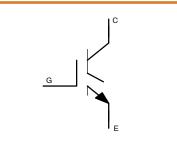
onsemi

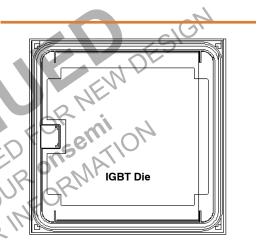
IGBT Die PCFG50T65SQF

V_{RCE} = 650 V I_C = Limited by T_{j(max)}

Using novel field stop IGBT technology, **onsemi**'s new series of field stop 4th generation IGBTs offer the optimum performance for solar inverter and UPS applications where low conduction and switching losses are essential.

Features


- Maximum Junction Temperature: $T_J = 175^{\circ}C$
- Positive Temperature Co-efficient for Easy Parallel Operating
- High Current Capability
- Low Saturation Voltage: $V_{CE(sat)} = 1.6 V (Typ.) @ I_C = 50 A$
- High Input Impedance
- Fast Switching
- Tighten Parameter Distribution


Typical Applications

- Solar Inverters
- UPS Systems

MECHANICAL DATA

Parameter	Mils	μm			
Die Size	153.94 × 153.94	3910 x 3910			
Gate Pad Size	118.9 × 108.58	3020 x 2758			
Emitter Pad Size	14.05 × 17.68	357 x 449.2			
Die Thickness	2.48	63			
Scribe Width	80				
Top Metal	5 µm AlSiCu				
Back Metal	1.05 μm Al/NiV/Ag				
Topside Passivation	Silicon Nitride				
Wafer Diameter	200	mm			
Max Possible Die Per Wafer	R ^L 17	43			
Recommended Storage Environment	In original container, in dry nitrogen, < 3 months at ambient temperature of 23°C				

DIE Outline

ORDERING INFORMATION

Device	Inking?	Shipping Method
PCFG50T65SQF	No	Sawn Wafer on Tape

MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Collector to Emitter Voltage, $T_J = 25^{\circ}C$	V _{CES}	650	V
Gate to Emitter Voltage	V _{GES}	±20	V
Collector Current $@T_C = 25^{\circ}C$	۱ _C	(Note 1)	А
Pulsed Collector Current	I _{CM}	200	А
Operating Junction Temperature	TJ	-40 to +175	°C
Storage Temperature Range	T _{STG}	– 17 to +25	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Depending on the thermal properties of assembly.

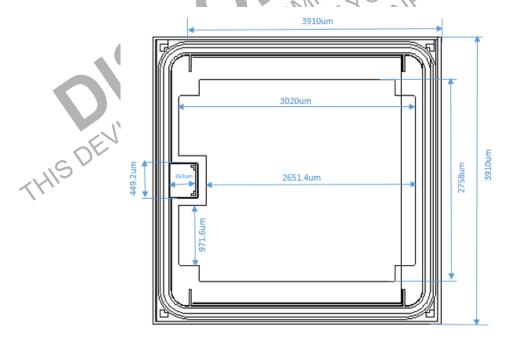
2. Not subject to production test - verified by design/characterization.

PCFG50T65SQF

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage	V _{GE} = 0 V, I _C = 1 mA	BV _{CES}	650			V
Temperature Coefficient of Breakdown Voltage	I_{C} = 1 mA, reference to 25°C	$\Delta BV_{CES}/\Delta T_{J}$		0.6		V/°C
Collector-Emitter Cutoff Current	V_{GE} = 0 V, V_{CE} = V_{CES}	I _{DSS}			250	μA
Gate Leakage Current	V_{CE} = 0 V, V_{GE} = V_{GES}	I _{GSS}			±400	nA
ON CHARACTERISTICS						

G-E Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 50 \text{ mA}$	V _{GE(th)}	2.6	4.5	6.4	V
Collector-Emitter Saturation Voltage	I _C = 50 A, V _{GE} = 15 V	V _{CE(sat)}		1.6	2.1	V
	I_{C} = 50 A, V_{GE} = 15 V, T_{C} = 175°C			1.92		V


DYNAMIC CHARACTERISTICS

Input Capacitance	V_{GE} = 0 V, V_{CE} = 30 V, f = 1 MHz	C _{ies}		3275	JO'	рF
Output Capacitance		Coes		84	0	
Reverse Transfer Capacitance		C _{res}		12		
GATE CHARGE CHARACTERISTICS			N.S.	4		

Total Gate Charge V_{CE} = 400 V, I_C = 50 A, V_{GE} = 15 V Q_g 99 nC Gate to Emitter Charge Qge 17 23 23 17

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. For ordering, technique and other information on onsemi automotive bare die products, please contact automotivebaredie@onsemi.com.

(all dimensions in μm) Figure 1. Die Layout

Further Electrical Characteristic

Switching characteristics and thermal properties are depending strongly on module design and mounting technology and can therefore not be specified for a bare die.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>