V_{OUT1} + 1.6 \text{ V})$ or
V _{OUT2(NOM)} + 0.3 V whichever is greater, I _{OUT1} = I _{OUT2} = 1 mÅ, V _{EN} = 1 V, unless otherwise noted. C _{IN1} = C _{IN2} = 1 µF, C _{OUT1} = 2.2 µF,
$C_{OUT2} = 1 \ \mu$ F. Typical values are at T _J = +25°C. Min/Max values are for -40°C \leq T _J \leq 125°C unless otherwise noted.

Parameter		Test Condi	itions	Symbol	Min	Тур	Max	Unit
Operating Input Voltage Range				V _{IN1}	V _{OUT1} + V _{DO}		5.5	V
				V _{IN2}	(V _{OUT1} + 1.5) ≥ 2.4		5.5	
Output Voltage Accuracy	$T_{\rm J} = 25^{\circ}{\rm C}$			V _{OUT1}		±1		%
				V _{OUT2}				
Output Voltage Accuracy	$V_{OUT1(NOM)}$ + 0.3 V \leq V_{IN1} \leq V_{OUT1(NOM)} + 1.0 V, V_{OUT2} = 2.7 V or (V_{OUT1(NOM)}) + 1.6 V), whichever is greater, 1 mA < I_{OUT1} < 500 mA			V _{OUT1}	-1.5		+1.5	%
	$V_{IN2} = (V \ 0 \ mA \le I_C)$	OUT2(NOM) + 1 V) to 0UT2 ≤ 250 mA	o 5.5 V	V _{OUT2}	-2		+2	
Line Regulation	V _{OUT1}	V _{OUT1(NOM)} + 0.3	$V \le V_{IN1} \le 5.5 V$	Line _{REG}		0.01		%/V
	V _{OUT2}	V _{OUT2(NOM)} + 0.3	3 V ≤ V _{IN2} ≤ 5.5 V			0.02		1
	V _{IN2} to V _{OUT1}	(2.7 V or (V _{OUT1(} ever is greater) <	_{NOM)} + 1.6 V), which- < V _{IN2} < 5.5 V			0.01		
Load Regulation	OUT1	$I_{OUT1} = 1 \text{ mA to 5}$	500 mA	Load _{REG}		1.5		mV
	OUT2	I _{OUT2} = 1 mA to 250 mA				1.5		1
Dropout Voltage	OUT1	I _{OUT1} = 500 mA		V _{DO}		140	270	mV
(Note 5)	OUT2	I _{OUT2} = 250 mA	V _{OUT2(NOM)} = 2.8 V			95	160	
			V _{OUT2(NOM)} = 3.3 V			80	145	
V_{IN2} to V_{OUT1} Dropout Voltage	I _{OUT1} = 5	00 mA, V _{IN2} = V _{IN2}	(Notes 5, 6)	V _{DO(IN2)}		1.1	1.5	V
Output Current Limit	OUT1 V _{OUT} = 90% V _{OUT(NOM)}		I _{CL}	550	800	1100	mA	
	OUT2				250	700		1
Quiescent Current IN1	$I_{OUT1} = 0$	mA		I _{Q1}		10	20	μΑ
Quiescent Current IN2	$I_{OUT2} = 0$	mA		I _{Q2}		90	130	1
Disable Current	V_{IN1} Pin $V_{EN1} \le 0.4$ V		I _{VIN1(DIS)}		0.5	1	μΑ	
	V_{IN2} Pin					0.5	1	
EN Pin Threshold Voltage	EN Input Voltage "H"		V _{EN(H)}	0.9			V	
	EN Input	Voltage "L"		V _{EN(L)}			0.4	
EN Pull Down Current	$V_{EN} = 5.5$	5 V		I _{EN}		0.3	2	μΑ
Turn–On Delay	OUT1	From assertion of	f V _{EN} to raising V _{OUT}	t _{DELAY}		200		μs
	OUT2					130		1
V _{OUT} Slew Rate (Note 7)	Normal			V _{OUT1}		100		mV/μs
				V _{OUT2}		200		1
	Slow			V _{OUT1}		15		1
				V _{OUT2}		30		
Power Supply Rejection Ratio	V _{IN1} to V ₀ V _{OUT} +0.		_{JT1} = 150 mA, V _{IN1} ≥	PSRR(V _{IN1})		70		dB
	V _{IN2} to V ₀ V _{OUT} +0.	_{OUT2} , f = 1 kHz, I _{OL} 5 V	_{JT2} = 10 mA, V _{IN2} ≥	PSRR(V _{IN2})		92		1
	V _{IN2} to V ₀ V _{OUT1} +0		J_{T1} = 150 mA, $V_{IN1} \ge$	PSRR(IN2 to OUT1)		80		1

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Performance may not be indicated by the Electrical Characteristics in operated under different conditions.
Performance guaranteed over the indicated operating temperature range by design and/or characterization. Production tested at TA = 25°C. Low duty cycle pulse techniques are used during the testing to maintain the junction temperature as close to ambient as possible.
Dropout voltage is characterized when VouT falls 3% below VOUT(NOM).
For output 1 voltages below 0.9 V, V_{IN2} to V_{OUT1} dropout voltage does not apply due to a minimum V_{IN2} operating voltage of 2.4 V.
Refer to Table 6 for output slew rate configuration.

Table 4. ELECTRICAL CHARACTERISTICS $-40^{\circ}C \le T_J \le 125^{\circ}C$; $V_{IN1} = V_{OUT1(NOM)} + 0.3 \text{ V}$, $V_{IN2} = 2.7 \text{ V}$ or $(V_{OUT1} + 1.6 \text{ V})$ or
$V_{OUT2(NOM)}$ + 0.3 V whichever is greater, I_{OUT1} = I_{OUT2} = 1 mA, V_{EN} = 1 V, unless otherwise noted. C_{IN1} = C_{IN2} = 1 μ F, C_{OUT1} = 2.2 μ F,
$C_{OUT2} = 1 \ \mu$ F. Typical values are at T _J = +25°C. Min/Max values are for -40°C \leq T _J \leq 125°C unless otherwise noted.

Parameter		Test Conditions	Symbol	Min	Тур	Max	Unit
Output Noise Voltage		V _N		40		μVRMS	
	OUT2	f = 10 Hz to 100 kHz			8.5		
Thermal Shutdown Threshold	Temperatu	ire increasing	T _{SDL}		160		°C
Temperature decreasing		T _{SDH}		140			
Output Discharge Pull-Down	$V_{EN} \le 0.4$	V	R _{DISCH}		150		Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Performance guaranteed over the indicated operating temperature range by design and/or characterization. Production tested at TA = 25°C. Low duty cycle pulse techniques are used during the testing to maintain the junction temperature as close to ambient as possible. 5. Dropout voltage is characterized when VOUT falls 3% below VOUT(NOM).

6. For output 1 voltages below 0.9 V, V_{IN2} to V_{OUT1} dropout voltage does not apply due to a minimum V_{IN2} operating voltage of 2.4 V. 7. Refer to Table 6 for output slew rate configuration.

APPLICATIONS INFORMATION

The NCP156 device offers various combinations of active discharge feature and VOUT slew rate speed for each output channel. The OPN contains two letters behind product name

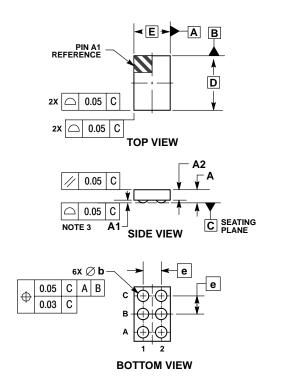
Table 5. ACTIVE DISCHARGE

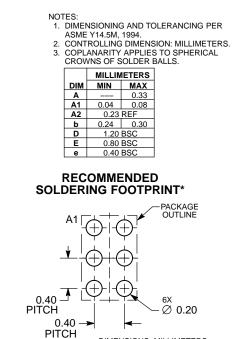
Act. Discharge (x = ON)	OUT1	OUT2
A	х	х
В		
С	х	
D		х

which are dedicated for Active discharge and Slew rate speed. Possible combinations with corresponding letters are explained below.

Table 6. VOUT SLEW RATE SPEED

Slew rate (x = Slower)	OUT1	OUT2
А	х	х
В		
С	х	
D		x


ORDERING INFORMATION


Device	Marking	Voltage Option OUT1 / OUT2	Active Discharge OUT1 / OUT2	Vout Slew Rate OUT1 / OUT2	Package	Shipping [†]
NCP156AAFCT120180T2G	DA	1.2 V / 2.8 V	Yes / Yes	Slow / Slow	WLCSP6	TBD
NCP156BBFCT120180T2G	TBD	1.2 V / 2.8 V	No / No	Normal / Normal	(Pb-Free)	IDU

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

WLCSP6, 1.20x0.80 CASE 567MV ISSUE A

DIMENSIONS: MILLIMETERS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor hard use as against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or de

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative