

Bipolar Transistor (-)50 V, (-)3 A, Low V_{CE}(sat), (PNP)NPN Single

NSVS50030SB3, NSVS50031SB3

This device is bipolar junction transistor featuring high current, low saturation voltage, and high speed switching.

Suitable for motor driver, relay driver, DC-DC converter of automotive applications. AEC-Q101qualified and PPAP capable.

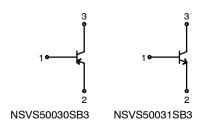
Features

- Large Current Capacitance
- Low Collector to Emitter Saturation Voltage
- High-Speed Switching
- High Allowable Power Dissipation
- AEC-Q101Qualified and PPAP Capable
- Pb-Free, Halogen Free and RoHS Compliance
- Ultra Small Package Facilitates Miniaturization in End Products (Mounting Height: 0.9 mm)

Typical Applications

- DC / DC Converter
- Relay Drivers, Lamp Drivers, Motor Drivers
- Camera Flash

Specifications


ABSOLUTE MAXIMUM RATINGS at $T_A = 25^{\circ}C$

Parameter	Symbol	Value	Unit
Collector to Base Voltage	V _{CBO}	(-50) 100	٧
Collector to Emitter Voltage	V _{CES}	(-50) 100	V
Collector to Emitter Voltage	V _{CEO}	(–)50	V
Emitter to Base Voltage	V _{EBO}	(-)6	V
Collector Current	I _C	(-)3	Α
Collector Current (Pulse)	I _{CP}	(-)6	Α
Base Current	Ι _Β	(-)600	mA
Collector Dissipation (Note 1)	P _C	1.1	W
Junction Temperature	Tj	175	°C
Storage Temperature	Tstg	-55 to +175	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Surface mounted on ceramic substrate. (600 mm² x 0.8 mm)

ELECTRICAL CONNECTION

CPH3 CASE 318BA

MARKING DIAGRAMS

XXX = HAE: NSVS50030SB3

= HCE: NSVS50031SB3

M = Single Digit Date Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ORDERING INFORMATION

Device	Marking	Package	Shipping (Qty / Packing) †	
NSVS50030SB3T1G	HAE	CPH3	3,000/ Tape & Reel	
NSVS50031SB3T1G	HCE	(Pb-Free / Halogen Free)		

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

		Conditions	Value			
Parameter	Symbol		Min	Тур	Max	Unit
Collector Cutoff Current	I _{CBO}	$V_{CB} = (-)40 \text{ V}, I_E = 0 \text{ A}$			(-)1	μΑ
Emitter Cutoff Current	I _{EBO}	V _{EB} = (-)4 V, I _C = 0 A			(-)1	μΑ
DC Current Gain	h _{FE}	V _{CE} = (-)2 V, I _C = (-)100 mA	200		560	
Gain-Bandwidth Product	f _T	V _{CE} = (-)10 V, I _C = (-)500 mA		(360) 380		MHz
Output Capacitance	Cob	V _{CB} = (-)10 V, f = 1 MHz		(24) 13		pF
Collector to Emitter Saturation Voltage	V _{CE} (sat)	I _C = (-)1 A, I _B = (-)50 mA		(-100) 80	(-200) 120	mV
		I _C = (-)2 A, I _B = (-)100 mA		(-185) 140	(-500) 210	mV
Base to Emitter Saturation Voltage	V _{BE} (sat)	I _C = (-)2 A, I _B = (-)100 mA		(-)0.88	(-)1.2	V
Collector to Base Breakdown Voltage	V _{(BR)CBO}	$I_C = (-)10 \mu A, I_E = 0 A$	(-50) 100			V
Collector to Emitter Breakdown Voltage	V _{(BR)CES}	$I_C = (-)100 \mu A$, $R_{BE} = 0 \Omega$	(-50) 100			V
Collector to Emitter Breakdown Voltage	V _{(BR)CEO}	$I_C = (-)1 \text{ mA}, R_{BE} = \infty$	(-)50			V
Emitter to Base Breakdown Voltage	V _{(BR)EBO}	I _E = (-)10 μA, I _C = 0 A	(-)6			V
Turn-On Time	t _{on}	See Fig.1		(30) 35		ns
Storage Time	t _{stg}	7		(230) 300		ns
Fall Time	t _f			(15) 22		ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

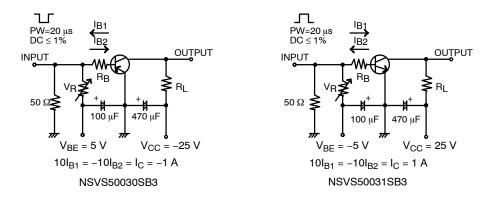


Figure 1. Switching Time Test Circuit

TYPICAL PERFORMANCE CHARACTERISTICS

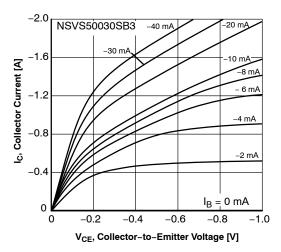


Figure 2. I_C - V_{CE}

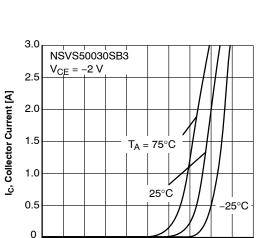


Figure 4. I_C - V_{BE}

V_{BE}, Base-to-Emitter Voltage [V]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

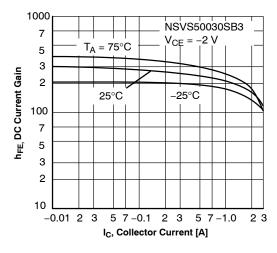


Figure 6. h_{FE} - I_C

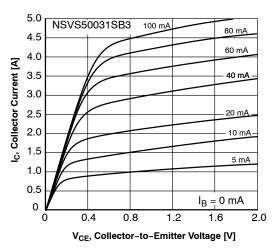


Figure 3. I_C - V_{CE}

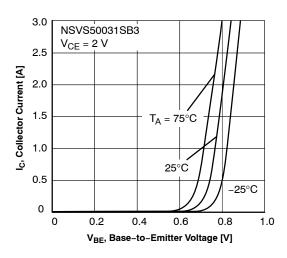


Figure 5. I_C - V_{BE}

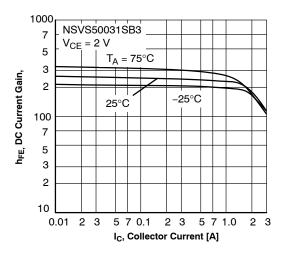


Figure 7. h_{FE} - I_C

TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)

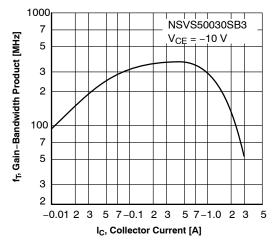


Figure 8. f_T - I_C

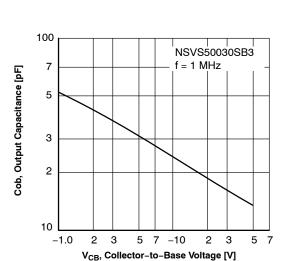


Figure 10. Cob - V_{CB}

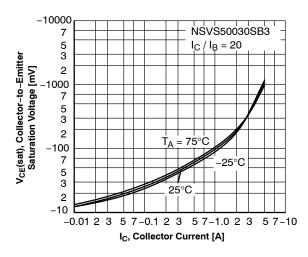


Figure 12. V_{CE}(sat) - I_C

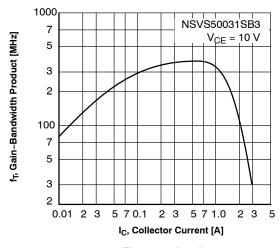


Figure 9. f_T - I_C

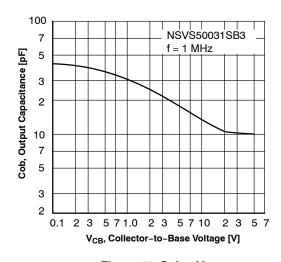


Figure 11. Cob - V_{CB}

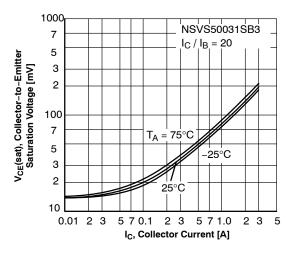


Figure 13. V_{CE}(sat) - I_C

TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)

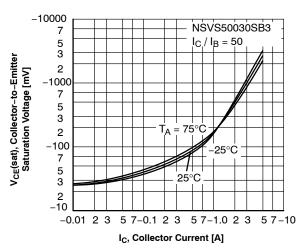


Figure 14. V_{CE}(sat) - I_C

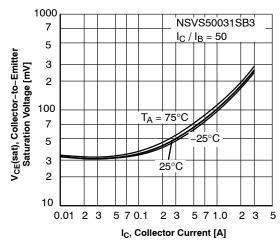


Figure 15. V_{CE}(sat) - I_C

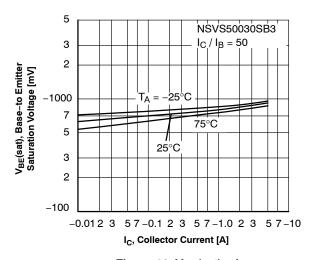


Figure 16. V_{BE}(sat) - I_C

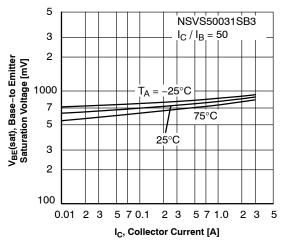


Figure 17. V_{BE}(sat) - I_C

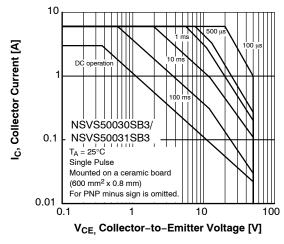
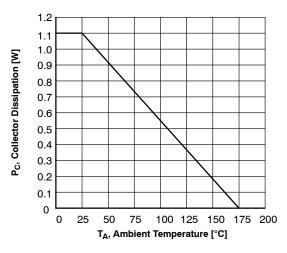
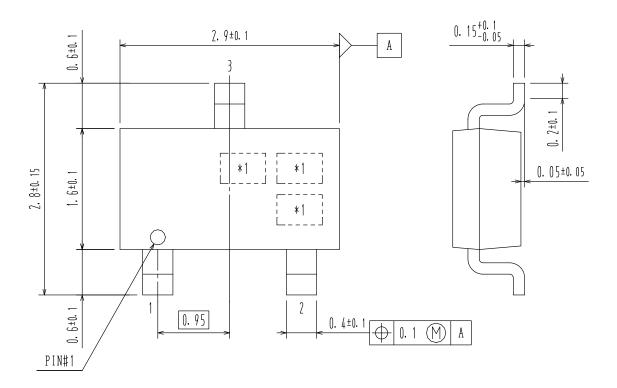
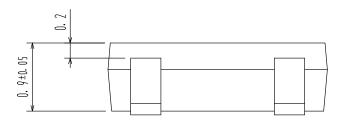


Figure 18. ASO


Figure 19. P_C - T_A

CPH3 CASE 318BA ISSUE O

DATE 30 NOV 2011

DOCUMENT NUMBER:	98AON65437E	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	СРНЗ		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales