

LPDSP32-V3 Hardware Reference Manual

 Ver 1.3

System Solutions Co., Ltd.

An ON Semiconductor Company

LLLPPPDDDSSSPPP

LPDSP32-V3 HW reference Manual Page 2 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

Copyright © 2014

No part of this document may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying and recording on any information storage or

retrieval system, or otherwise, without the prior written permission of System Solutions Co., Ltd.

Any and all information described or contained herein are subject to change without notice, due to

product/technology improvement, etc.

System Solutions Co., Ltd. believes information herein is accurate and reliable, but no

guarantees are made or implied regarding its use or any infringements of intellectual property

rights or other rights of third parties. Nor does System Solutions Co., Ltd. assume any liability

arising out of the application or use of the information described.

© 2014, System Solutions Co., Ltd., 1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596,

Japan.

LPDSP32-V3 HW reference Manual Page 3 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

Table of contents

1. Scope .. 8

2. Abstract .. 8

3. Architecture Overview ... 9

3.1 Instruction Pipeline ..11

3.2 Block Diagram ... 12

3.3 Hardware Specifications ... 13

3.3.1 Core ... 13

3.3.2 PCU and Hardware loop ... 13

3.3.3 Address generator units (aalu0 and aalu1) .. 13

3.3.4 Data registers and accumulator .. 14

3.3.5 Functional units, ALU (alu0 & alu1) Multiplier (mpy0 & mpy1) 14

3.4 Brief architecture description ... 15

4. Instruction execution units ... 16

4.1 Multipliers ... 16

4.1.1 Integer data type ... 17

4.1.2 Fractional data type .. 17

4.2 Arithmetic and logic unit ... 19

4.2.1 alu0 instructions ... 20

4.2.2 alu1 instructions ... 20

4.2.3 Dual ALU and MAC data path .. 21

4.2.4 Explanation of alu0 instructions ... 22

4.2.5 Shift instructions .. 22

4.2.5.1 Logical shift left (lsl) .. 22

4.2.5.2 Logical shift right (lsr) ... 23

4.2.5.3 Arithmetic shift left (asl) .. 23

4.2.5.4 Arithmetic shift right (asr) ... 24

4.2.6 MAX and MIN instructions ... 24

4.2.7 Sign extension instructions ... 24

4.2.7.1 Sign extension of 64bit (sxtd) ... 24

4.2.7.2 Sign extension of 8bit (sxtd8) ... 24

4.2.7.3 Sign extension of 16bit (sxtd16) ... 25

4.2.8 Mask instructions ... 25

4.2.8.1 Mask instruction for 8bit (mask8) ... 25

4.2.8.2 Mask instruction for 16 bit (mask16) .. 25

4.2.9 Bit manipulation instructions .. 25

LPDSP32-V3 HW reference Manual Page 4 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

4.2.9.1 Bit set (bs) .. 25

4.2.9.2 Bit reset (br) ... 25

4.2.9.3 Bit invert (bi) .. 26

4.2.9.4 Bit test (bt) .. 26

4.2.10 Division instruction .. 26

4.2.10.1 Division on 32bit integers ... 26

4.2.10.2 Flow chart for 32-bit integer division ... 27

4.2.10.3 Division on 64-bit long long variables ... 28

4.2.10.4 Flow chart for 64-bit long long division ... 29

4.2.10.5 Hardware implementation of division .. 30

4.2.11 Normalization instruction ... 31

4.3 Data registers ... 32

4.4 Accumulator ... 32

4.5 Rounding and saturation units ... 33

4.5.1 Operations in sat0 .. 33

4.5.2 Operations in sat1 .. 33

4.5.3 Saturation .. 34

4.5.4 Rounding ... 35

5. Data move buses ... 36

6. Data width conversion ... 37

6.1 Conversion for register to register move .. 37

6.2 Conversion for a move from move bus to accumulator ... 37

6.3 Conversion for a move from accumulator to move bus ... 38

6.4 Conversion for ALU inputs ... 38

6.5 Conversion for ALU outputs ... 38

7. Address generation units .. 39

7.1 Block diagram address generation unit .. 40

7.2 Address registers (a0 ~ a7) ... 41

7.3 Offset registers (c0 ~c3) .. 41

7.4 Stack pointer (SP) .. 41

7.5 Loop address registers ... 42

7.6 Pipeline sequence for the address generation unit .. 42

7.7 Addressing modes .. 43

7.7.1 Indirect addressing with post modification .. 43

7.7.2 Immediate indexed addressing mode ... 44

7.7.3 Stack pointer (SP) indexed addressing mode .. 44

LPDSP32-V3 HW reference Manual Page 5 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

7.7.4 Definition of stack frame .. 45

7.7.5 Direct addressing ... 46

7.7.6 Cyclic addressing ... 46

7.7.7 Bit reverse addressing ... 49

8. Program control unit (PCU) ... 52

8.1 Registers used for PCU ... 52

8.1.1 Program counter (PC) .. 52

8.1.2 Status register (SR) .. 53

8.1.3 SR flags and condition codes ... 54

8.1.4 Condition code evaluation ... 55

8.1.5 Link register (LR) .. 55

8.1.6 Hardware loop stack registers... 56

8.2 Other registers in the controller ... 57

8.3 Classification of short and long instructions in the decoder 57

8.4 Program control unit (PCU) action sequence ... 58

8.5 Multi cycle instruction ... 59

8.6 Delay slot instruction .. 59

8.6.1 Instructions inside the delay slot .. 59

8.7 Multi cycle and delay slot instructions .. 60

8.8 Handling unaligned jump targets ... 61

8.9 Hardware loop .. 62

8.9.1 Hardware loop control .. 63

8.10 Interrupt controller .. 65

8.10.1 Interrupt vector table .. 65

8.10.2 Interrupt circuit ... 66

8.10.3 Interrupt link register (ILR) .. 67

8.10.4 Interrupt mask register (IMSK) .. 67

8.10.5 Interrupt status register (IRQ_STAT) ... 67

8.10.6 Enabling and disabling the interrupts .. 68

8.10.7 Software interrupt ... 68

8.11 Halting the core .. 69

9. Memories .. 71

9.1 Program memory (PM) .. 71

9.2 Data memory (DM) ... 72

9.2.1 Data memory (DM) data and address buses .. 73

9.2.2 I/O Memory space ... 73

LPDSP32-V3 HW reference Manual Page 6 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

9.2.3 Data memory (DM) structure ... 74

9.3 Memory timings ... 75

9.3.1 Data memory (DM) timings .. 75

9.3.2 Program memory (PM) timings.. 75

9.4 Memory wait states.. 76

9.4.1 Memory write with wait states ... 76

9.4.2 Memory read with wait states .. 77

10. Summary of instructions and its operations ... 78

10.1 Instruction types .. 78

10.2 Operations .. 78

10.3 Single operations .. 79

10.3.1 Single arithmetic operations ... 79

10.3.2 Single move operations ... 79

10.3.3 Long operations.. 79

10.4 Parallel operations... 79

10.4.1 Parallel arithmetic ... 79

10.4.2 Parallel move .. 80

10.4.3 Single arithmetic and single move .. 80

10.4.4 Dual arithmetic and dual move .. 80

10.4.5 Short control and move ... 80

10.4.6 Arithmetic and short control .. 81

11. On Chip debugging (OCD) ... 82

11.1 Overview and debugging features ... 82

11.2 On-chip debug environment ... 83

11.2.1 JTALK server ... 83

11.2.2 Debug client .. 83

11.3 JTAG tap controller .. 83

11.3.1 Block diagram of JTAG tap controller ... 84

11.4 Debug controller .. 85

11.4.1 Block diagram of debug controller .. 85

11.4.2 Debug instructions ... 85

11.4.3 Debug registers .. 87

11.4.4 Debug interface ... 88

11.4.5 Hardware breakpoints and watchpoints ... 88

11.4.6 Software breakpoints ... 89

12. Hazards ... 90

LPDSP32-V3 HW reference Manual Page 7 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

12.1 Structural hazard ... 90

12.2 Data hazard .. 90

12.3 Control hazard ... 90

12.4 Software stall ... 91

12.4.1 Software stall (structural hazard) .. 91

12.4.2 Software stall (data hazard) ... 92

12.5 Hazards related to hardware loop .. 94

12.5.1 Control hazards related to hardware loop .. 95

12.6 Bypassing .. 95

12.6.1 Bypass (srFlags) ... 95

12.6.2 Bypass (offset registers c0 ~ c3) ... 96

13. References.. 97

14. Revision History ... 98

LPDSP32-V3 HW reference Manual Page 8 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

1. Scope

This manual describes about the hardware aspects of LPDSP32-V3 core and its operations.

It is mainly intended for programmers to understand the core architecture and various kinds of

operations supported in brief, so as to make them feel comfortable and at ease to do application

coding.

2. Abstract

LPDSP32-V3 is a 32bit fixed point processor, mainly intended for audio DSP algorithms, specially

designed for low power embedded systems using a unique retargetable processor design

methodology. This DSP is usually programmed using “C” and has a very efficient C compiler

which generates optimized assembly code, which is highly comparable to handwritten assembly

code. Please note that most of the assembly examples given in this manual are generated by the

C compiler, from C code; a few examples are hand-coded in assembly to give a more clear

explanation

LPDSP32-V3 HW reference Manual Page 9 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

3. Architecture Overview

LPDSP32-V3 architecture is highly cycle (MCPS) efficient for computational intensive audio

algorithms. This DSP is capable of doing two MAC operations, two memory operations

(load/store) and two pointer updates in a single cycle. Some of the important features are listed

below,

- Highly optimized and efficient “C” compiler.

- Dual Harvard, load store architecture.

- Simple 3-stage pipeline.

- 16M Byte contiguous data memory (DM) space, which is byte(8bit), short(16bit) and

word(32bit) accessible. Data memory consists of DMA (8 Mbyte) DMB (4 Mbyte)

and DMIO (4 Mbyte), separate memory space is allocated for each.

- Data memory(DM) is Little endian.

- Separate 40M Byte Program memory (PM) space.

- Program memory(PM) is Big endian.

- Two 72bit ALUs (ALU0: performs arithmetic and logical operations, ALU1: performs only

arithmetic operations).

- Two 32bit integer/fractional multipliers, capable of performing combination of multiplications

multss: signed * signed, multuu: unsigned * unsigned, multsu: signed * unsigned

- 64bit Shifter with signed shift factor (-63…+63)

- Four 64bit accumulators with 8bit overflow (extension bits).

- Four parallel operations support (2 arithmetic and 2 moves and two address update).

- RISC like instruction set, supports two types of instructions (20bit short and 40bit long)

suitable for control as well as DSP operations.

- Special addressing modes support (Cyclic and bit reverse addressing).

- Zero overhead looping (hardware loop) nested up to four levels.

- Various control instructions such as conditional unconditional jump, subroutine call and

return.

- Power management support (core halt and resume).

- Support for 15 active-high level sensitive interrupts.

- JTAG based On Chip debug interface.

- Hardware wait-state option.

- Support for hardware and software breakpoints.

- Option to set watch points on data memory for store operation

LPDSP32-V3 HW reference Manual Page 10 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

Hardware features:

Feature LPDSP32-V3 core features

Core Period* 14.28 ns (70 MHz)

Core Area* 91252 µm²

Gates 91.25K gates (inverter{IV} equivalent)

Core Power* 0. 242 mW/Mhz or 2.42 mW @ 10MHz @1.35V

*These figures are pre-layout estimation, assuming generic GSMC 150nm fabrication process under worst case

operating conditions.

LPDSP32-V3 HW reference Manual Page 11 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

3.1 Instruction Pipeline

The LPDSP32-V3 has three pipeline stages named F, D and E1. Pipeline diagram is shown below.

In the diagram it is assumed that, all instructions are 40bit instructions and stored on even

addresses. As shown in the diagram; in cycle-3, instruction A is getting executed, instruction B is

being decoded, and instruction C is being fetched from the PM [4]. Also in the same cycle the

next PC value (6) is placed on the PM address bus.

Cycle

Next PC

1 2 3 4 5 6 7 8

2 4 6 8 10 12 14 16

PC Instruction

0 A F D E1

2 B F D E1

4 C F D E1

6 D F D E1

8 E F D E1

10 F F D E1

Pipeline action sequence is shown below,

Pipeline stage Action

F (Fetch) In this stage, a new instruction is fetched from PM. Program memory address is placed

on PM address bus at the end of the previous cycle.

D (Decode) - In this stage, the instruction that was fetched in the previous cycle is decoded.

- The address for load instruction is placed on DM address bus.

- Address modification, and address calculation is done in address ALU (aalu0, aalu1)

- Unconditional and conditional control instruction modifies the flow of control.

- Condition is checked in this stage.

E1 (Execute) - In this stage ALU, compare, shift and multiply instructions are executed.

- Move instructions are executed in this stage.

- Address for store instruction is placed on DM address bus and source register data

 is placed on DM data bus.

- For the load instructions, memory places the data on data bus then data is latched into

the destination register.

- Condition is calculated in this stage.

LPDSP32-V3 HW reference Manual Page 12 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

3.2 Block Diagram

LPDSP32-V3 HW reference Manual Page 13 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

3.3 Hardware Specifications

3.3.1 Core

Item Specifications

Processing capacity* (MIPS/MOPS)

70 (MIPS) / 280 (MOPS)

Pipeline Stages 3 stages (F, D, E1)

Program Space 16777216(Depth) x 20(Width) [40MByte]

Data Space DMA: 8388608(Depth) x 8(Width) [8MByte]

DMB: 4194304 (Depth) x 8(Width) [4MByte]

IO Space DMIO: 4194304 (Depth) x 8(Width) [4MByte]

Interrupts 15

Powerdown/Resume

* Processing capacity is pre-layout estimated figure considering generic GSMC 0.15u typical fabrication process

under worst case operating conditions.

3.3.2 PCU and Hardware loop

Item Specifications

Program counter (PC) 24 bit

Status register (SR) 11 bit

Link register (LR) 24 bit

Interrupt link register (ILR) 24 bit

Interrupt mask register (IMSK) 15 bit

Interrupt status register (IRQ_STAT) 15 bit

Loop counter pointer (LCP) 3 bit

Loop count register (LC0 ~ LC3) 16 bit x 4

Loop start register (LSTK0 ~ LSTK3) 24 bit x 4

Loop end register (LPA0 ~ LPA3) 24 bit x 4

3.3.3 Address generator units (aalu0 and aalu1)

Item Specifications

Address registers (A0 ~ A7) 24 bit x 8

Offset registers (C0 ~ C3) 18 bit x 4

Loop start register (LB0 ~ LB1) 24 bit x 2

Loop size register (LSZ0 ~ LSZ1) 18 bit x 2

Stack pointer (SP) 24 bit x 1

LPDSP32-V3 HW reference Manual Page 14 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

3.3.4 Data registers and accumulator

Item Specifications

Data registers (RA0, RA1, RB0, RB1) 32 bit x 4

Accumulator (AX0, AX1, BX0, BX1) 72 bit x 4 (8 overflow bits)

3.3.5 Functional units, ALU (alu0 & alu1) Multiplier (mpy0 & mpy1)

Item Specifications

Adder 72 bit x 2

Multiplier 32 bit x 2

Logical operation unit 72 bit x 1

Barrel shifter 64 bit x 1

rounding and saturation unit (sat0, sat1) 72 bit x 2

LPDSP32-V3 HW reference Manual Page 15 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

3.4 Brief architecture description

LPDSP32-V3 has load store architecture; meaning that, before doing any operation first all the

operands need to be explicitly moved to the registers from the memory.

Execution units (ALU & multiplier) take the inputs from the registers and perform the operation

and write back the result into registers. Then produced result needs to be explicitly moved to the

memory.

While designing LPDSP32-V3 a lot of attention was given for the low MHz operation to achieve

low power and for the C compiler which can support ANSI C data types.

At the same time the main intention was to get highly optimized code directly compiled by the C

compiler without any manual assembly level optimization. In this way the designers can build their

applications and bring them to market very quickly, along with maintaining the low power

operation.

The architecture block diagram shown earlier on in section [3.2], consists of these main sub

blocks:

❖Instruction execution unit which consists of:

➛Two multipliers MPY0(33bit x 33bit) and MPY1 (32bit x 32bit)

 ➛Two Arithmetic and logic units ALU0 and ALU1 (72bit)

 Note: ALU0 can perform arithmetic and logical operations but ALU1 can perform only

arithmetic (add/sub) operations.

❖Data registers of 32-bit (ra0, ra1, rb0 and rb1)

❖Accumulators of 72-bit (ax0, ax1, bx0 and bx1)

❖Rounding and saturation units 72bit (sat0 and sat1)

❖Data move buses of 32 bit (DBA and DBB)

❖Data width conversion blocks (eg. 32bit 72bit, 72bit 32bit)

❖Address generation unit which consists of:

 ➛Two address generators (AALU0 and AALU1)

 ➛Address registers (a0 ~ a7), offset registers (c0 ~ c3)

 ➛Special addressing registers (LB0, LB1, LSZ0 and LSZ1) and stack pointer (SP)

❖Program control unit (PCU) which consists of:

 ➛Instruction decoder

 ➛Controller and Interrupt controller

 ➛Program control registers (PC, SR, LR and ILR)

 ➛Hardware loop registers (LCP, LC, LSTK and LPA)

❖Data memory (DM)

❖Program memory (PM)

LPDSP32-V3 HW reference Manual Page 16 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

4. Instruction execution units

4.1 Multipliers

There are two multipliers (mpy0 and mpy1) in LPDSP32-V3, which can perform 32x32 bit

multiplication in a single cycle. Multipliers can read their operands from any of the data registers

(ra, rb) and perform the multiplication. A 64-bit result is written to any of the accumulators (ax, bx).

The multiplier mpy0 is capable of signed, unsigned and mixed sign operation with the below

multiplication modes.

➛32-bit Signed x 32-bit Signed

➛32-bit Unsigned x 32-bit Unsigned

➛32-bit Signed x 32-bit Unsigned

However mpy1 can perform only 32-bit Signed x 32-bit Signed multiplication.

MAC units (acc0 and acc1) are present after the multiplier (mpy0 and mpy1) to do the multiply

accumulate (MAC) operation. Units acc0 and acc1 performs the add/sub operation after the

multiplication. Complete MAC operation i.e. multiplication and addition happens in a single clock

cycle. For doing MAC0/MAC1 operations, one of the input required for doing MAC operation can

be selected or swapped either from mpy0 or mpy1, this is done by swap bit.

Multiplier is always accessed via multiply accumulate (MAC) operation.

MAC can be used in 4 modes; pass, negate, add and sub.

To do simple multiplication MAC unit is used in pass mode. In the pass mode other operand of

the MAC is zero, so that multiplier result is passed directly to the output.

More importantly, multipliers are capable of performing integer or fractional multiplication.

This mode is selected by setting/clearing “im” bit in the status register.

Fractional mode: im = 0

Integer mode: im = 1

To understand about this mode of multiplication, a brief explanation is given in the next page.

LPDSP32-V3 HW reference Manual Page 17 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

4.1.1 Integer data type

Integer data type is inherently represented as a signed 2's complement number.

Here the MSB (most significant bit) is defined as sign and radix point lies at the bit[0] position.

The data range for N bit 2's complement integer is (-2^(N-1) to (2^(N-1)-1).

The data range for 32-bit integer number is (0x8000_0000) -2,147,483,648 to

(0x7FFF_FFFF) +2,147,483,647

4.1.2 Fractional data type

The fractional data type is also represented as a signed 2’s complement number.

Here the MSB (most significant bit) is defined as signed value and radix point lies at the bit[30]

position. The data range for N bit fractional number is (-1.0 to (1-2^(1-N)).

The data range for 32bit fractional number is (0x8000_0000) -1 to

(0x7FFF_FFFF) +0.99999999953433 including '0.0', and it has a precision of (4.657 x 10^-10)

This format is commonly referred to 1.31 or Q31 format.

1s 31bits (fractional value)

Bit used to represent

integer portion
Bits used to represent

fractional portion

Radix point

0 30 31

S 31bits (integer value)

Bit used for sign

representation
Bits used to represent

Integer value

0 30 31

Radix point

LPDSP32-V3 HW reference Manual Page 18 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

Note that, with the exception of multiplier, ALU operates identically on integer and fractional data.

Namely, an addition of two integers will yield the same result (binary number) as the addition of

two fractional numbers. The only difference is how the result is interpreted by the user.

Different multiplication modes selection is made by the im bit in status register srmode0, and it

must be set accordingly (‘0’ for Fractional mode, ‘1’ for Integer mode).

This is required because of the implied radix point used by LPDSP32-V3 fractional numbers.

In integer mode multiplying two 32bit integers produces a 64bit integer result.

However, multiplying two 1.31 numbers produces a 2.62 result.

Since LPDSP32-V3 uses 1.31 format for the accumulators, the DSP multiply in fractional mode

also includes a left shift of 1bit to keep the radix point properly aligned.

Very important to note that, this feature reduces the resolution of the DSP multiply to 2^(-30) but

has no other effects on the computation.

Integer multiplication:

Fractional multiplication:

1s

0 31

1s

0 31

S

63 0

S

62 61

s

0 31

s

0 31

S

63 0

Radix point

LPDSP32-V3 HW reference Manual Page 19 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

4.2 Arithmetic and logic unit

There are two arithmetic and logical units (alu0 and alu1) in the LPDSP32-V3.

alu0 is a 72-bit wide arithmetic and logical unit which is capable of doing,

- Addition

- Subtraction

- Division

- Logical operations

- Shifting

- Comparison

- Min & Max. etc.

For the single operation always alu0 is used. Unit alu0 can affect the status register negative(N)

and zero (Z) flags only for the few instructions like, compare signed (cmp), compare unsigned

(cmpu), division (div) and bit test (bt).

Data required for the alu0 operation can come from any of the data registers (ra, rb) or

accumulators (ax,bx) and output result can be written to any of the data registers or accumulators.

However, alu1 is also 72-bit wide and used only when parallel arithmetic (addition/subtraction)

operations are used. This unit does not affect any status register flags.

Since alu1 is used only in parallel operations; source-0 operand can be selected from data

register (rb) and source-1 operand can be selected from any of the data registers or

accumulators.

Result of the alu1 is always written to accumulator (bx).

alu0 is used for single as well as parallel operations; however alu1 is used only for parallel

operations. Instructions supported by alu0 and alu1 are mentioned on the next page.

alu0_opcode [4:0]

ALU0

S0 [71:0] S1 [71:0]

output [71:0]

alu1_opcode [1:0]

ALU1

S0 [71:0] S1 [71:0]

output [71:0]

LPDSP32-V3 HW reference Manual Page 20 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

4.2.1 alu0 instructions

These are the instructions supported on alu0.

Sr. operations immediate Single operand Double operand No result SR flag

1 add (+)

2 sub (-)

3 and (&)

4 or (|)

5 xor (^)

6 asl

7 asr

8 max

9 min

10 move immediate (8bit)

11 div

12 cmp

13 cmpu

14 negate

15 nrm

16 abs

17 lsl

18 lsr

19 sxtd

20 sxtd8

21 sxtd16

22 mask8

23 mask16

24 bi

25 br

26 bs

27 bt

4.2.2 alu1 instructions

These are the only instructions supported by alu1.

Sr. operations immediate Single operand Double operand No result SR flag

1 add (+)

2 sub (-)

LPDSP32-V3 HW reference Manual Page 21 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

4.2.3 Dual ALU and MAC data path

To understand the data flow for the dual ALU and MAC operation refer the figure shown below.

bx_s2

ra0

ra1

Regfile RA

rb0

rb1

Regfile RB Regfile AX Regfile BX

ra_s0 ra_s1 ra_s2 rb_s0 rb_s1 rb_s2

ra_d0 rb_d0 ax_d0 bx_d0

ax_s0 ax_s1 ax_s2 bx_s0 bx_s1

ax0

ax1

bx0

bx1

a0_a a0_b a0_fi

a0_c a0_f0

SR Flags

Cluster

a0_bhl c_wa a0_bh

Imm5s/5u

Low aligned

Imm5s/5u Int8

ALU0

MPY0

m0_a m0_b

m0_c

m0_im
MPY1

m1_a m1_b

m1_c

m1_im

swap

MAC0 (acc0) ALU1 (acc1)

a1_b a1_a

ma0_c a1_c

Cluster

ma0_a ma0_b

LPDSP32-V3 HW reference Manual Page 22 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

4.2.4 Explanation of alu0 instructions

In this section some of the instructions and their operation are described briefly for understanding.

Before doing any operation in alu0, first the data is converted to 72-bit. ALU0 can perform

operation on data registers of width 32-bit as well as accumulator registers of width 64-bit.

Some of the instructions are self explanatory like add, sub, and, or and xor. Therefore, few are

explained here. For a detailed explanation of all the instructions please refer the instruction

manual.

4.2.5 Shift instructions

Both logical and arithmetic shift operations are supported. Depending on its width, shift value can

be stored in data register (ra, rb) or accumulator (ax, bx) to do shift operation. However, shift

factor can be an immediate signed/unsigned value of (7-bit) or it can be an indirect value stored in

any of the registers (ra, rb, ax, bx).

After the shift operation result can be stored in data register (ra, rb) or in the accumulator (ax, bx).

Shift instructions do not generate any flags.

Types of the shift instructions are mentioned below,

- Logical shift left (lsl)

- Logical shift right (lsr)

- Arithmetic shift left (asl)

- Arithmetic shift right (asr)

✍ Important note:

Maximum allowed range for the shift factor is -63 to +63. If shift factor is < -63, it is treated as

zero and no shift operation is performed and input value is passed to output.

If the shift factor exceeds the above range, result is not guaranteed.

4.2.5.1 Logical shift left (lsl)

This is the logical left shift operation.

In the logical shift operation if the sign bit is “1” it is extended to 72 bits. And if the shift factor is a

negative value then instead of doing a logical shift left it performs a logical shift right operation.

Examples:

ax0 = lsl(ax0, ra0) //indirect logical shift left on 64-bit long register

ra0 = lsl(ra0, rb1) //indirect logical shift left on 32-bit data register

ax0 = lsl(bx0, 15) //immediate shift left

S

0 62 63

“0” Shifting 64-bit value

S

0 30 31

“0” Shifting 32-bit value

LPDSP32-V3 HW reference Manual Page 23 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

4.2.5.2 Logical shift right (lsr)

This is the logical right shift operation

If the shift factor is a negative value it performs a logical shift left operation.

Examples:

ax0 = lsr(ax0, ra0) //indirect logical shift right on 64-bit long register

ra0 = lsr(ra0, rb1) //indirect logical shift right on 32-bit data register

ax0 = lsr(bx0, 15) //immediate shift right

4.2.5.3 Arithmetic shift left (asl)

Arithmetic shift left operation is almost same as logical shift left operation, only difference is that

the sign bit is not extended further in this case.

If the shift factor is a negative value it performs an arithmetic shift right operation.

Examples:

ax0 = asl(ax0, ra0) //indirect arithmetic shift left on 64-bit long register

ra0 = asl(ra0, rb1) //indirect arithmetic shift left on 32-bit data register

ax0 = asl(bx0, 15) //immediate arithmetic shift left

S

0 62 63

“0”

Shifting 64-bit value

S

0 30 31 Shifting 32-bit value

“0”

S

0 62 63

“0” Shifting 64-bit value

S

0 30 31

“0” Shifting 32-bit value

LPDSP32-V3 HW reference Manual Page 24 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

4.2.5.4 Arithmetic shift right (asr)

In arithmetic shift right instruction, sign bit is pushed and shifted to right as shown below.

If the shift factor is a negative value it performs an arithmetic shift left operation.

Examples:

bx0 = asr(ax0, ra0) //indirect arithmetic shift right on 64-bit long register

rb0 = asr(ra0, rb1) //indirect arithmetic shift right on 32-bit data register

bx0 = asr(bx0, 10) //immediate arithmetic shift right

4.2.6 MAX and MIN instructions

These instructions find the maximum value or minimum value between the two operands. To do

this operation operands can be stored in (ra, rb, ax, bx) and result is written into any of these

registers (ra, rb, ax, bx).

Examples:

ax0 = max(ax0, bx0) //finds the maximum between two 64-bit operands

ra0 = max(ra0, ra1) //finds the maximum between two 32-bit operands

bx0 = min(bx0, bx1) //finds the minimum between two 64-bit operands

ra0 = min(ra0, ra1) //finds the minimum between two 32-bit operands

4.2.7 Sign extension instructions

Three sign extension instructions are provided in LPDSP32.

4.2.7.1 Sign extension of 64bit (sxtd)

This instruction will extend the sign bit of long long data.

4.2.7.2 Sign extension of 8bit (sxtd8)

This instruction will be helpful in transferring a 32bit signed variable to a 8bit signed variable.

Example:

71 64 63 47 39 31 0

s s s s s

S

0 62 63

Shifting 64-bit value

S

0 30 31

Shifting 32-bit value

LPDSP32-V3 HW reference Manual Page 25 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

4.2.7.3 Sign extension of 16bit (sxtd16)

This instruction will be helpful in transferring a 32bit signed variable to a 16bit signed variable.

Example:

71 64 63 47 32 31 0

s s s s

4.2.8 Mask instructions

Two mask instructions are provided in LPDSP32.

4.2.8.1 Mask instruction for 8bit (mask8)

This instruction will extract 8bits from a 32bit register or from a high word of accumulator.

Example:

71 64 63 47 39 31 0

4.2.8.2 Mask instruction for 16 bit (mask16)

This instruction will extract 16bits from a 32bit register or from a high word of accumulator.

Example:

71 64 63 47 32 31 0

4.2.9 Bit manipulation instructions

There are four bit manipulation instructions (bs, br, bi and bt), which operate on both 32-bit and

64-bit registers. Result can be written to (ra, rb, ax, bx) registers. Index for the bit manipulation

can be an indirect value or a 6-bit immediate index.

Except the bit test (bt) instruction other bit manipulation instructions do not generate status flags.

✍ Important Note:

Maximum index value should be within the range (0 to 63) for guaranteed results.

4.2.9.1 Bit set (bs)

This instruction sets the bit indicated by the index in 32-bit or 64-bit register field, where the index

can be either an immediate or an indirect value.

4.2.9.2 Bit reset (br)

This instruction resets the bit indicated by the index in 32-bit or 64-bit register field, where the

index can be either an immediate or an indirect value.

LPDSP32-V3 HW reference Manual Page 26 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

4.2.9.3 Bit invert (bi)

This instruction inverts the bit indicated by the index in 32-bit or 64-bit register field, where the

index can be either an immediate or an indirect value.

4.2.9.4 Bit test (bt)

This instruction tests the bit indicated by the index in 32-bit or 64-bit register field, where index

can be immediate or indirect value. This does not produce any result but generates status flag.

4.2.10 Division instruction

LPDSP32-V3 supports division operation which can be performed on short (32bit) and long

(64bit) operands. This instruction is implemented by non restoring division algorithm on positive

integers.

Inherently, the non restoring division algorithm consumes less hardware.

This is a multi-cycle instruction; number of cycles taken for the division operation depends on the

step value.

✍ Important note: It is not recommended to use this instruction where cycle efficiency is

desired.

4.2.10.1 Division on 32bit integers

While doing division operation on 32bit integer, dividend (x) and divisor (y) are aligned at higher

word of the accumulator and extended with the zeros as below

00 x 0

0 31 32 63 64 71

00 y 0

0 31 32 63 64 71

Dividend

Divisor

00 r q

0 31 32 63 64 71

After division reminder is in the

higher word and quotient in the

lower word of the accumulator

LPDSP32-V3 HW reference Manual Page 27 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

4.2.10.2 Flow chart for 32-bit integer division

start

00 x 00000000

03132636471

set dividend (x)

00 y 00000000

03132636471

set divisor (y)

v N Z

012

clear VNZ flags

Find step value by doing step = 31 - norm(x)

align the dividend (x) at lower word by doing x = x >> step

00 00000000 x

03132636471

align dividend (x)

Check (N) flag

positive (N = 0)
negative (N = 1)

x = x << 1

result = x + y

x = x << 1

result = x - y

result < 0

N flag = 1 (negative) N flag = 0 (positive)

no
yes

result[71:0] = {result[71:1], inverted N flag} and x = result

repeat (step) times

accum result => s r q

03132636471

N flag

quotient (q) = result[31:0]

result1 = result + y

(restore reminder)

N=1

result1 = result

reminder (r) = result1[63:32]

LPDSP32-V3 HW reference Manual Page 28 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

4.2.10.3 Division on 64-bit long long variables

This operation is performed by calling inbuilt c function called "div64_pos_called"

While doing division operation on 64bit long long variables, dividend (x) and divisor (y) are

aligned at lower word and extended with the zeros and result is unsigned long long

00 x[63:32] x[31:0]

0 31 32 63 64 71

00 y[63:32] y[31:0]

0 31 32 63 64 71

Dividend aligned at lower word

Divisor aligned at lower word

00 r q

0 31 32 63 64 71

After division reminder is in the

higher word and quotient in the

lower word of the accumulator

LPDSP32-V3 HW reference Manual Page 29 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

4.2.10.4 Flow chart for 64-bit long long division

start

00 x[63:0] x[31:0]

03132636471

set dividend (x)

00 y[63:0] y[31:0]

03132636471

set divisor (y)

v N Z

012

clear VNZ flags

Find step value by doing step = norm(y) - norm(x) + 1

align the divisor (y) at lower word by doing y = y << step

00 00000000 y

03132636471

align divisor (y)

Check (N) flag

positive (N = 0)
negative (N = 1)

x = x << 1

result = x + y

x = x << 1

result = x - y

result < 0

N flag = 1 (negative) N flag = 0 (positive)

no
yes

result[71:0] = {result[71:1], inverted N flag} and x = result

repeat (step) times

accum result => s r q

03132636471

N flag
result = result + y

(restore reminder)

N=1

result = result

quotient (q) = result[31:0]

reminder (r) = result[63:32]

N=0

(* actual last step to get reminder, reminder = result >> (32 + step))

LPDSP32-V3 HW reference Manual Page 30 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

4.2.10.5 Hardware implementation of division

Division operation is controlled by hardware loop instruction and utilizing negative (N) flag.

Hardware implemented is only addition and subtraction controlled by N flag.

Example macro for doing division operation:

axs1 = [0]

ra0 = 31; ae1 = zero

ra1 = nrm(ax1) //normalization for calculating step

axs0 = [4]

ra0 = ra0 - ra1 //step value

lp [ra0] 2 //repeat until step value

nop; flags = zero

ax1 = asr(ax1,ra0); ae0 = zero //shift divisor x = x >> step

ax1 = div(ax1,ax0) // division operation

retdb

[8] = al1

nop; ra0 = zero

Below is the hardware logic for division

ADD/SUB

(DIV)

N flag

S H L b0

x[71:0] y[71:0]

N flagresult [71:0]

accumulator

LPDSP32-V3 HW reference Manual Page 31 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

4.2.11 Normalization instruction

This instruction detects the decimal point to be shifted and computes the shift factor.

To perform the normalization, value can be in data register or accumulator. Normally

normalization operation is performed in the accumulator registers (ax, bx).

After the normalization operation, detected shift factor can be stored in data register or

accumulator. This shift factor can be a positive value or a negative value. Positive shift factor

means shift left the value by shift factor and negative shift factor means shift right the value by

shift factor.

This operation counts leading zeros in case of positive numbers excluding sign bit[63], in case of

negative numbers counts leading ones. If first ‘0’ or ‘1’ is detected in bit[62] to bit[0] of the

accumulator, shift factor is positive. If first ‘0’ or ‘1’ is detected in bit[71] to bit[64] of the

accumulator, shift factor is negative.

Example:

1. ax0 = 72’h000000000004000000, nrm(ax0) = 36

2. ax0 = 72’h000000008000000000, nrm(ax0) = 23

3. ax0 = 72’h002000000000000000, nrm(ax0) = 1

4. ax0 = 72’h004000000000000000, nrm(ax0) = 0

5. ax0 = 72’h008000000000000000, nrm(ax0) = -1

6. ax0 = 72’h080000000000000000, nrm(ax0) = -5

7. ax0 = 72’h400000000000000000, nrm(ax0) = -8

8. ax0 = 72’hFFFFFFFFFFFFFFFFFF, nrm(ax0) = 63

9. ax0 = 72’h7FFFFFFFFFFFFFFFFF, nrm(ax0) = -8

(+ve shift) (-ve shift) S S

0 31 32 62 64 71

(+ve shift) (-ve shift) S

63

Decimal point

LPDSP32-V3 HW reference Manual Page 32 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

4.3 Data registers

Instead of a single common register file, LPDSP32-V3 implements separate distributed register

files for data registers, accumulators, address registers etc.

There are two data register files RA and RB. Register file RA consists of two 32-bit registers

[ra0, ra1] and register file RB consists of two 32-bit registers [rb0, rb1]. In total there are 4 data

registers.

Data registers are used for storing the operands for ALU and multiplier also for loading/storing the

value from/into the memory.

4.4 Accumulator

Similarly for the accumulator there are two register files AX and BX. Register file AX consists of

two 72-bit registers [ax0, ax1] and register file BX consists of [bx0, bx1]. Each 72-bit accumulator

has sub components which can be accessed separately as shown in the figure. There are 8

overflow bits which permit up to 256 consecutive sums of product (MAC) operations without

generating any overflow.

Accumulators are used for storing the ALU results and loading/storing the value from/to the

memory.

When an immediate value needs to be assigned to the accumulator, there is an option to keep it

either in the higher word or the lower word of the accumulator. To keep the value in the lower

word of the accumulator suffix “L” is used next to the value. However when there is no suffix,

value is assigned to the higher word of the accumulator.

Example:

 ax0 = 123L //value is assigned to the lower word

 ax0 = 123 //value is assigned to the higher word

32-bit ra0

32-bit ra1

Register file RA

32-bit rb0

32-bit rb1

Register file RB

0 31 0 31

ae0 ah0 al0 ax0

31 0 32 63 71

ae1 ah1 al1 ax1

Register file AX

be0 bh0 bl0 bx0

31 0 32 63 71

be1 bh1 bl1 bx1

Register file BX

Extn Higher word Lower word Extn Higher word Lower word

LPDSP32-V3 HW reference Manual Page 33 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

4.5 Rounding and saturation units

There are two rounding and saturation units (sat0 and sat1) in the LPDSP32-V3.

Unit sat0 is used for accumulator (ax0, ax1) and sat1 is used for accumulator (bx0, bx1).

When a 72-bit value needs to be moved from the accumulator, saturation unit converts the 72-bit

value to a 32-bit value or a 64-bit value depending on the type of move i.e. short move or long

move.

While converting a 72-bit value to a 32-bit or a 64-bit value it requires saturation and rounding.

4.5.1 Operations in sat0

- A 72-bit value is converted to either a 32-bit or a 64-bit value.

- While extracting a 32-bit value from a 72-bit value; scaling (divide by /2), rounding and

saturation operations are performed.

- A 64-bit value can be extracted with or without doing scaling and saturation operation.

- Sub components (lower word, higher word and extn.) of the accumulator are selected here.

- Rounding and saturation modes can be selected by setting the srmode bits in the status register

(SR).

Example:

r = 1 //rounding is enabled

s = 1 //saturation is enabled

- Scaling mode is selected by the instruction.

4.5.2 Operations in sat1

- A 72bit value is converted to a 32-bit value.

- While extracting a 32-bit value from a 72-bit value; scaling (divide by /2), rounding and

saturation operations are performed.

- Sub components (lower word, higher word and extension) of the accumulator are selected here.

- Rounding and saturation modes can be selected by setting the srmode bits in the status register

(SR).

- Scaling mode is selected by the instruction.

ae0 ah0 al0 ax0

ae1 ah1 al1 ax1

be0 bh0 bl0 bx0

be1 bh1 bl1 bx1

sat0

sat0_a[71:0]

sat0_b[31:0] sat0_bl[63:0]

sat1

sat1_a[71:0]

sat1_b[31:0]

LPDSP32-V3 HW reference Manual Page 34 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

4.5.3 Saturation

Saturation means, if the value is greater than the maximum value that can be represented, it is

converted back to its maximum and if the value is less than the minimum value that can be

represented, it is converted back to its minimum. Saturation function can be enabled by setting s

bit of srmode, which is part of the status register (SR) to '1’.

Saturation function macro:

Therefore when the saturation bit (s) is set high, value in the accumulator is clipped if it exceeds

above the range. To understand the saturation operation diagram is shown below,

if (s == 1) //saturation is set

if (accum[71:0] < 72'hFF_80000000_00000000) //more negative

accum[71:0] = 72'hFF_80000000_00000000

else if (accum[71:0] > 72'h00_7FFFFFFF_FFFFFFFF) //more positive

accum[71:0] = 72'h00_7FFFFFFF_FFFFFFFF

else

accum[71:0] = accum[71:0]

0

-ve output

+ve output

+ve Input-ve Input

72'h00_7FFFFFFF_FFFFFFFF

72'hFF_80000000_00000000

0

-ve output

+ve output

+ve Input-ve Input

72'h00_7FFFFFFF_FFFFFFFF

72'hFF_80000000_00000000

LPDSP32-V3 HW reference Manual Page 35 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

4.5.4 Rounding

Rounding away from zero (towards ∞) algorithm is applied for the LPDSP32-V3. This is a

simple rounding method to perform rounding operation on a fractional value to bring it to an

integer value which is away from zero. Note that when the fractional component of a full-precision

value is precisely ½ , the round away from zero algorithm will introduce a statistical bias into the

output time series because these borderline cases are always rounded towards (+∞) for positive

full-precision values and towards (-∞) for negative full-precision values.

Rounding function can be enabled by setting r bit of srmode, which is part of the status register

(SR) to ‘1’.

Rounding function macro:

To understand the rounding operation, diagram is shown below.

Also rounding mechanism is shown below,

MSWExt LSW

71 6463 3231 0

32’h000000008’h00 32’h80000000

71 6463 3231 0

MSWExt LSW

71 6463 3231 0

32bit rounded output

accumulator

accumulator

MSWExt LSW

71 6463 3231 0

32’h000000008’h00 32’h80000000

71 6463 3231 0

MSWExt LSW

71 6463 3231 0

32bit rounded output

accumulator

accumulator

MSWExt LSW

71 6463 3231 0

32’h000000008’h00 32’h80000000

71 6463 3231 0

MSWExt LSW

71 6463 3231 0

32bit rounded output

accumulator

accumulator

MSWExt LSW

71 6463 3231 0

32’h000000008’h00 32’h80000000

71 6463 3231 0

MSWExt LSW

71 6463 3231 0

32bit rounded output

accumulator

accumulator

if (r == 1) //rounding is set

accum[71:0] = accum[71:0] + 72'h0000000080000000;

0

-ve output

+ve output

+ve Input-ve Input
0

-ve output

+ve output

+ve Input-ve Input

LPDSP32-V3 HW reference Manual Page 36 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

5. Data move buses

There are two 32-bit data move buses; data bus a (dba) and data bus b (dbb). These are used to

move the data almost from any register to any register of different data widths.

These data buses (dba and dbb) connect all the registers and the data memory.

There are separate data buses for the read and write. For the data memory (DMA), data read bus

is (dba_r) and data write bus is (dba_w). Similarly for the data memory (DMB), data read bus is

(dbb_r) and data write bus is (dbb_w). There are two 24-bit address buses. Address bus dba_a is

used for addressing DMA and dbb_a is used for addressing DMB, same address bus is used for

read/write operation.

All types of data transfers like move and load/store operations make use of either or both of these

data move buses. Since the move and load store operation can be done in parallel with the

arithmetic and MAC operation, the required data needed for the functional blocks is transferred

and moved through these buses.

To transfer a single 32-bit data or data which is less than 32-bit, data bus dba or dbb is used

depending on the type of move and the register used for the move operation.

And to transfer 64-bit data, both the data buses dba and dbb are used in a combined form dbab.

Data bus dbab does not exist, but it is virtually formed by combining dba and dbb buses.

This dbab data bus is used to move data from accumulator to accumulator or loading/storing long

64-bit data to data memory.

dba_w[31:0]

dbab_w[63:0]

dba_r[31:0]

dbb_w[31:0] dbb_r[31:0]

Data memory (DM)

dba_a[31:0]

dbb_a[31:0]

dbab_r[63:0]

{dba_w, dbb_w}

{dba_r, dbb_r}

LPDSP32-V3 HW reference Manual Page 37 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

6. Data width conversion

In the different sections of the LPDSP32-V3 core there are various registers of different data

widths.

Data move bus dba and dbb is used for moving the data from source to destination.

For the move operation the source and destination can be a register or memory.

Therefore data conversion is very much necessary when data width of the source and destination

is not same, for example when:

- Moving the data from one register to other register of different data width.

- Moving the data to/from accumulator from/to data register or memory.

- Fetching the operands from 32-bit data registers for doing the ALU and MAC operation.

- Storing the result of ALU operation to data registers.

6.1 Conversion for register to register move

When moving the data from a register of width (< 32-bit) to a 32-bit register through one of data

buses, data is positioned and aligned to the LSB side. If the value is signed, sign bit is extended

till 32-bits, else in case of an unsigned value, zeros are padded on the MSB side.

Example:

ra0 = a1 //a1 (24-bit) assigned to ra0 (32-bit), since it is an unsigned value zeros are padded

However, when moving data from a register of width 32-bit to a register of width (< 32-bit),

through one of the data buses, value is extracted from LSB and remaining bits on the MSB side

are simply discarded.

Example:

a0 = ra1 //ra1 (32-bit) assigned to a0 (24-bit), 8 MSB bits are discarded.

6.2 Conversion for a move from move bus to accumulator

When the destination is a complete accumulator (axs, bxs) and the source is 32-bit, the operation

being a memory load or a register move,

Example:

axs0 = ra0 //assigning 32-bit register to accumulator

axs1 = [a0 + c0] //indirect load 32-bit from data memory to accumulator

This assignment uses only one of the data move buses depending on the destination accumulator.

The 32-bit value of the source is converted to complete 72-bit by sign extending with 8-bits and

padding 32 zeros on the LSB side.

S extn XXXXXXXX 00000000 XXXXXXXX

0 31 0 31 32 63 71

accum

(axs)

register

(ra0)

LPDSP32-V3 HW reference Manual Page 38 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

6.3 Conversion for a move from accumulator to move bus

When moving the data from a 72-bit accumulator to data move bus (dba, dbb) conversion

happens in the rounding and saturation units (sat0, sat1), which have been explained in the

earlier section.

6.4 Conversion for ALU inputs

Arithmetic and logical units (alu0, alu1) have 72-bit input and 72-bit output. When data operands

are fetched from the 32-bit data registers (RA, RB), first they are converted to a 72-bit value.

For the conversion 32-bit value is sign extended to 8-bits and 32 zeros are padded on the LSB

side.

Another conversion is required for the multiplier output to MAC input. When multiplication is done

in fractional mode (im = 0 default mode) a 64-bit product is generated, which is sign extended to

8-bits and shift left by 1 bit to get the correct result.

When multiplication is done in integer mode (im = 1) a 64-bit product is generated and sign

extended to 8-bits and output is the result itself.

6.5 Conversion for ALU outputs

After performing arithmetic and logical operations in alu0, output is available in the accumulator

(AX, BX) and result is assigned to one of the data registers (RA, RB). Here conversion is

performed. For the conversion, simply higher word of the accumulator is extracted and assigned

to the 32-bit data register. Remaining 8-bit extension part and LSB side lower word are discarded.

XXXXXXXX

0 31

32-bit register

S extn XXXXXXXX 00000000

0 31 32 63 71

Converted to 72-bit

To ALU input

S extn XXXXXXXX 00000000

0 31 32 63 71

72-bit accumulator

XXXXXXXX

0 31

32-bit extracted and assigned to register

To 32-bit data register

LPDSP32-V3 HW reference Manual Page 39 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

7. Address generation units

Since LPDSP32-V3 has load/store architecture, data is transferred from memory to register and

from register to memory. The load/store operation is part of a move operation.

There are two address generation units, called as address ALUs, (aalu0) and (aalu1).

Address generation unit generates address for the data memory to perform load/store operation.

Address ALU (aalu0) is used to generate address for the complete data memory (DM) space

including DM-A, DM-B and DMIO. In case of dual load/store operation address ALU (aalu1) is

used to generate address for the data memory DM-B space.

Address bus dba_a[23:0] is used to address complete data memory (DM) address space.

However address bus dbb_a[23:0] is used only for dual 32 bit data access.

Complete address space for the data memory is (0x000000 ~ 0xFFFFFF), 16777216 Bytes i.e.

16M Bytes. This address space is further divided in to 3 parts for the 3 different memories.

LDMA:

Called as long data memory-A; allocated address space is (0x000000 ~ 0x7FFFFF) 8MB.

Used for long long (64-bit), byte (8-bit), short (16-bit) and int (32-bit) data storage.

DMB:

Called as data memory-B; allocated address space is (0x800000 ~ 0xBFFFFF) 4MB

Used for byte (8-bit), short (16-bit) and int (32-bit) data storage.

DMIO:

Called as data memory-IO; allocated address space is (0xC00000 ~ 0xFFFFFF) 4MB

Used for byte (8-bit), short (16-bit) and int (32-bit) data storage

While performing single memory access complete address space is treated as contiguous and

single data element is accessed. In case of dual memory access, data memories DMA and DMB

are treated as separate memories and each can be accessed simultaneously to fetch two data

elements separately. It is not possible to access two data from the same memory i.e. either DMA

or DMB.

LPDSP32-V3 HW reference Manual Page 40 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

7.1 Block diagram address generation unit

`

Note: aalux is a functional unit to calculate address for immediate indexed addressing mode.

a0

a1

a2

a3

a4

a5

a6

a7

c0

c1

c2

c3

lb0

lb1

lsz0

lsz1

SP

aalu0 aalu1 aalux

aa0_a

aa0_b

aa0_d

aa0_e

aa1_a

aa1_b

aa1_d

aa1_e

aa0_i

index

aa0_c aa1_c
aa0_a2

aa0_a1

aa0_x

imm

 FF FF

Address bus (dba_a)

Address bus (dbb_a)

data bus (dba)

data bus (dbb)

ocd_aa_a

aa0_a

LPDSP32-V3 HW reference Manual Page 41 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

Following registers are used by address generation units (aalu0, aalu1) to independently

calculate the address for the data memory.

- Address registers (a0, a1, a2, a3, a4, a5, a6 and a7)

- Offset registers (c0, c1, c2 and c3)

- Stack pointer (sp)

- Loop address registers (lb0, lb1, lsz0 and lsz1) used for special (cyclic and bit reverse)

addressing modes

7.2 Address registers (a0 ~ a7)

There are 8 address registers (a0 ~ a7) of 24-bit each, which hold the address for the data

memory.

For a single data access (load/store) aalu0 uses all the address registers (a0 ~a7) for the address

calculation which addresses to complete data memory space.

However, for the dual data access (load/store) aalu0 uses address registers (a0~a3) which

addresses DMA address space and aalu1 uses address registers (a4 ~ a7) for the address

calculation to address the DMB address space.

7.3 Offset registers (c0 ~c3)

There are 4 offset registers (c0 ~ c3) of 18-bit each, which hold the offset value to update the

address register. All the offset registers can be used by aalu0 and aalu1.

7.4 Stack pointer (SP)

Stack pointer is of 24-bits and it is used to address data memory in SP indexed addressing mode.

Stack pointer holds the base address for the stack frame which is allocated in the data memory-A

(DMA).

After reset stack pointer is initialized to zero. Before using it the stack pointer value must be set.

0 23

Address register (a0~a7)

0 17

Offset register (c0~c3)

0 23

Stack pointer (sp)

LPDSP32-V3 HW reference Manual Page 42 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

7.5 Loop address registers

There are four loop address registers (lb0, lb1) of 24-bits and (lsz0, lsz1) of 18-bits each. These

are used for calculating the address in address generation unit when it is used in special

addressing modes like cyclic addressing and bit reverse addressing.

Registers (lb0, lb1) are called as loop start registers and used to store starting address of the loop

buffer which is addressed in cyclic or bit-reverse fashion.

Registers (lsz0, lsz1) are called as loop size registers and used to store the loop size. Loop end

address is calculated based upon this loop size register.

In special addressing mode there are two modes of operation mode-0 and mode-1. In mode-0

register pair (lb0 and lsz0) is used and in mode-1 register pair (lb1 and lsz1) is used.

Details of the special addressing modes are described in the later section [7.7.6].

7.6 Pipeline sequence for the address generation unit

For addressing the data memory, same address bus is used for both load and store operation.

- Address calculation for load and store operation is done in pipeline stage “D”.

- For the load operation address is placed on the address bus in pipeline stage “D”.

- However, for the store operation address is latched and delayed by 1 cycle and then it is

placed on the address bus in pipeline stage “E1”.

0 23

Loop start register (lb0~lb1)

0 17

Loop size register (lsz0~lsz1)

LPDSP32-V3 HW reference Manual Page 43 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

7.7 Addressing modes

Data memory (DM-A, DM-B and DM-IO) is byte(8-bit), short(16-bit) and int(32-bit) accessible.

Accessing long long (64-bit) data type is also supported, which is limited to only data memory

DM-A. Data memory DM-A is aliased to LDMA which is called as long data memory-A to store

long long variable data type.

Data is aligned byte wise in the data memory.

sr Access type Bits Offset to address (step value)

1 byte 8-bit 1

2 short 16-bit 2

3 integer 32-bit 4

4 long long 64-bit 8

Address generation unit supports following addressing modes to address data memory.

- Indirect addressing with post modification

- Immediate indexed addressing

- Stack pointer (SP) indexed addressing

- Direct addressing

- Cyclic addressing

- Bit reverse addressing

7.7.1 Indirect addressing with post modification

In this mode, address registers (a0 ~ a7) hold the base address and offset registers hold the

offset value to access the data memory. For single access, address registers (a0~a7) are used.

However, for dual access, address registers (a0~a3) hold the address for data memory-A; and

address registers (a4~a7) hold the address for data memory-B.

The address registers (a0 ~ a7) contain 24-bit unsigned values, used as pointers for the data

memory. And the offset registers (c0 ~ c3) are used as pointer modifiers which hold the offset

value. Offset value can be added to or subtracted from the base address.

In this mode, along with indirect addressing, post address modification is also performed

simultaneously in the address generation unit (aalu0, aalu1).

Post address modification modifies the pointer that is being used. So, at the end of the processor

cycle a new value for the pointer is stored back in the same address register which was used for

indirect addressing.

Example:

ra0 = [a0 + c0] // indirect load with post address modification

[a4 + c0] = axs1 // indirect store with post address modification

LPDSP32-V3 HW reference Manual Page 44 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

7.7.2 Immediate indexed addressing mode

In this mode, address registers (a0 ~a7) hold the base address and the offset is an immediate

value to access the data memory. This addressing mode is used only when single data is

accessed. The address registers (a0 ~ a7) contain 24-bit unsigned values, which are used as

pointers for the data memory and the immediate value is used as an offset to the base address

contained in the address register.

In this addressing mode, pointer value in an address register does not get modified.

Example:

nop; ra0 = a0[4] // immediate indexed load

nop; a0[4] = axs1 // immediate indexed store

In the above example, assume value a0 = 0x000000 and offset is 4.

address = base_addr + offset

So the effective address (0 + 4 = 4) is calculated in aalux and address is put on the address bus

(dba_a).

7.7.3 Stack pointer (SP) indexed addressing mode

This addressing mode is used to address the stack frame, which usually resides in the data

memory-A (DMA). This mode of addressing is used when single data is accessed from stack area,

also called as spill area. Stack pointer holds the base address (24-bit unsigned value) to access

data from the stack frame which resides in data memory (DMA). And the immediate value is an

offset to the base address.

In this addressing mode, value of the stack pointer does not get automatically updated. An

instruction to update the stack pointer (SP) should be used to modify SP. After reset stack pointer

is initialized to zero. First it should be assigned a value before using it.

Example:

nop; sp[4] = ra0 //push ra0 to stack frame addressed by SP with offset of 4

nop; rb0 = sp[4] //pop to rb0 from stack frame addressed by SP with offset of 4

In the above example, assume sp is initialized to 65520 (sp = 65520) and offset is 4.

address = base_addr + offset

So effective address (65520 + 4 = 65524) is calculated in aalu0 and address is put on address

bus (dba_a).

Note:

- Assignment to SP should be aligned at multiples of 8 (eg. sp = 65528)

- Stack frame allocation should be within DMA address range

LPDSP32-V3 HW reference Manual Page 45 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

7.7.4 Definition of stack frame

Stack frame is initialized in the (lpdsp32.bcf) file and stack grows downward from the base

address defined by the stack pointer.

Definition of stack area:

_stack DMA 0xe000 8184

The above definition reserves the stack area from address 0xe000 plus 8184 (8K) locations.

In this case SP will be assigned with value sp = 65528 (0xFFF8).

Stack frame is used to store local variables, building the arguments and to backup registers

during context switching, also called as spilling.

DMA

SP initialized to 0xFFF8

0xE000

Local area

spill area

argument build area

Local area

spill area

argument build area

Caller’s stack frame

Callee’s stack frame

Stack grows down

LPDSP32-V3 HW reference Manual Page 46 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

7.7.5 Direct addressing

In the direct addressing mode, immediate address for the data memory is directly provided in the

instruction itself. Immediate value is 24-bit unsigned; with that complete data memory address

space can be addressed.

Direct addressing mode is only available in the long instructions.

Example:

ra0 = [0x8FFFFF] //load data from DM to ra0 (address is 24-bit unsigned immediate value)

rb0 = [0xC0000F] //load data from DM to rb0

[0xC0000E] = rb0 //store rb0 to DM

[0x7FFFFE] = rb1 //store rb1 to DM

7.7.6 Cyclic addressing

Cyclic addressing and bit reverse addressing modes are the special kinds of addressing modes

available in LPDSP32-V3.

When cyclic addressing mode is used, cyclic buffer addressing gets simplified for doing the filter

operation (FIR/IIR). The biggest advantage of cyclic addressing is to avoid software overhead for

checking the pointer values after every update.

There is a special hardware for address generation, which generates address for the buffer in

cyclic order. This hardware wraps around the pointer, once it goes beyond the buffer boundary.

A cyclic buffer is a set of memory locations that stores data in the data memory. An index pointer

steps through the buffer, being post-modified and updated by the addition of a specified value

(positive or negative) for each step. If the modified address pointer falls outside the buffer

address range, the length of the buffer is subtracted from or added to the value, as required to

wrap the index pointer back to the start of the buffer. There are no restrictions on the value of the

base address for a cyclic buffer.

To understand cyclic addressing, see the diagram on the next page.

LPDSP32-V3 HW reference Manual Page 47 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

For example:

Buffer length (size) = 16; start_address = 0; modifier offset (step) = 3

Input cyclic buffer: In_buff; Output buffer: out_buff

Cyclic addressing mode operation:

This addressing mode is selected when value inside the loop size register (lsz0/lsz1) is not equal

to zero. In this mode address is calculated relatively (base + offset). Loop start address is stored

in register (lb0 or lb1) and loop size is stored in (lsz0 or lsz1) either of these registers are selected

according to mode-0 and mode-1 operation.

Where,

(+%0): special address mode-0, means start address is in lb0 and loop size is in lsz0

(+%1): special address mode-1, means start address is in lb1 and loop size is in lsz1

To utilize this address mode in “C” code an intrinsic function called as “cyclic_add” is provided.

This addressing mode can be used for both single and dual load /store operation.

0x00000000 00

0x11111111 04

0x22222222 08

0x33333333 12

0x44444444 16

0x55555555 20

0x66666666 24

0x77777777 28

0x88888888 32

0x99999999 36

0xaaaaaaaa 40

0xbbbbbbbb 44

0xcccccccc 48

0xdddddddd 52

0xeeeeeeee 56

0xffffffff 60

0x00000000

0x11111111

0x22222222

0x33333333

0x44444444

0x55555555

0x66666666

0x77777777

0x88888888

0x99999999

0xaaaaaaaa

0xbbbbbbbb

0xcccccccc

0xdddddddd

0xeeeeeeee

0xffffffff

0x00000000

0x11111111

0x22222222

0x33333333

0x44444444

0x55555555

0x66666666

0x77777777

0x88888888

0x99999999

0xaaaaaaaa

0xbbbbbbbb

0xcccccccc

0xdddddddd

0xeeeeeeee

0xffffffff

START

0x00000000

0x33333333

 0x66666666

 0x99999999

 0xcccccccc

 0xffffffff

 0x22222222

 0x55555555

 0x88888888

0xbbbbbbbb

 0xeeeeeeee

 0x11111111

 0x44444444

 0x77777777

 0xaaaaaaaa

 0xdddddddd

In_buff (pass-1) In_buff (pass-2) In_buff (pass-3) out _buff

00

04

08

12

16

20

24

28

32

36

40

44

48

52

56

60

00

04

08

12

16

20

24

28

32

36

40

44

48

52

56

60

00

04

08

12

16

20

24

28

32

36

40

44

48

52

56

60

LPDSP32-V3 HW reference Manual Page 48 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

Address generation for cyclic addressing mode

This is the functional macro for cyclic address generation in aalu.

Example:

24 lb0 = -8388608 //cyclic buffer start pointer

26 a1 = 64

28 a2 = 0

30 lsz0 = 64 //cyclic buffer size (lsz0 != 0)

32 lp 16 5 //hw_loop lc = 16, loop size is 5

34 a0 = lb0 //delay slot-1

35 c0 = 4; c1 = 12 //delay slot-2

37 a3 = a0 + 0 //hw_loop starts here

38 ra0 = [a0+%0c1] //cyclic addressing mode

39 [a2+c0] = ra0

40 [a1+c0] = a3 //hw_loop ends here

41 ret

Contents of the HW loop registers at the first iteration are:

LC = 16 LSTK = 37 LPA = 40

cyclic_add (ptr, step, buff_strt_addr, buff_size)

{

start = buff_strt_addr; //cyclic buffer start address

result = ptr + step; //pointer calculation

end = buff_strt_addr + buff_size; //end address calculation

if (step < 0 && result < start) //step is negative

result = result + size; //increment

else if (step >= 0 && result >= end) //step is positive

result = result – size; //decrement

}

LPDSP32-V3 HW reference Manual Page 49 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

7.7.7 Bit reverse addressing

The bit reverse addressing mode simplifies the address calculation for the FFT (Fast Fourier

Transform) algorithm. There is a special hardware provided in the address generation unit to

generate address for the data buffer in bit reverse fashion. Therefore using this addressing mode

reduces software overhead of rearranging or reordering the data in the data buffer to do FFT

operation.

In the bit reverse addressing mode, address generation unit selects 16-bits from 24-bit address

and does the bit reverse operation.

Bit reverse addressing mode operation:

This addressing mode is selected when value inside the loop size register (lsz0/lsz1) is equal to

zero. To understand the concept of bit reverse addressing mode, please see the below table. For

the sake of simplicity please assume pointer value is 4-bit and step value is 4.

Access Step Rev(access) Rev(step) result Bit rev addr = rev(result)

Start(1000) 0100 0001 0010 0011 1100

1100 0100 0011 0010 0101 1010

1010 0100 0101 0010 0111 1110

1110 0100 0111 0010 1001 1001

1001 0100 1001 0010 1011 1101

1101 0100 1011 0010 1101 1011

1011 0100 1101 0010 1111 1111

1111 0100 1111 0010 10001 1000

This is the functional macro for bit reverse address generation in aalu.

reverse_add (ptr, step, buff_strt_addr) {

result = reverse (reverse (ptr) + reverse (step))

}

LPDSP32-V3 HW reference Manual Page 50 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

Example:

Buffer length (size) = 16; start_address = 0; modifier offset (step) = 8

Input buffer: in_buff; Output buffer: out_buff

To utilize this addressing mode in “C” code an intrinsic function called as “reverse_add” is provided.

This addressing mode can be used for both single and dual load /store operations.

0x00000000 00

0x11111111 04

0x22222222 08

0x33333333 12

0x44444444 16

0x55555555 20

0x66666666 24

0x77777777 28

0x88888888 32

0x99999999 36

0xaaaaaaaa 40

0xbbbbbbbb 44

0xcccccccc 48

0xdddddddd 52

0xeeeeeeee 56

0xffffffff 60

in_buff

00

32

16

48

08

40

24

56

04

36

20

52

12

44

28

60

Order of data access

0x00000000 00

0x88888888 04

0x44444444 08

0xcccccccc 12

0x22222222 16

0xaaaaaaaa 20

0x66666666 24

0xeeeeeeee 28

0x11111111 32

0x99999999 36

0x55555555 40

0xdddddddd 44

0x33333333 48

0xbbbbbbbb 52

0x77777777 56

0xffffffff 60

out_buff

LPDSP32-V3 HW reference Manual Page 51 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

Example:

24 a1 = 0 //buffer start address

26 a4 = -8388608

28 lsz0 = zero //select bit reverse mode (lsz0 = 0)

29 lp 16 5 //hw_loop LC = 16, loop size = 5

31 a0 = 64 //delay slot-1

33 c0 = 4; c1 = 32 //delay slot-2

35 [a0+c0] = a1 //hw_loop starts here

36 nop

37 bxs0 = [a1+%0c1] //bit reverse addressing

38 [a4+c0] = bh0 //hw_loop ends here

39 ret

Contents of the HW loop registers at the first iteration are:

LC = 16 LSTK = 35 LPA = 38

Limitations:

- Array should be aligned at power of 2

- Maximum addressable array size allowed is 16K (Maximum 16384 point FFT)

LPDSP32-V3 HW reference Manual Page 52 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

8. Program control unit (PCU)

The program control unit (PCU) controls the flow or sequence of the instructions in the program.

Controlling involves fetching the instruction from the program memory and issuing it to the

instruction decoder in a pipelined manner. While a new instruction is being fetched, the previously

fetched instruction is decoded. It also involves handling of control instructions like jump,

subroutine call, hardware loop and interrupts by keeping track of status flags in the status register

(SR).

8.1 Registers used for PCU

Program control unit consists of various registers which are used for program sequencing.

- Program counter (PC)

- Status register (SR)

- Link register (LR)

- Registers used for controlling hardware loop

Loop counter pointer (LCP)

Loop count register (LC)

Loop start register (LSTK)

Loop end register (LPA)

- Registers used for interrupt controller

Interrupt link register (ILR)

Interrupt mask register (IMSK)

Interrupt status register(IRQ_STAT)

8.1.1 Program counter (PC)

The program counter (PC) is a 24-bit register which is used for addressing the program memory

(PM) from where the instructions need to be fetched.

After the core reset, program counter is initialized to zero and starts fetching the instructions from

PM address zero. Program counter (PC) is not accessible to the user through an instruction,

because there is no such instruction available to read from or write to the PC. Program counter

can only be modified by using jump instruction. Of course the user can monitor this register in the

instruction set simulator and the on chip debugger.

0 23

PC

LPDSP32-V3 HW reference Manual Page 53 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

8.1.2 Status register (SR)

The status register (SR) is of 11-bit. This register is used for controlling the mode of core

operations and storing the status flags (v, n, z).

10 9 8 7 6 5 4 3 2 1 0

s0 r0 im0 ie0 s r im ie v n z

srmode0 srmode srflags

Bitwise descriptions of status register:

Sr. SR bit Bit no. Description

1 z 0 Zero flag

2 n 1 Negative flag

3 v 2 Overflow flag

4 ie 3 Interrupt enable, 1: enable 0: disable

5 im 4 Integer/fractional multiplier mode selection

0: fractional (accumulator << 1)

1: integer

6 r 5 rounding, 1: enable 0: disable

7 s 6 saturation, 1: enable 0: disable

8 ie0 7 Backup (ie)

9 im0 8 Backup (im)

10 r0 9 Backup (r)

11 s0 10 Backup (s)

After core reset, the status register is initialized to zero. Control bits (srmode bits) are enabled in

lpdsp32_init.s which contains the initialization code before starting the main program.

Except srflags, each bit of the status register is independently accessible like

ie = 1 //enabling interrupt

r = 1 //enabling rounding

s = 1 //enabling saturation

By default srmode bit im = 0, that means multiplication is done in fractional mode.

Other control bits srmode0 are used for keeping the backup of srmode bits during interrupts.

LPDSP32-V3 HW reference Manual Page 54 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

8.1.3 SR flags and condition codes

In the status register there are 3 status flags (srflags) called zero flag (z), negative flag (n) and

overflow flag (v). Out of these, the overflow flag (v) is not being used and it always remains zero.

This is because 8 overflow bits already exist in the accumulator to take care of overflow. Earlier it

was used for storing the flag for accum_t (72-bit) data type operations.

Zero flag (z) and negative flag (n) are generated by the alu0 operations. The only operations,

which generates the srflags are signed compare (cmp), unsigned compare (cmpu), division (div)

and bit test (bt).

These srflags (v, n, z) are accessible for reading and writing through move operations.

Example:

flags = 0x7 //enabling all three flags (v, n, z)

ra0 = flags //reading srflags

sr = 0x7FF //writing ‘1’ to all 11-bits of status register

rb0 = sr //reading all 11-bits of status register

These srflags are translated to condition codes which are later used by the program controller

unit to control the execution of conditional jump instructions.

Sr. (cc) Notation Explanation

1 z 1: When operand-1 equal to operand-2 else 0

2 nz 1: When operand-1 not equal to operand-2 else 0 (z = 0)

3 s Negative value (1: when N flag = 1)

4 ns Not negative value (1: when N flag = 0)

5 p Positive value (1: when N & Z flags = 0)

6 np Not positive value (1: when N flag = 1 or Z flag = 1)

cceval

cc_r

tcc

V N Z

0 1 2

a0_fo_out

srFlags SR register

tcc: The signal used by controller to decide to take a jump or not

LPDSP32-V3 HW reference Manual Page 55 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

8.1.4 Condition code evaluation

All the condition codes are translated and computed in the functional unit called (cceval).

Generation of condition code is shown in the diagram below,

Below are the examples of using condition codes,

Example:

if (np) jps 11 //short conditional jump

if (nz) jpsdb 103 //short conditional jump with delay slot

if (z) jp 15348 //direct jump

if (nz) jpdb 15464 //direct jump with delay slot

8.1.5 Link register (LR)

There is one link register (LR) which is of 24-bit. It is used to store the return address

(incremented PC) when executing subroutine call instructions.

Example:

26 nop; ra0 = 0xf

28 call 0xff

30 nop; ra0 = ra1

In the above example, call instruction is at location 28. Therefore link register stores the value 30,

which is return address after the subroutine call.

After core reset, link register (LR) is initialized to zero.

Since there is only one link register, nested subroutine call is not supported.

Z

N

V

z

nz

s

ns

p

np
‘0’

0 23

LR

LPDSP32-V3 HW reference Manual Page 56 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

8.1.6 Hardware loop stack registers

Hardware loop is implemented and controlled by sets of hardware loop registers also called as

register stack. This register stack has a depth of 4; meaning that hardware loop nesting up to 4

levels is supported by the hardware.

When a hardware loop is initiated, the loop start address, loop count and loop end address are

pushed on to the registers LSTK (24-bit), LC (16-bit) and LPA (24-bit) respectively. Register stack

is pointed by the loop counter pointer LCP (3-bit), which is used to count the loop levels.

These are the hardware loop registers:

After core reset the loop counter pointer (LCP) is initialized to (LCP = 4), that means no hardware

loop are initiated. And other registers LC, LSTK and LPA are initialized with the value zero.

LCP value Nesting level

100 (4) Hardware loop is not initiated (Default)

011 (3) Nesting level-4 (Top level)

010 (2) Nesting level-3

001 (1) Nesting level-2

000 (0) Nesting level-1 (Inner most level)

Details of the hardware loop will be explained in a later section.

LC [3] LSTK [3]

LC [2]

LC [1]

LC [0]

LSTK [2]

LSTK [1]

LSTK [0]

LPA [3]

LPA [2]

LPA [1]

LPA [0]

LCP

0 15 23 0 23 0

0 2

Loop count register Loop start register Loop end register Loop counter pointer

LPDSP32-V3 HW reference Manual Page 57 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

8.2 Other registers in the controller

Other than the list of earlier mentioned registers, there are some more registers used in the

controller.

- Instruction fetch buffer; reg_if0 (20-bit), reg_if1 (20-bit) and reg_ir1 (20-bit) for saving second

half instruction word from the complete 40-bit fetched instruction.

- Instruction register (IR), controller fetches the 40-bit instruction from the program memory

(PM) and passes it to the instruction decoder via 40-bit output signal (trn_IR_D_out).

This signal (trn_IR_D_out) is formed by combining two 20-bit registers.

 Again, inside the instruction decoder this instruction register is registered and prepared into

two copies (reg_IR_D and reg_IR_E1). Register (reg_IR_D) is used to control the “D”/decode

stage operations and (reg_IR_E1) is used to control “E1”/execution stage operations.

8.3 Classification of short and long instructions in the decoder

Two instruction widths are supported by LPDSP32-V3, short (20-bit) and long (40-bit).

To maintain a constant issue rate of one 40-bit instruction word per clock cycle, one 40-bit

instruction word must be fetched in each cycle. In order to obtain a simple implementation of the

program memory (PM), instructions are always fetched as 40-bits and at even addresses.

Therefore, it is not possible to fetch individual 20-bit short instructions separately.

Pre-decoding of the instruction is first done in the controller to classify the instruction types.

If bit IR[19] and IR[18] are both zero then the instruction type is (A_short).

Else if IR[19] is one then the instruction type is (M_short).

Otherwise the instruction is a long instruction.

LPDSP32-V3 HW reference Manual Page 58 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

8.4 Program control unit (PCU) action sequence

Program memory (PM) is a synchronous memory; where address is latched or registered first. At

the end of one cycle a new address is registered and in the next cycle the instruction at that

address appears on the output port of PM.

For single cycle instructions, this is the action sequence of the program controller.

- An instruction is fetched from PM. This instruction is stored in IR, reg_if0, reg_if1and reg_ir1.

- The instructions that are present in the IR registers are decoded.

For each version of IR (reg_IR_D, reg_IR_E1) the control signals enable the actions for the

corresponding pipeline stage.

- The program counter (PC) value is incremented in steps of 0, 1 or 2.

The new value is stored back in the PC register

- In order to break the PM critical path(timing), from PM read data to PM read address, the

program counter value to be sent to the PM is incremented in steps of 1, 2 or 3, independent of

the current PM read data, in the Next PM addr logic as shown in figure. Increment steps 1, 2 or

3 will be depending on alignment or jump. A mismatch in the actual PC increment and the

increment value for the PM address will be handled by the controller.

Deviations from this basic PC sequence occur when a multi cycle instruction, delay slot

instruction, or a control flow instruction is executed or when interrupts occur.

 Fig: Program control unit

Program

Memory

(PM)

PC

addr_reg

reg_if0[19:0] reg_if1[19:0]

reg_IR_D[39:0]

reg_IR_E1[39:0]

reg_IR_D_out

reg_ir1[19:0]

trn_IR_D[39:0]

reg_IR_E1_out

D_enabling_out

E1_enabling_out

Decoder

Instruction issuer

SR

LR ILR

IMSK

LC[3]

LC[2]

 LC[1]

 LC[0]

LSTK[3]

LSTK[2]

 LSTK[1]

 LSTK[0]

LPA[3]

LPA[2]

 LPA[1]

 LPA[0]

LCP

Next PC

logic

PM addr. bus

(pb_a)

PM data rd

(pb_r_ext)

DBA

Interrupt

Controller

irq_inp[14:0]

iack_out[14:0]

Next PM

Addr logic

LPDSP32-V3 HW reference Manual Page 59 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

8.5 Multi cycle instruction

Due to pipelined action, a multi cycle instruction takes more than one cycle for instruction

execution. Typically control instructions are multi cycle instructions, because these instructions

change the normal flow of program sequence and the pipeline needs to be flushed and refilled

due to change in the program counter. For example, a conditional jump instruction takes two

cycles for execution when the condition is true, else it takes one cycle.

When a multi cycle instruction is issued, the next instruction is issued n cycles later. The PCU

controls the issuing of multi cycle instructions by means of the Boolean signal (issue_sig_in).

When executing multi cycle instructions, issue_sig_in is always logic 0. When a multi cycle

instruction is issued, a signal (multicycle_dlyslot) in the controller becomes logic 1.

When the specified number of cycles are over, multicycle_dlyslot becomes 0 again.

The multicycle_dlyslot signal will be logic 1 for (n – 1) cycles. An instruction that was fetched may

only be issued when issue_sig_in is logic 1. When the issue_sig_in is logic 0, the instruction that

was fetched in the previous cycle is not issued, but is kept in the fetch buffer register reg_if0,

reg_if1.

8.6 Delay slot instruction

Since the multi cycle instructions (jump) can take a number of cycles before the jump is taken, in

these cycles other instructions can be executed. This is an alternate approach of executing

instructions instead of stalling the processor during the multi cycle instructions. Instruction

execution is continued in a normal way while the jump is taken. The (jpdb) instruction is an

example of an instruction with delay slots.

During the delay slots and multi-cycle instructions, interrupt is disabled.

Below signals are used to disable the interrupt during delay slot operation,

Signal name: diid: disables the interrupt in D stage

Signal name: diie1: disables the interrupt in E1 stage

8.6.1 Instructions inside the delay slot

Not all the instructions can be used as delay slot instructions. The instructions which take single

cycle are allowed in the delay slot. Multi cycle instructions are not allowed to be kept in the delay

slot. When there is no instruction to put in delay slot, a no operation (NOP) instruction is

introduced.

LPDSP32-V3 HW reference Manual Page 60 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

8.7 Multi cycle and delay slot instructions

This table gives an overview of different multi cycle instructions present in the LPDSP32-V3 in a

single look. The table also indicates number of cycles required for executing the instruction and

number of delay slots. When there is a delay slot, number of delay slots is number of cycles

minus 1. Other than these instructions all other instructions take a single cycle for executing.

Sr. Instruction Description No. of cycles No. of delay slots

1 jps Relative jump 2 NA

2 jpsdb Relative jump with delay slot 2 1

3 if (cc) jps Conditional short jump:

Condition is true

Condition is false

2

1

NA

NA

4 If (cc) jpsdb Cond. short jump with delay slot

Condition is true

Condition is false

2

1

1

1

5 jp Direct jump 2 NA

6 jpdb Direct jump with delay slot 2 1

7 if (cc) jp Direct cond. jump:

Condition is true

Condition is false

2

1

NA

NA

8 If (cc) jpdb Direct cond. jump with delay slot

Condition is true

Condition is false

2

1

1

1

9 jp [a] Indirect jump 3 NA

10 jpdb [a] Indirect jump with delay slot 3 2

11 call Direct subroutine call 2 NA

12 calldb Direct subroutine call with delay slot 2 1

13 call [a] Indirect subroutine call 3 NA

14 calldb [a] Indirect subroutine call with delay slot 3 2

15 ret Subroutine return 3 NA

16 retdb Subroutine return with delay slot 3 2

17 reti Interrupt return 3 NA

18 retidb Interrupt return with delay slot 3 2

19 sint Software interrupt/interrupt 2 NA

20 powerdown Core Halt 2 NA

21 lp Hardware loop 3 2

22 swbreak Software break 2 NA

LPDSP32-V3 HW reference Manual Page 61 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

8.8 Handling unaligned jump targets

In the example below, assembly instructions (A, B, CD, E, FG and H) are stored on the PM at

start address 10. Instruction A, B, E and H are 20bit instructions and instruction CD & FG are

40bit instructions; which are stored on program memory (PM) as shown below. PM consists of

two parts PM0 and PM1 which cannot be accessed independently, partitioning is done at output

of the PM.

PCU will first fetch from PM at address 10. This will result in a long instruction word that contains

two short instructions A and B. Instruction A can then be issued immediately, while instruction B

can be saved in a buffer register. In order to issue instruction B, a new instruction fetch is not

needed. Next the long instruction at PM[12] is fetched and issued. Then the instruction word at

PM[14] is fetched. As E is a short instruction, F is again saved in the buffer register. Note that F is

the first part of the long instruction FG. Before issuing instruction FG, first instruction word at

PM[16] is fetched. It is also possible that there is a jump to instruction FG. In that case PM[14] is

fetched to obtain the first part F. As the instruction is still incomplete, it cannot be issued; first

PM[16] has to be fetched to obtain the second part G. Therefore, in the case of a jump to a long

instruction at an unaligned target address, one cycle is lost in which no instruction is issued and

stall signal is issued in order to stall the pipeline.

Addr. PM0 PM1

10 A B

12 C D

14 E F

16 G H

Normally, compiler tries to align the instructions such that there is no or rare unaligned jump

target. Therefore, this is a very rare case.

In case of unaligned jump target, below is the instruction issue sequence in the controller.

IR[39:0] => {ii0[19:0], ii1[19:0]} => {A, M_nop} or {A_nop, M} => {is0[19:0], is1[19:0]}

When PC is aligned and no jump,

{is0[19:0], is1[19:0]} <= {if0[19:0], if1[19:0]}

In case of unaligned jump target, if0 is discarded and replace with if1 and stall signal is issued

{is0[19:0], is1[19:0]} <= {if1[19:0], if1{19:0}}

And in case of aligned jump target, if0 is discarded and replace with reg_ir1, which is used for

storing second half word.

{is0[19:0], is1[19:0]} <= {reg_ir1[19:0], if0[19:0]}

Unaligned long instruction word

LPDSP32-V3 HW reference Manual Page 62 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

8.9 Hardware loop

To avoid software overhead for looping over a set of instructions, hardware looping is supported.

This is also called zero overhead looping. Hardware loop is completely controlled by hardware

and can be nested up to 4 levels.

With the hardware loop instruction (lp), fast looping is possible over the set of instructions within a

loop body; without any additional cycles being used for performing the looping task.

Hardware loop executes the number of iterations which are pre-specified and controlled by

specific hardware. Status of the hardware loops are stored in a set of registers dedicated for

hardware loops.

As described earlier, these are the registers used for controlling the hardware loop.

Register Description No. of registers Bits Purpose

LCP Loop counter

pointer register

1 3 Keeps the track of number of hardware loops that are

active, and to address the LSTK, LPA and LC

registers. LCP has an initial value of 4, which indicates

that no hardware loop is active.

LC Loop count

register

4 16 Stores the remaining no. of iterations of the loop.

LC is a register file with 4 registers, one for each loop

level.

LSTK Loop start register 4 24 Stores the address of the first instruction in a loop.

LSTK is a register file with 4 registers, one for each

loop level.

LPA Loop end register 4 24 Stores the address of the last instruction in a loop.

LPA is a register file with 4 registers, one for each loop

level.

LPDSP32-V3 HW reference Manual Page 63 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

Loop counter pointer (LCP) indicates the number of hardware loops active and points to the

register file to be used as shown in the below figure.

There are two delay slots for a hardware loop instruction, which means that after a hardware loop

(lp) instruction another two instructions can be executed. If there are instructions available which

can be kept in delay slots, they will be placed else nops will be inserted.

8.9.1 Hardware loop control

Hardware looping is also managed by the controller.

These are the operations performed in the controller to control hardware loops,

- Hardware loop end detection. When the program counter (PC) equals the loop end address,

loop end is detected.

- When loop end is detected, PC jumps back to the loop start address (LSTK) and decrements

the loop count (LC), until the loop iterations are finished and LC becomes 1. Once all the

iterations of a loop are over, LCP is incremented by 1.

- It checks whether a hardware loop is active or not by checking the LCP value. If value in LCP

is less than 4, then a do loop is active, so it sends the current value of LCP(pointer) to the

LSTK, LPA and LC registers to get the corresponding values.

There are few control hazards, related to the hardware loop. These hazards will be discussed in

the hazard section [12].

LC [3] LSTK [3]

LC [2]

LC [1]

LC [0]

LSTK [2]

LSTK [1]

LSTK [0]

LPA [3]

LPA [2]

LPA [1]

LPA [0]

LCP = 3

0 15 23 0 23 0

0 2

Loop count register Loop start register Loop end register

Loop counter pointer

lcpincr(+/- 1)

LPDSP32-V3 HW reference Manual Page 64 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

Example:

24 lp 2 17 //top level loop runs 2 times, loop body size is 17

26 ra0 = [0] //delay slot-1

28 nop; nop //delay slot-2

30 lp 4 11 //level-3 loop runs 4 times,

32 nop //delay slot-1

33 nop //delay slot-2

34 lp 6 6 //level-2 loop runs 6 times

36 nop //delay slot-1

37 nop //delay slot-2

38 lp 8 1 //level-1 innermost loop runs 8 times, loop body size is 1

40 nop //delay slot-1

41 nop //delay slot-2

42 ra0 = ra0 + 1 //instruction inside the loop

43 nop

44 nop

LPDSP32-V3 HW reference Manual Page 65 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

8.10 Interrupt controller

Interrupt controller is a part of program controller unit (controller). There are 15 interrupt inputs for

the interrupt controller called as irq_inp_in[14:0]. Hardware interrupt can be triggered by using

one of these irq_inp_in pins. Fixed interrupt priority is assigned to the each interrupt input.

To trigger software interrupt, there is an instruction available called “sint”.

8.10.1 Interrupt vector table

This is the interrupt vector table with the 15 interrupts.

An interrupt forces an interrupt subroutine call to predefined address called an interrupt vector.

Interrupt vector table always resides in the initial part of program memory (PM) starting from

address 0. The instructions inside the vector table should be either absolute jump (jp) or interrupt

return (reti) instructions. There should not be any conditional jump or delay slot instruction used in

the vector table. Vector address 0 has same effect as reset, in which program counter (PC) is set

to zero.

Interrupt request no. irq pin Vector Address comments

0 - 0 Reset

1 irq_inp_in[0] 2 Interrupt 1

2 irq_inp_in[1] 4 Interrupt 2

3 irq_inp_in[2] 6 Interrupt 3

4 irq_inp_in[3] 8 Interrupt 4

5 irq_inp_in[4] 10 Interrupt 5

6 irq_inp_in[5] 12 Interrupt 6

7 irq_inp_in[6] 14 Interrupt 7

8 irq_inp_in[7] 16 Interrupt 8

9 irq_inp_in[8 18 Interrupt 9

10 irq_inp_in[9] 20 Interrupt 10

11 irq_inp_in[10] 22 Interrupt 11

12 irq_inp_in[11] 24 Interrupt 12

13 irq_inp_in[12] 26 Interrupt 13

14 irq_inp_in[13] 28 Interrupt 14

15 irq_inp_in[14] 30 Interrupt 15

LPDSP32-V3 HW reference Manual Page 66 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

8.10.2 Interrupt circuit

Interrupt inputs are level sensitive, when there is a high level on one of the irq_inp_in pins,

corresponding interrupt is accepted and acknowledged if certain conditions are satisfied.

It is recommended to synchronize the interrupts with respect to the system clock before being

given to the core.

To understand the interrupt circuit, see the figure below.

irq_inp_in

trn_IR_D_out

irq
imsk_r_in

acpt_int_nr

issue_sig_in

dmac_req_in

interrupted_var

proc_stall

Interrupt
priority
logic

> 0 ?

dbg_req_in

diid_in,

diie_in

Inst.
dec.

proc_stall

sr_IE_in

multicycle_dlyslot

dbg_mod_var

e

dmac_mode_var

iack_out_out

If interrupt is accepted
corresponding. ack is
generated.

If interrupt is
accepted, a
software interrupt
inst. (sint) with the
corresponding.
interrupt value is
sent to the inst.
decoder

irq_stat_w_out

LPDSP32-V3 HW reference Manual Page 67 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

These are the registers used by the interrupt controller.

8.10.3 Interrupt link register (ILR)

There is a single interrupt link register (ILR) which is of 24-bit. When an interrupt is occurred it is

used to store the return address after the interrupt subroutine call.

After the core reset interrupt link register (ILR) is initialized to zero.

8.10.4 Interrupt mask register (IMSK)

There is a single interrupt mask register (IMSK) which is of 15-bit. By setting the respective bits in

the interrupt mask register (IMSK) to ‘0’, disables the particular interrupt. After disabling an

interrupt, if the interrupt occurs, it will be serviced only after enabling interrupt mask bit to ‘1’ again.

When interrupt mask bit is ‘1’, if there is a corresponding pending interrupt, it will be served.

After the core reset interrupt mask register is initialized to (imsk = 0x7FFF).

Interrupt mask register is accessible to the user; values can be written or read from the register.

Example:

imsk = 0x7FFF //setting all bits high

imsk= 0x7FFE //clearing LSB bit

ra0 = imsk //reading imsk register

At the “C” level this register can be accessed via inline functions. To write a value in the imsk

register there is an inline function called set_interrupt_mask(int m) and the inline function to read

the register is get_interrupt_mask().

8.10.5 Interrupt status register (IRQ_STAT)

Interrupt status register gives the status of the present interrupt inputs irq_inp_in of the core. This

register can be read by the software using the inline function get_irq_stat().

0 23

ILR

0 1 2 3 4 5 6 7

IMSK

8 9 10 11 12 13 14

0 1 2 3 4 5 6 7

IRQ_STAT

8 9 10 11 12 13 14

LPDSP32-V3 HW reference Manual Page 68 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

8.10.6 Enabling and disabling the interrupts

Interrupts can be enabled by setting the interrupt enable bit (ie = 1) and can be disabled by

clearing interrupt enable bit (ie = 0). Interrupt enable bit (ie) is a srmode bit which is part of the

status register (SR). Interrupt is enabled in the initialization code specified in (lpdsp32_init.s)

before entering into the main program.

At the “C” level this bit of the srmode can be accessed via inline functions. To enable the

interrupts there is an inline function called enable_interrupts() and to disable the interrupts the

inline function is disable_interrupts ().

Example:

ie = 1 //interrupt is enabled

nop

ie = 0 //interrupt is disabled

nop

8.10.7 Software interrupt

Software interrupt can be triggered by using the instruction (sint). Functional behavior of the

software interrupt instruction is similar to hardware interrupt triggered by any of the irq_inp_in pins.

Software interrupts cannot be masked by setting IMSK or IE registers, hence also known as non

maskable interrupts.

Example:

sint 4 //4 is vector table address, range is (0, 2, 4, 6, 8, 10, 12, …., 28, 30)

For the detailed explanation of the interrupt controller and handling of interrupt service routine

please refer the interrupt support manual [Ref.].

LPDSP32-V3 HW reference Manual Page 69 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

8.11 Halting the core

This is the very essential feature for saving the core power. To halt the core, the instruction

(powerdown) is used. If powerdown instruction is executed, core will be halted and

(powerdown_out) signal is asserted. Core operation can be resumed via raising the interrupts or

by raising the resume input pin.

During powerdown, an external logic is required to enable or disable the clock to the core. The

external logic should be monitoring resume and irq_inp_in pins continuously. irq_inp_in and

resume signals are asynchronous and need to be synchronized outside of the core. As soon as

the powerdown_out signal is asserted, the clock to the core can be completely disabled, provided

the external logic can register the resume or interrupt pins and generate the clock to the core

before giving the registered resume or interrupt signal to the core, to come out of powerdown.

(Synchronization of the signals can be done by registering the signals two times with respect to

the core clock.)

powerdown is a multi cycle operation and it takes 2 cycles to execute. There are no delay slots

for this instruction.

Example:

powerdown //no parameters required

For C programmers the inline assembly function core_halt() is available for executing

powerdown.

Two cases should be considered if clock is stopped to the core and debugging needs to be done

during powerdown:

Case1:

To debug the core during the powerdown mode, the clock going to the debug controller and the

controller should be always enabled. Any debugger operation is indicated by a logic high on the

debug acknowledge(dbg_ack) signal generated by the controller. During powerdown, the external

clock control logic can monitor this signal and whenever it is asserted, the clock to the core can

be enabled; else it can be disabled as long as powerdown_out signal is high. Below block

diagram shows one method of implementation.

LPDSP32-V3 HW reference Manual Page 70 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

When the core is not in powerdown, powerdown clock is same as system clock. During

powerdown it is switched off; it is turned on only in debug mode.

Case2:

To further reduce the power consumption during debugger operation within the powerdown, clock

can be enabled only to the registers required for the debugger and clock can be disabled to the

rest of the registers. Below block diagram shows one method of implementation.

When the core is not in powerdown, powerdown clock and deep powerdown clock are same as

system clock. During powerdown:

- powerdown clock is switched off; it is turned on only in debug mode.

- deep powerdown clock is completely switched off.

Controller
Debug

controller

Other clocked
modules

System
controller

powerdown clock

powerdown_out

dbg_ack_out

resume_sync

irq_sync

System clock

LPDSP core

Controller
Debug

controller

Other clocked modules
System

controller
powerdown clock

powerdown_out

dbg_ack_out

resume_sync

irq_sync

System clock

LPDSP core

Modules not required
for debugging

Modules required
for debugging

deep powerdown clock

LPDSP32-V3 HW reference Manual Page 71 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

9. Memories

There are two independent memories in LPDSP32-V3 to store program and data,

- Program memory (PM)

- Data memory (DM)

9.1 Program memory (PM)

Program memory is a single port synchronous memory. In a single cycle 40-bits are accessed

from the program memory, but for the compiler it is treated as a 20-bit memory.

This is the program memory (PM) configuration.

- Address bus (pb_a) width 24-bit

- Write data bus (pb_w) width 40-bit

- Read data bus (pb_r) width 40-bit

- Address range: 0x000000 ~ 0xFFFFFF Size: 20(W) x 16777216(H)

- Instructions are stored in Big-endian format.

- While storing data on PM it is stored in Big-endian format.

0x 000000

0x 000002

0x 000004

0x 000006

0x 000008

0x 00000a

:

:

0x FFFFDC

0x FFFFDE

0x FFFFE0

0x FFFFE2

0x FFFFE4

0x FFFFE6

0x FFFFE8

0x FFFFEA

0x FFFFEC

0x FFFFEE

0x FFFFF0

0x FFFFF2

0x FFFFF4

0x FFFFF6

0x FFFFF8

0x FFFFFA

0x FFFFFC

MW00

MW02

MW04

MW06

MW08

MW10

:

:

MW16777180

MW16777182

MW16777184

MW16777186

MW16777188

MW16777190

MW16777192

MW16777194

MW16777196

MW16777198

MW16777200

MW16777202

MW16777204

MW16777206

MW16777208

MW16777210

MW16777212

MW16777214

MW01

MW03

MW05

MW07

MW09

MW11

:

:

MW16777181

MW16777183

MW16777185

MW16777187

MW16777189

MW16777191

MW16777193

MW16777195

MW16777197

MW16777199

MW16777201

MW16777203

MW16777205

MW16777207

MW16777209

MW16777211

MW16777213

MW167772150x FFFFFE

BANK-0 BANK-1

0192039

LPDSP32-V3 HW reference Manual Page 72 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

9.2 Data memory (DM)

There is a single contiguous data memory (DM), which is partitioned into three sub regions.

Data memory-A (DM-A):

Address range: 0x000000 ~ 0x7FFFFF

Size: 8388608(Depth) x 8(Width) [8MByte, (4 + 4) Banks]

Data memory-B (DM-B):

Address range: 0x800000 ~ 0xBFFFFF

Size: 4194304 (Depth) x 8(Width) [4MByte, 4 Banks]

Data memory-IO (DM-IO):

Address range: 0xC00000 ~ 0xFFFFFF

Size: 4194304 (Depth) x 8(Width) [4MByte, 4 Banks]

Data memory supports parallel data transfer (load/store) operations. During parallel data transfer;

data and address buses of both the data memories DM-A and DM-B are used.

During the parallel data transfer only integer types (32bits) are accessed, it is not possible to do

dual load/store for byte and short data types.

For the single data transfer complete data memory (DM) space can be accessed linearly and

data and address buses of data memory-A (DM-A) are used.

Data memory (DM-A, DM-B and DM-IO) is byte (8-bit), short (16-bit) and int (32-bit) accessible.

In the data memory data is aligned byte wise. To access short, int and long long data, multiple

bytes are accessed as shown below.

Sr. Access type Bits No. of bytes accessed

1 byte 8-bit 1

2 short 16-bit 2

3 integer 32-bit 4

4 long long 64-bit 8

Accessing long long (64-bit) data type is also supported, which is limited to only data memory

DM-A. Alias name for 64-bit data memory-A is long data memory-A, known as (LDMA) .For the

64-bit data transfer (load/store), data is combined into two 32-bits and two data buses are used

for write (dba_w, dbb_w) and read (dba_r, dbb_r). However for addressing, address bus (dba_a)

is used.

In the data memory, data is stored in Little-endian format.

LPDSP32-V3 HW reference Manual Page 73 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

9.2.1 Data memory (DM) data and address buses

For the byte, short and integer access data bus (dba) is used which is divided into three sub

types as shown below.

dba_b[7:0] : Used in byte, half word and word access

dba_b2[7:0]: Used in half-word access

dba_s2[15:0]: Used in word access

Used in dual word and long(64bit) accesses

9.2.2 I/O Memory space

Input/Output devices for the LPDSP32-V3 are memory mapped. I/O memory space is 4M Bytes.

It is addressed by address generator unit (aalu0). Address and data buses used for I/O area are

dba_a and dba respectively. From a programmer’s point of view, I/O read and write behaves

same as a memory read and write.

dba_s2 dba_b2 dba_b

0 7 8 15 16 31

Data bus-A dba {16, 8, 8}

dbb

0 31

Data bus-B dbb {32}

dba_a

23 0

Address bus-A dba_a {24}

dbb_a

23 0

Address bus-B dbb_a {24}

LPDSP32-V3 HW reference Manual Page 74 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

9.2.3 Data memory (DM) structure

This is the data memory (DM) structure.

LPDSP32-V3 HW reference Manual Page 75 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

9.3 Memory timings

9.3.1 Data memory (DM) timings

Write operations are synchronous to the rising edge of the clock. The data on the DIN port is

written into the memory location selected by the address on the rising edge of the clock when

WE is active.

9.3.2 Program memory (PM) timings

aa bb cc dd

11 22 xx xx

mem[aa] 11 22 mem[dd]

CLK

WE

DIN

ADDR

DOUT

READ WRITE WRITE READ

aa bb cc dd

11 22 xx xx

mem[aa] 11 22 mem[dd]

CLK

WE

DIN

ADDR

DOUT

READ WRITE WRITE READ

LPDSP32-V3 HW reference Manual Page 76 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

9.4 Memory wait states

In LPDSP32-V3 an option is provided to interface the core with memories or memory mapped

peripherals which cannot perform a read or write operation within one cycle. Once the core

initiates a memory read or memory write, it waits for an acknowledge signal from the memory

indicating the completion of the read or write operation. During this waiting period none of the

registers(including the registers inside the controller) are updated, so the processor does not

perform any operation and remains in the same state. As soon as the acknowledge signal is

received the core proceeds with its operations. Wait states can be used for both data

memory(DM) and program memory(PM).

Memory wait states can be used when a slow memory such as a Flash memory is used for

storing instructions or data. It is also useful when interfacing peripheral IPs which have a certain

timing protocol for register read/write operations and need more than one cycle to complete the

operation. In such cases, an interface logic is required between the core and slow memories or

peripherals to generate the acknowledge signals. When a combination of normal (memories

without wait states) and slow memories are used, the acknowledge signals for the normal

memories should be set to logic high, which is equivalent to zero wait states.

The below timing diagrams show examples for write and read timings with two wait cycles.

9.4.1 Memory write with wait states

This example shows a memory write operation performed with wait states and memory read

operation performed without wait states.

aa bb dd

11 xx xx

mem[aa] 11 mem[dd]

CLK

WE

DIN

ADDR

DOUT

READ WRITE

WE_ACK

RE

RE_ACK
Logic high

LPDSP32-V3 HW reference Manual Page 77 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

9.4.2 Memory read with wait states

This example shows a memory read operation performed with wait states and memory write

operation performed without wait states.

aa bb dd

11 11 xx

11 xx

CLK

RE

DIN

ADDR

DOUT

WRITE READ

RE_ACK

mem[bb]

WE

WE_ACK
Logic high

LPDSP32-V3 HW reference Manual Page 78 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

10. Summary of instructions and its operations

This section gives a summary of instructions supported in LPDSP32-V3 and its operations.

Instructions are categorized into different sub types as shown below.

10.1 Instruction types

Sr. Instruction sub type Instruction width (Bits) Notation Category

1 Arithmetic 20 A Short

2 Short control 20 A_Cntrl Short

3 Move 20 M Short

4 Arithmetic & Move 40 AM Long

5 Long 40 L Long

There are 20-bit and 40-bit mixed length instructions. Depending upon the type of the instruction,

a single instruction (A or M) can perform a single operation or parallel operations in a single

processor cycle. However Arithmetic and Move (AM) instructions can perform 4 parallel

operations in a single cycle. Long instructions (L) are used for the direct operations like direct

load/store, move, jump and subroutine calls.

10.2 Operations

Above instructions can perform the following operations:-

Sr. Operation Explanation

1 Arithmetic(A) Single arithmetic

2 Arithmetic(a0) Arithmetic(a1) Parallel arithmetic

3 Move(M) Single move

4 Move(a) Move(b) Parallel move

5 Arithmetic(A) Move(M) Single arithmetic & single move

6 Arithmetic(a0) Arithmetic(a1) Move(a) Move(b) Dual arithmetic & dual move

7 Short control (A_cntrl) Move(M) Short control & move

8 Arithmetic(A) Short control (M_cntrl) Arithmetic & Short control

9 Long (L) Long

LPDSP32-V3 HW reference Manual Page 79 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

10.3 Single operations

These are the three single operations that can be performed:

- Single arithmetic operations

- Single move operations

- Long operations

10.3.1 Single arithmetic operations

Single arithmetic operations include all operations done in alu0 and mpy0.

Single arithmetic operations are always performed in the alu0 and mpy0 functional units.

10.3.2 Single move operations

Single move operations include register to register move and memory load/store operations.

For this operation, both the data move buses (dba, dbb) are used.

Address generation and pointer updating is performed in the aalu0 functional units.

Address generation unit (aalu0) uses all the address registers (a0 ~ a7) and offset registers (c0 ~

c3) for the address calculation.

10.3.3 Long operations

Long operations include direct memory load/store, long immediate assignment and control

operations. These operations influence the whole processor.

10.4 Parallel operations

In the parallel operations, various combinations of operations are possible.

- Parallel arithmetic

- Parallel move

- Single arithmetic and single move

- Dual arithmetic and dual move

- Short control and move

- Arithmetic and short control

10.4.1 Parallel arithmetic

Parallel arithmetic includes, dual arithmetic (add/sub) or dual multiply accumulate (mac)

operations. Dual arithmetic operations are performed in the alu0 and alu1.

And for the dual multiply accumulate (mac) operation, one multiply accumulate operation is

performed in the (mpy0 and mac0) and other is performed in the (mpy1 and alu1).

Here, functional unit (mac0) is used only for doing addition or subtraction after the multiplication.

LPDSP32-V3 HW reference Manual Page 80 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

10.4.2 Parallel move

Parallel move includes only dual memory load/store operations.

For doing dual memory load/store operation, move (a) is performed on the data memory-A (DMA)

using data bus A (dba_r) for read and data bus (dba_w) for write operation.

For the other move (b) which is performed on the data memory-B (DMB) using data bus B (dbb_r)

for read and data bus (dbb_w) for write operation.

Address generation unit (aalu0) and address registers (a0 ~ a3) are used for the address

generation for the move (a). Address generation unit (aalu1) is used and address registers (a4 ~

a7) are used for address generation for the move (b). Offset registers (c0 ~ c3) are shared by

both the address generation units.

For parallel move operations the following combinations are possible.

Move (a) Move(b)

Load Load

Store Store

Load Store

Store Load

10.4.3 Single arithmetic and single move

In this type of operation, a single arithmetic operation and a single move operation are performed

simultaneously.

10.4.4 Dual arithmetic and dual move

In this type of operation, two arithmetic operations which can be either add/sub or two multiply

accumulate operations and two data memory load/store operations are performed

simultaneously.

10.4.5 Short control and move

In this type of operation, one short control operation (short jump, indirect jump, indirect subroutine

call and subroutine return) and on the other side a move operation can be performed. The move

operation can be a single operation or parallel operations as described above.

Here short control operation is put on the arithmetic (A) side of the instruction word.

LPDSP32-V3 HW reference Manual Page 81 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

10.4.6 Arithmetic and short control

In this type of operation, arithmetic (A) operation is performed, which can be either a single

operation or parallel operations. On the other side, a short control operation (short jump, indirect

jump, indirect subroutine call and subroutine return) is performed.

Here short control operation is put on the move (M) side of the instruction word.

For the complete details of the instructions and its operations please refer the instruction manual

[References:4]

LPDSP32-V3 HW reference Manual Page 82 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

11. On Chip debugging (OCD)

This section gives an overall view of on-chip debugging hardware. It does not give complete

hardware and software implementation details of the OCD.

11.1 Overview and debugging features

For testing and debugging the application software on the LPDSP32-V3 core, as well as testing

the core itself on the hardware (FPGA prototype or ASIC) a JTAG based on-chip debugger with a

graphical user interface is available. On-chip graphical user interface is almost similar to

instruction set simulator (ISS), with the following features available in real time.

- Loading of application program in (PM) and application data in (DM).

- Viewing and modifying program memory (PM), data memory (DM) contents.

- Viewing and modifying the register contents.

- Core reset.

- Debug mode and normal processing mode.

- Hardware breakpoints on program counter (PC) and watchpoints on data memory locations

during store operations (combined maximum 8).

- Single step execution.

- Tracing the assembly instruction for corresponding C code.

- Hosted IO.

- Software break points.

- Accessing the core for debugging remotely. etc.

LPDSP32-V3 HW reference Manual Page 83 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

11.2 On-chip debug environment

This figure gives an overall view of the on-chip debug environment.

11.2.1 JTALK server

JTALK server is a PC based program that interfaces to the lpdsp32_debug_client. The JTALK

server receives commands from the debug client on a TCP/IP socket. It calls driver routines to

generate JTAG signals on the device connected to the USB port.

11.2.2 Debug client

Debug client issues commands to debug controller to get the information of all memories and

registers. By using the debug client, user can load the memories and run the application

programs and observe the results in memory and data registers.

There are two hardware blocks called JTAG tap controller and debug controller used for the on

chip debugging.

11.3 JTAG tap controller

This block provides serial communication interface to the debug controller. JTAG tap controller is

a FSM controlled by TMS signal. Depending on the state of the FSM tap controller, it places

either JTAG instruction register (jtag_ireg) or PDC registers (DBG_DATA_REG,

DBG_ADDR_REG…) in the scan path.

Host

Amontec JTAG key

USB to JTAG

interface

JTAG

TAP

Controller

Debug

Controller

(PDC)

PM DM

LPDSP32 CORE

TRST

TCK

TMS

TDI

TDO

Debug client (host) & JTALK server

USB cable

LPDSP32-V3 HW reference Manual Page 84 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

This module is accessed by five pins:

Sr. Pin Name Explanation

1 TRST Test reset Asynchronous reset for the TAP controller state machine. This signal is

active low. TRST is an optional signal

2 TCK Test clock The shifting of data through scan registers and the state transitions of the

TAP controller state machine are synchronous to TCK. TDI and TMS

inputs are sampled on the rising edge of TCK.

3 TMS Test mode select The TMS signal selects the next state in the TAP state machine.

It is sampled on the rising edge of TCK.

4 TDI Test data input Provides a serial input data stream to the JTAG and PDC scan registers.

It is sampled on the rising edge of TCK.

5 TDO Test data output Provides a tri-state capable serial output data stream from the JTAG and

PDC scan registers. It is driven in the Shift-DR and Shift-IR states of the

TAP controller state machine. Changes in the state of this signal occur on

the falling edge of TCK.

11.3.1 Block diagram of JTAG tap controller

JTAG_IREG

JTAG_STATE

FSM

so si capture_dr update_dr shift_dr

DBG_DATA_REG

DBG_ADDR_REG

…
..

TDI

TCK

TMS

TRST

TDO

LPDSP32-V3 HW reference Manual Page 85 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

11.4 Debug controller

The debug controller or Processor Debug Controller(PDC) decodes the instructions in the JTAG

instruction register and performs the necessary actions. To summarize, debug controller handles

below tasks.

- Performs debug load/store operation.

- Break point detection.

- Watch point detection.

- Contains JTAG scan registers (DBG_ADDR, DBG_DATA, DBG_INSTR, DBG_STATUS)

- Decodes the debug instructions like (resume, step, reset, request, execute…)

- Synchronization between test clock (TCK) and processor clock.

✍ Important note:

Debug controller uses data memory DMIO [0xC00000] address location for reading and writing

the registers. Therefore this address location cannot be used other than for on-chip debugging.

11.4.1 Block diagram of debug controller

11.4.2 Debug instructions

There are various debug instructions which are issued by debug client to debug controller by

scanning specific code in the jtag_ireg register. Then, the debug controller decodes the

instruction issued by the debug client and executes it. Debug controller is assigned with a unique

core ID (Core id = 1). All debug instructions are summarized here.

Debug

Controller

Controller
dbg_req

dbg_exe

ocd_instr_pdcw

PC

PM

DM

ocd_addr

ocd_data

LPDSP32 CORE

jtag_tck

jtag_ireg

jtag_si

jtag_capture_dr

jtag_update_dr

jtag_shift_dr

jtag_update_ir

jtag_so

dbg_ext_break

dbg_set_break

dbg_ack

ocd_sw_break

DM store enables
and addresses

LPDSP32-V3 HW reference Manual Page 86 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

Sr. Instruction Opcode Explanation with actions

1 DBG_REQUEST_INSTR 11'b00000010001 This is a debug request instruction,

puts the core into debug mode

- scan request instruction into

jtag_ireg register

- Debug controller decodes

request instruction and asserts

dbg_req signal

- PCU stops fetching new

instructions

- Freeze the PC

- Disable interrupt

- Complete all fetched instructions

2 DBG_RESUME_INSTR 11'b00000010010 This instruction releases the core

from debug mode

- scan resume instruction into

jtag_ireg register

- Debug controller decodes

resume instruction and

de-asserts dbg_req signal

- Controller resumes normal

operation

3 DBG_RESET_INSTR 11'b00000010011 This instruction resets the core

4 DBG_STEP_INSTR 11'b00000010100 This instructs the core to fetch and

execute a single instruction from PM

5 DBG_EXECUTE_INSTR 11'b00000010101 This instructs the core to execute the

instruction present in the

DBG_INSTR_REG.

6 DBG_DM_LOAD_INSTR 11'b00001000000 This instruction loads the data from

DM

7 DBG_DM_STORE_INSTR 11'b00001000001 This instruction stores the data to DM

8 DBG_PM_LOAD_INSTR 11'b00001000010 This instruction loads the data from

PM

9 DBG_PM_STORE_INSTR 11'b00001000011 This instruction stores the data to PM

10 DBG_BPbbb_ENABLE_INSTR 11'b000001bbb00 This instruction enables breakpoint

bbb

11 DBG_BPbbb_EXPORT_INSTR 11'b000001bbb01 This instruction exports breakpoint

bbb to other cores (multi core)

12 DBG_BPbbb_DISABLE_INSTR 11'b000001bbb10 This instruction disables breakpoint

bbb

13 DBG_WPbbb_ST_DM_dba_a_ext_ENABLE_INSTR 11'b0001bbb0000 This instruction enables store

watchpoint bbb on DM

14 DBG_WPbbb_ST_DM_dbb_a_ext_ENABLE_INSTR 11'b0001bbb0001 This instruction enables store

watchpoint bbb on DMB

15 DBG_SYNC_REQUEST_INSTR 16'b1111100000010001 Used to synchronize multi core debug

request

16 DBG_SYNC_RESUME_INSTR 16'b1111100000010010 Used to synchronize multi core

resume

17 DBG_SYNC_RESET_INSTR 16'b1111100000010011 Used to synchronize multi core reset

18 DBG_SYNC_STEP_INSTR 16'b1111100000010100 Used to synchronize multi core step

execution

LPDSP32-V3 HW reference Manual Page 87 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

11.4.3 Debug registers

The processor debug controller contains a set of registers that govern its behavior, and that are

accessible via the JTAG interface. Most PDC registers are bi-directional. Communication is

described from the point of view of the PDC. Registers that are written by the debug client and

read by the PDC, are identified as input registers. Registers that are written by the PDC and read

by the debug client, are identified as output registers.

DBG_DATA_REG (bi-directional, 32 bit)

The debug data register. This register is used to transport data values from the debug client to the

core registers or data memory, and vice versa.

DBG_ADDR_REG (bi-directional, 24 bit)

The debug address register. The debug client writes to this register to specify the memory

address when the PDC is instructed to execute a memory load or store operation. The debug

client reads from this register to obtain the current value of the program counter (PC) register of

the core.

DBG_INSTR_REG (bi-directional, 40 bit)

The debug instruction register. This register is used to transport the LPDSP32 instructions from

the debug client to the program memory, and vice versa. The debug client also uses this register

to supply LPDSP32 instructions to be executed by the LPDSP32 core. A typical example is to

execute a LPDSP32 instruction that moves a certain register to the DBG_DATA_REG register

such that the debug client can read the register value from there.

DBG_STATUS_REG (output, 16 bit)

The status register is a 16 bit register, of which 15 bits are currently used. The bits of this register

have the following meaning.

Bit Description

0 Set when the processor is in debug mode, cleared otherwise.

1 - 8 Set when breakpoint/watchpoint (0 - 7) are hit respectively.

9 Set when the processor stopped execution due to a local breakpoint hit.

10 Set when the processor stopped execution due to an external breakpoint hit.

11 Set when a local breakpoint hit is exported to other cores.

12 Set when a step debug instruction is executed.

13 Set when a core resume instruction is executed.

14 Set when a software breakpoint is hit.

LPDSP32-V3 HW reference Manual Page 88 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

11.4.4 Debug interface

The DM access done by the debugger has been changed to always doing 32-bit access, instead

of always doing 8-bit access, which was used in the previous version LPDSP32-V2. Even with

this change, 8 bit and 16 bit updates are still possible. The below two points explain how it has

been achieved in the debug client software:

- First, the Checkers GUI translates all memory access (DM,SDM,WDM,LDMA) to 8-bit access on

the root memory DM.

- Secondly, the Checkers_pdc_interface class translates all 8-bit access to 32-bit access. For

example, there is a write-merge-buffer, such that when doing consecutive byte stores on DM, a

single 32-bit store is done. When only updating a single byte, Checkers_pdc_interface first reads

the full 32-bit word, updates the byte, and then stores the updated word.

Some consequences as a result of the change to 32-bit access are:

- This will speedup memory/register access: as a single 32-bit transfer is done (instead of 4 single

byte transfers).

- The area cost is somewhat higher, as the ocd_data_register(DBG_DATA_REG) increases from

8-bit to 32-bit

- From the debugger it is possible to change any bits of peripheral registers(mapped to DMIO)

even if they have a 32 bit interface. When LPDSP32-V2 debugger had an 8 bit interface and

peripherals had a 32 bit interface, from the debugger it was possible to change only the lower 8

bits of the registers and not the upper bits.

11.4.5 Hardware breakpoints and watchpoints

The hardware breakpoints and watchpoints implementation use the same hardware (e.g.

registers and address comparators). The total number of breakpoints and watchpoints that can be

used are eight. The debug client has eight registers for holding the addresses of breakpoints and

watchpoints. Depending on whether a hardware breakpoint is set or a data memory watchpoint is

set, each register is compared against the program counter value or the data memory address of

the core respectively. Since watchpoints are enabled only for store operations, the comparison is

done only when the core data memory store signal is active.

Each breakpoint/watchpoint register can also be enabled or disabled. When a breakpoint or

watchpoint hit occurs, the core is put in debug mode. A breakpoint/watchpoint hit event can be

exported to other cores in a multi-core system.

LPDSP32-V3 HW reference Manual Page 89 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

11.4.6 Software breakpoints

An alternative solution to hardware breakpoints is software breakpoints. Wherever software

breakpoint is set, the debug client replaces the instruction with a software break instruction. In

this way, we can set an unlimited number of breakpoints in the debug client (the only condition is

that the instructions are in program RAM, such that the debug client can replace the instruction

with the swbreak instruction). In this case, hardware breakpoints are only needed for code in

ROM. In the debug client there is an option to configure the breakpoint as hardware or software

breakpoint.

Software break is a single-word, 2-cycle break instruction which will send an 'ocd_swbreak' signal

to the debug controller. This indicates a breakpoint hit and the core is put in debug mode. This will

be informed to the debug client through a bit in the PDC status register, DBG_STATUS_REG.

LPDSP32-V3 HW reference Manual Page 90 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

12. Hazards

Before going into, what types of hazards are there in LPDSP32-V3, let’s understand the concept

of hazards. Hazards are the in born artifacts of the pipeline execution of the instructions.

Mainly there are three types of hazards.

- Structural hazard

- Data hazard

- Control hazard

12.1 Structural hazard

Also called as resource hazard, this can occur when same hardware resource (address bus) is

used in different pipeline stages by the different instructions.

12.2 Data hazard

This hazard occurs when the same register is accessed in different pipeline stages by different

instructions. A typical example is the read-after-write (RAW) hazard that occurs when a register is

written in the E1 stage and that register is also read (by another instruction) in the D stage.

12.3 Control hazard

This hazard occurs when a jump instruction is issued in D stage, which results in a change of the

program counter in a later pipeline stage (E1). Control hazards are more in case of deep pipeline

stages. In LPDSP32-V3 since there are only 3 pipeline stages, the overhead of control hazard is

less.

Hazards

Structural Hazards Data Hazards Control Hazards

RAW

WAR

WAW

LPDSP32-V3 HW reference Manual Page 91 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

12.4 Software stall

All the hazards (structural, data and control) can be solved by organizing the sequence of

instructions in such a way that the hazard does not occur. This approach is called software

stalling. By applying “sw_stall” rules, compiler removes the hazards.

By predefined “sw_stall” rules, compiler takes care that no such instruction sequence is

generated which triggers the hazard. While doing scheduling, compiler tries to avoid the hazards

by reordering the instructions. If reordering can’t avoid hazards only then compiler inserts the

“NOP” instruction.

12.4.1 Software stall (structural hazard)

Software stall is applied when the same resource (address bus) is used by different instructions in

different pipeline stages. Essentially this is done to avoid address bus conflict on either of the

address buses (dba_a) or (dbb_a) while performing a load/store operation.

In LPDSP32-V3, the same address bus is used for load and store operations; load operation is

done in the D stage and store happens in the E1 stage, but the address is calculated in the same

D stage for both the load and store operations. Therefore there is a restriction that, load

instruction next to store instruction is not allowed, a “NOP” is required between the two

instructions or a rearrangement of instructions is required.

Example:

[a1+c1] = ra0 //store

ra0 = [a0 + c0] //load

[a1+c1] = ra0 //store

nop //insert nop or rearrange

ra0 = [a0 + c0] //load

ra0 = [a0 + c0] //load

[a1+c1] = ra0 //store

LPDSP32-V3 HW reference Manual Page 92 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

12.4.2 Software stall (data hazard)

To avoid the read after write (RAW) data hazards software stall is applied.

In LPDSP32-V3 software stall is applied for the below register write (move) instructions.

- Writing to status register srFlags (* setting SR bits through an instruction).

- Writing to address registers a0-a7

- Writing to loop start (LB), loop size (LSZ) and stack pointer (SP) registers

For all of the above registers write action happens in the E1 stage. After writing to these registers,

immediately in the next cycle the same register cannot be read, at least 1 cycle offset is required.

Example (SR register):

Example (address registers a0 ~ a7):

sr = 0x7 //setting v,n,z flags in SR

if (n) jps 10 //next instruction is a conditional jump

sr = 0x7 //setting v,n,z flags in SR

nop //nop or rearrange the instructions

if (n) jps 10 //next instruction is a conditional jump

c0 = 1 //setting offset register

a0 = 252 //setting address register

ra0 = [a0+c0] //immediately using same addr. reg.

 c0 = 1 //setting offset register

a0 = 252 //setting an address register

nop //added sw stall by nop

ra0 = [a0+c0]//immediately using the same addr. reg.

a0 = 252 //setting an address register

c0 = 1 //setting offset register (rearrange)

ra0 = [a0+c0] //immediately using the same addr. reg.

LPDSP32-V3 HW reference Manual Page 93 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

Example (SP):

Example (LB and LSZ):

sp = 65512 //setting stack pointer value

ra0 = sp[4] //sp indexed addressing

sp = 65512 //setting stack pointer value

nop //added sw stall by nop or rearrange

ra0 = sp[4] //sp indexed addressing

c0 = 1 //setting offset register

a0 = 0 //setting address register

lb0 = 252 //setting loop start register

lsz0 = 32 //setting loop size register

ra0 = a0+%0c1 //immed. using lsz0 for cyclic addr.

c0 = 1 //setting offset register

a0 = 0 //setting address register

lb0 = 252 //setting loop start register

lsz0 = 32 //setting loop size register

nop //added sw stall by nop

ra0 = a0+%0c1 //immed. using lsz0 for cyclic addr.

a0 = 0 //setting address register

lb0 = 252 //setting loop start register

lsz0 = 32 //setting loop size register

c0 = 1 //setting offset register

ra0 = a0+%0c1 //immed. using lsz0 for cyclic addr.

LPDSP32-V3 HW reference Manual Page 94 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

12.5 Hazards related to hardware loop

At the last instruction of a hardware loop, end of loop test takes place and the program counter

PC is updated when the HW loop is not complete. If a jump instruction is positioned at last

instruction of a HW loop, there is a conflict of PC update and jump instruction. To avoid this

hazard, jump instruction should not be positioned near the end of loop instruction.

End of loop operation is done in the instruction fetch (F) pipeline stage, but jump happens in the

D stage.

Example:

In the above example, it is shown that if there is a jump instruction just before the end of loop

instruction, there will be a conflict of simultaneous PC update. To avoid this conflict, the jump

instruction must be positioned at least two instructions before the end of loop instruction.

lp 4 4 //hw loop

inst_ds1 //delay slot 1

inst_ds2 //delay slot 2

inst_1 //loop start

inst_2 //some inst. in hw loop

jpsdb [a0] //jump before last instr.

inst_4 //last instr. of the loop

inst_5 //loop end here

 lp 4 4 //hw loop

inst_ds1 //delay slot 1

inst_ds2 //delay slot 2

jpsdb [a0] //keep offset 1 to 2 cycles.

inst_1 //

inst_2 //some inst. in hw loop

inst_4 //last instruction of the loop

inst_5 //loop end here

LPDSP32-V3 HW reference Manual Page 95 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

12.5.1 Control hazards related to hardware loop

There are various control hazards related to hardware loop. These hazards occur as a result of

PC conflict. One of these is, in case of nested HW loops, two loop end addresses should not be

the same. Software stall is applied in this case, if there are no instructions to keep.

Also there are some control hazards specially related to end of loop in HW loop instruction.

Either of these instructions (direct jump, direct conditional jump, indirect jump and indirect

conditional jump) should not be positioned just before the loop end instruction.

12.6 Bypassing

Bypassing, also known as data forwarding, is an operation where in the processor bypasses the

registers and forwards the contents of the registers wherever needed in the pipeline, at an

additional hardware cost.

Bypassing is only applicable to avoid data hazard, read after write (RAW).

By doing bypassing on some of the registers, pipeline stalls (additional NOP insertion) is avoided.

By adding the bypass logic for some of the registers, processor performance is increased by

reducing MIPS count.

In LPDSP32-V3, bypass is implemented for srFlags (V N Z) and offset registers (c0 ~ c3)

12.6.1 Bypass (srFlags)

Status register flags V, N and Z are computed in the E1 stage, but while doing conditional jump

these flags are required in the D stage of the pipeline. Bypass is implemented to read these flags

from E1 stage to D stage. Therefore the below sequence of instructions is possible.

Example:

cmp (ra0, ra1) //compute the flag in E1 stage

if (cc) jps 10 //cond. jump reading flags in D stage

LPDSP32-V3 HW reference Manual Page 96 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

12.6.2 Bypass (offset registers c0 ~ c3)

Offset register (C) is written in the E1 stage by short immediate (11bit signed) move instruction as

well as immediate (8bit signed) assignment to offset register which is implemented in alu0.

For doing address computation aalu0 and aalu1 need this offset register’s (C) value in the D

stage.

Address computation is done in pipeline stage D.

Bypass is implemented to read these registers from E1 stage to D stage.

Therefore the below sequence of instructions is possible.

Example:

a1 = 40 //immediate assignment to address register

c0 = 255 //imm. assignment to offset register in E1 stage

ra0 = [a1 + c0] //load address is computed in D stage

LPDSP32-V3 HW reference Manual Page 97 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

13. References

1. LPDSP32-V3 Assembly programmer’s manual

2. LPDSP32-V3 Interrupt support manual

3. User guide-LPDSP32

4. LPDSP32-V3 Instruction encoding manual

LPDSP32-V3 HW reference Manual Page 98 of 98

© 2014 System Solutions Co., Ltd.
1-1-1, Sakata, Oizumi-machi, Ora-gun, Gunma 370-0596, Japan Confidential

14. Revision History

Version Revision History Date

1.0 Initial version June 2011

1.1 Updated version(corrections to content and block diagrams) March 2012

1.2 Company logo is changed August 2013

1.3 Company name is changed October 2014

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC).
SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of
SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the
right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the
application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special,
consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications
can and do vary in different applications and actual performance may vary over time. All operating parameters, including
“Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any
license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or
for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may
occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall
indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or
death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the
design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all
applicable copyright laws and is not for resale in any manner.

http://www.onsemi.com/site/pdf/Patent-Marking.pdf

