

Test Procedure for the NCV7471B5V1GEVB Evaluation Board

Required Equipment

- Oscilloscope with digital inputs
- Bench Power Supply
- Voltmeter
- Signal Generator (SPI capable)
- NCV7471B Evaluation Board

Test procedure Step 1 (Power-up sequence, Normal mode, Boost-buck operation):

- 1. Connect the setup as shown above, but without VOUT load; SWDM and CFG soldering straps have to be in "+" position
- 2. Set VS_VOUT2 to "VMID" position
- 3. Apply an input voltage, $V_{BAT} = 12 \text{ V}$, current capability min. 1.5 A
- 4. Check VOUT, LIN1, LIN2, CANH, CANL, RxDL1, RxDL2, RxDC, RSTN, INTN and UVN VOUT State
- Check I_{BAT}.

¬Table 1: Desired Results

•	
$I_{BAT} < 20 \text{ mA}$	
VOUT = ON	
LIN1/2 = RECESSIVE	
CANH, CANL = RECESSIVE	
RxDL1/2 = HIGH	
RxDC = HIGH	
RSTN = HIGH (LED_RSTN = off)	
INTN = HIGH (LED_INTN = off)	
UVN_VOUT = HIGH (LED_UVN = off)	

Test procedure Step 2 (Boost-buck converter function):

- 1. Connect load to VOUT (250 mA, depending on assembly option)
- 2. Alternate VBAT voltage in full operating range (5 28 V)
- 3. Check VOUT, RSTN, INTN and UVN VOUT State
- Check I_{BAT}.
- 5. Set input voltage to initial value, VBAT = 12 V

Table 2: Desired Results

IBAT should decrease with increasing VBAT
VOUT ON
RSTN = HIGH (LED_RSTN = off)
INTN = HIGH (LED_INTN = off)
UVN_VOUT = HIGH (LED_UVN = off) for VOUT = 5 V
$UVN_VOUT = LOW (LED_UVN = on) $ for $VOUT < 4.65 $ V $(Typ.)$
VMID > 11 V (check on the test point)

Test procedure Step 3 (LIN1/2 Transmit in Normal mode):

- 1. Set TxDL1/2 to LOW, wait < 6 ms, set TxDL1/2 HIGH (Generate LIN Dominant state); can be repeated with 50% duty cycle
- Observe LIN1/2 and RxDL1/2. Start observation with TxDL1/2 falling edge.

Table 3: Desired Results

LIN1/2 = Contain one Dominant pattern	
RxDL1/2 = Contain one Dominant pattern	

Test procedure Step 4 (CAN Transmit in Normal mode):

- Set TxDC to LOW, wait < 300 us, set TxDC HIGH (Generate CAN Dominant state); can be repeated with 50% duty cycle
- 2. Observe CANH, CANL and RxDC. Start observation with TxDC falling edge.

Table 4: Desired Results

CANH, CANL = Contain one Dominant pattern	
RxDC = Contains one Dominant pattern	

Test procedure Step 5 (VOUT2 LDO function, SPI function):

- 1. Send SPI command to activate VOUT2 regulator (SPI bit enVOUT2=1 in CONTROL1 register; SPI frame = 0x2400)
- Read SPI data from CONTROL1 register (send SPI frame = 0x3000)
 Connect load to VOUT2 (50 mA)
 Check VOUT2 State

Table 5: Desired Results

CONTROL1 = 0x3400
VOUT2 = ON

ON Semiconductor®

Test procedure Step 6 (Transition to Sleep mode):

- 1. Leave TxDL1, TxDL2 and TxDC floating (to simulate a microcontroller without power supply being connected to digital pins)
- Send SPI Sleep command (SPI frame = 0x0600)
- Disconnect SPI digital pins (to simulate a microcontroller without power supply being connected to digital pins)

 Check IBAT, VOUT, VOUT2, RSTN, INTN, UVN_VOUT State. Caution should be taken with oscilloscope digital probes resistance which could have influence on overall IBAT current.

Table 6: Desired Results

I _{BAT} = Typ. 300 μA (incl. R_SWDM and R_CFG pull-up current)	
VOUT = OFF	
RSTN = LOW (LED_RSTN = off, due to VOUT off)	
INTN = LOW (LED_INTN = off, due to VOUT off)	
UVN_VOUT = LOW (LED_UVN = off, due to VOUT off)	

Test procedure Step 7 (LIN1/2 Wakeup):

- 1. In Sleep, generate Remote LIN1 pattern: Set Gen HIGH, wait > 150 μ s, set Gen LOW
- 2. Check VOUT, RxDL1/2, RSTN, INTN State

Table 7: Desired Results

VOUT = ON	
RxDL1 = LOW – Signaling Wakeup source	
RxDL2 = HIGH	
RSTN = HIGH (LED_RSTN = off)	
INTN = 1 ms HIGH / 5 ms LOW pulses - Signaling Wakeup (LED_INTN = on)	
UVN VOUT = HIGH (LED UVN = off)	

Test procedure Step 8 (Fail-safe mode, FSO1 functionality):

- 1. FSO1 soldering strap has to be connected
- 2. Short VOUT, wait > 1.65 s
- 3. Check VOUT, RSTN, FSO1 State
- 4. Remove VOUT short

VOUT = OFF
RSTN = LOW (LED_RSTN = on)
FSO1 = HIGH (LED FSO = on)

Test procedure Step 9 (WU function, wakeup from Fail-safe mode):

- 1. Generate Local wakeup: Short WU pin to GND, wait > 50 us (or press the SW WU button)
- 2. Check VOUT, RSTN, FSO1 State

VOUT = ON
RSTN = HIGH (LED_RSTN = off)
FSO1 = HIGH (LED_FSO = on)

DC Characteristics

	MIN	TYP	MAX
VOUT ON	4.9 V	5.0 V	5.1 V
VOUT2 ON	4.83 V	5.0 V	5.17 V
RSTN, INTN, UVN_VOUT, RxDL1/2, RxDC LOW			0.4 V
RxDL1/2, RxDC HIGH	VOUT-0.4 V		
LIN DOMINANT			2 V
LIN RECESSIVE	V _{BAT} - 1.5 V		
CANH DOMINANT	3.0 V	3.6 V	4.25 V
CANL DOMINANT	0.5 V	1.4 V	1.75 V
CANH-CANL RECESSIVE	-0.12 V		0.05 V