ON Semiconductor

Is Now

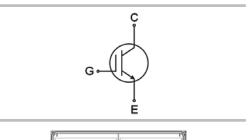
To learn more about onsemi™, please visit our website at www.onsemi.com

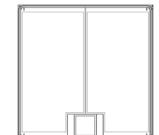
onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

PCGA200T65NF8M1

650 V, 200 A Field Stop Trench IGBT with Solderable Top Metal

ON Semiconductor®


www.onsemi.com


Features

- AEC-Q101 Qualified
- Maximum Junction Temperature 175°C
- Positive Temperature Coefficient
- Easy Paralleling
- Short Circuit Rated
- Very Low Saturation Voltage: $V_{CE(SAT)} = 1.53 \text{ V(Typ.)}$ @ $I_C = 200 \text{ A}$
- Optimized for Motor Control Applications
- Emitter Pad Covered with Solderable Metal Layer

Applications

- Automotive Traction Modules
- General Power Modules

ORDERING INFORMATION

Part Number	PCGA200T65NF8M1					
Packing	Water (sawn on foil)					
	mils	μm				
Die Size	394 × 394	10,000 × 10,000				
Emitter Attach Area	2 × (177 × 348)	2 × (4,493.5 × 8,832)				
Gate / Sensor Pad Attach Area	55 × 55	1,408 × 1,406				
Die Thickness	3	79				
Top Metal	5 μm AlSiCu + 1.15 μm Ti/NiV/Ag (STM)					
Back Metal	0.95 μm NiV/Ag					
Topside Passivation	Silicon Nitride plus Polyimide					
Wafer Diameter	200 mm					
Max Possible Die Per Wafer	234					

PCGA200T65NF8M1

ABSOLUTE MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Ratings	Units	
Collector-Emitter Voltage	V _{CES}	650	V	
Gate–Emitter Voltage	V _{GES}	±20	V	
DC Collector Current, limited by T _J max	Ic	(Note 1)	А	
Pulsed Collector Current, V _{GE} =15 V, t _p limited by T _J max (Note 2)	I _{CM}	600	А	
Short Circuit Withstand Time, $V_{GE} = 15 \text{ V}$, $V_{CE} \le 400 \text{ V}$, $T_J \le 150 ^{\circ}\text{C}$	t _{sc}	5	μs	
Operating Junction Temperature	TJ	-40 to +175	°C	
Storage Temperature Range	T _{stg}	+17 to +25	°C	

^{1.} Depends on the thermal properties of assembly

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Co	Test Condition		Тур.	Max.	Units
Static Characteristics (Tested on wafers)						•	•
Collector–Emitter Breakdown Voltage	BV _{CES}	$V_{GE} = 0 \text{ V}, I_{C} = 1 \text{ mA}$		650	_	_	V
Collector–Emitter Saturation Voltage	V _{CE(SAT)}	I _C = 100 A,	I _C = 100 A, V _{GE} = 15 V		1.25	1.75	V
Gate-Emitter Threshold Voltage	V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 200 \text{ mA}$		4.5	5.5	6.5	V
Collector Cut-Off Current	I _{CES}	V _{CE} = V _{CES} , V _{GE} = 0 V		_	-	40	μΑ
Gate Leakage Current	I _{GES}	$V_{GE} = V_{GES}, V_{CE} = 0 V$		_	-	±400	nA
Electrical Characteristics (Not subjected to	to production test -	- verified by design/	characterization)			•	•
Collector to Emitter Saturation Voltage	V _{CE(SAT)}	I _C = 200 A,	$T_J = 25^{\circ}C$	_	1.53	1.9	V
		V _{GE} = 15 V	T _J = 175°C	_	2.04	_	V
Input Capacitance	C _{IES}	V _{CE} = 30 V, V _{GE} = 0 V f = 1 MHz		_	9.6	_	nF
Output Capacitance	C _{OES}			_	445	_	pF
Reverse Transfer Capacitance	C _{RES}			_	78	_	pF
Internal Gate Resistance	R_{G}	f = 1 MHz		_	2.0	_	Ω
Total Gate Charge	Q _{G(Total)}		V _{CE} = 400 V, I _C = 200 A V _{GF} = 15 V		229	_	nC
Gate-to-Emitter Charge	Q_{GE}	V _{CE} = 400 \			66	_	nC
Gate-to-Collector Charge	Q_{GC}	- VGE - 10 V		_	64	_	nC
Turn-On Delay Time	t _{d(on)}	Vor = 400 \	$V_{CE} = 400 \text{ V}, I_{C} = 200 \text{ A}$ $R_{G} = 15 \Omega$		67	_	ns
Rise Time	t _r	R _G =			233	_	ns
Turn-Off Delay Time	t _{d(off)}	V _{GE} = 15 V Inductive Load		_	118	-	ns
Fall Time	t _f	T _J =	T _J = 25°C		177	_	ns
Turn-On Delay Time	t _{d(on)}	Voc = 400 \	V _{CE} = 400 V, I _C = 200 A		64	_	ns
Rise Time	t _r	$\begin{array}{c} V_{CE} = 400 \text{ V, } I_{C} = 200 \text{ A} \\ R_{G} = 15 \Omega \\ V_{GE} = 15 \text{ V} \\ \text{Inductive Load} \\ T_{J} = 175^{\circ}\text{C} \end{array}$		_	236	-	ns
Turn-Off Delay Time	t _{d(off)}			_	124	-	ns
Fall Time	t _f			_	208	_	ns

^{3.} For ordering, technique and other information on Onsemi automotive bare die products, please contact automotivebaredie@onsemi.com

 t_f

^{2.} Not subject to production test – verified by design/characterization

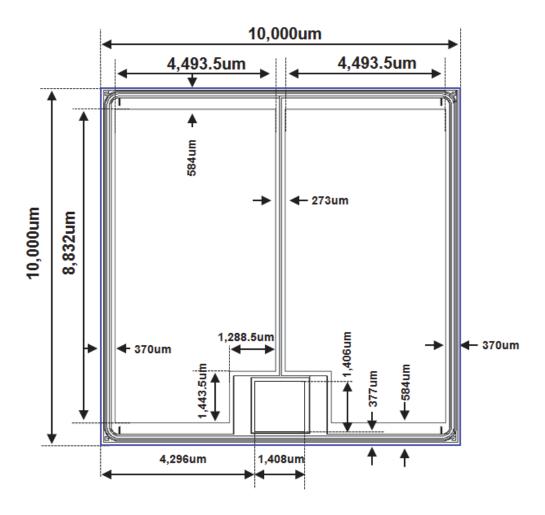


Figure 1. Dimensional Outline and Pad Layout

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semicon

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative