
© SCILLC, 2023
Previous Edition © 2021
“All Rights Reserved”

RSL10 Firmware Over-The-Air User’s Guide

M-20860-007
June 2023

www.onsemi.com

2

onsemi
RSL10 Firmware Over-The-Air User’s Guide

Page

1. Introduction . 3
1.1 Purpose . 3
1.2 Intended Audience . 3
1.3 Conventions . 3
1.4 Further Reading . 3

2. Overview. 4
2.1 Prerequisites . 4
2.2 Overview . 4

3. The FOTA Firmware . 6
3.1 FOTA Partitioning . 6
3.2 Firmware Startup . 7
3.3 Application Only Update . 7
3.4 Application + FOTA Bluetooth Low Energy Stack Update 7

4. Performing Your First FOTA Update . 9
4.1 Overview . 9
4.2 Generating the FOTA Firmware Image . 9
4.3 Setting Up the RSL10 Bootloader and Loading a Firmware Image Using UART 11
4.4 Performing a FOTA Update Using the FOTA.Console PC Tool 12

5. FOTA Image . 14
5.1 Overview . . 14
5.2 mkfotaimg.py . 14
5.3 Sub-Image Format . 15
5.4 Signing the FOTA Image . . 17
5.5 FOTA Signature Validation . 17

5.5.1 Performing Signature Validation . 17

5.5.2 FOTA Image Checking with the DFU Component 18

5.5.3 More About Digital Signature Validation. 19

6. The DFU . . 20
6.1 DFU Component . 20
6.2 Update Sequence . 20
6.3 FOTA Stack Source Code . 20
6.4 DFU Bluetooth Low Energy Service . 23
6.5 DFU Service Characteristics . . 23
6.6 DFU Protocol . 24

7. The Fota.Console Command Line Tool . 26
7.1 Fota.Console . 26

8. Integrating FOTA Into Your Application . . 27
8.1 Modifying the Application . 27
8.2 Performing a FOTA Update . 31

9. RSL FOTA Mobile Application. . 37
9.1 RSL FOTA Application . 37
9.2 RSL FOTA Android Limitations . 38
9.3 RSL FOTA iOS Limitations . 39

10. Performing FOTA Update with Bluetooth Low Energy Explorer 40

Table of Contents

www.onsemi.com

3

CHAPTER 1

1.Introduction
1.1 PURPOSE

This manual deJune 2023scribes Firmware Over-The-Air (FOTA) with RSL10. It provides the prerequisites and
instructions necessary to develop FOTA-ready firmware applications and to perform FOTA updates in the field.

1.2 INTENDED AUDIENCE

This manual is for firmware developers who are designing and implementing RSL10 applications with FOTA
capability.

1.3 CONVENTIONS

The following conventions are used in this manual to signify particular types of information:

monospace font

Macros, functions, defines and addresses.

italics
File and path names, or any portion of them.

<angle brackets>

Optional parameters and placeholders for specific information. To use an optional parameter or
replace a placeholder, specify the information within the brackets; do not include the brackets
themselves.

1.4 FURTHER READING

For more information about RSL10, refer to the following documents:

• RSL10 Hardware Reference
• RSL10 Firmware Reference
• RSL10 Getting Started Guide
• RSL10 Sample Code User’s Guide
• RSL10 Evaluation and Development Board Manual
• RSL10 Datasheet

IMPORTANT: onsemi acknowledges that this document might contain the inappropriate terms “white list",
"master" and "slave”. We have a plan to work with other companies to identify an industry wide solution that
can eradicate non-inclusive terminology but maintains the technical relationship of the original wording. Once
new terminologies are agreed upon, future products will contain new terminology.

www.onsemi.com

4

CHAPTER 2

2.Overview
2.1 PREREQUISITES

• RSL10 SDK CMSIS-Pack version 2.4.0 or later (available at www.onsemi.com)
• RSL10 USB Dongle
• RSL10 Evaluation and Development Board (EVB)
• RSL10 Bluetooth Low Energy Explorer (available at www.onsemi.com)
• Python v2.7 or later:

• Install package ecdsa version 0.13 or later.
• Install package pyserial version 3.2 or later.
• Make sure Python is added to the system path.
• You can install the above packages using PyPI (for example, python -m pip install ecdsa).

• Fota.Console tool (available in the utility apps zip package), which has the following dependencies:
• Microsoft™ .Net Framework version 4.6 or later
• SiliconLabs™ VCP driver version 6.7.3 or later (available in the RSL10 Bluetooth Low Energy Explorer

installation, onsemi/BLE Explorer/Driver/RSL10_Dongle_Driver_v<version>.zip)

• Or the mobile application, as an alternative to the Fota.Console tool (see Chapter 9, “RSL FOTA Mobile
Application” on page 37).

2.2 OVERVIEW

The RSL10 software ecosystem includes a set of tools that allows Firmware Over-The-Air (FOTA) updates from a
PC with the RSL10 USB dongle to a remote RSL10 device over a Bluetooth Low Energy wireless link. On the PC side,
a Python utility (mkfotaimg.py) generates FOTA-compatible firmware images and a PC command line tool
(FOTA.Console.exe) transfers the images to the remote device. The PC command line tool uses the RSL10 USB Dongle
as a central device to scan, connect and transmit the firmware image. The remote RSL10 device firmware side consists
of a bootloader program, sample code, and a FOTA Bluetooth Low Energy stack that contains the Device Firmware
Update (DFU) Bluetooth Low Energy component. Figure 1, below, illustrates a typical FOTA update setup from the PC
point of view:

Figure 1. FOTA Update Setup

onsemi
RSL10 Firmware Over-The-Air User’s Guide

www.onsemi.com

5

The following chapters provide details about the tools, protocols and firmware required to perform FOTA updates
using RSL10. We present details about the FOTA firmware images and tools, walk you step-by-step through your first
firmware update using a pre-configured sample application (ble_peripheral_server_hrp_fota), and show how to modify
an existing application to support FOTA updates.

www.onsemi.com

6

CHAPTER 3

3.The FOTA Firmware
3.1 FOTA PARTITIONING

A device capable of receiving FOTA updates contains firmware composed of three parts, as illustrated in Figure 2:

1. Bootloader
2. FOTA Bluetooth Low Energy stack including DFU component (fota.bin sub-image)
3. User application (app.bin sub-image)

Figure 2. Memory Map

Each part depends on the previous one, except the bootloader, which is standalone. The FOTA Bluetooth Low
Energy stack depends on the bootloader. The user application depends on the FOTA Bluetooth Low Energy stack, and
therefore, also depends on the bootloader. In terms of size, the bootloader reserves 8KB of memory. The Bluetooth Low
Energy stack, which contains the Device Firmware Update (DFU) component and the padding between the sub-images,
allocates about 154KB. The remainder of the RSL10 main flash memory is available for the application (380KB -
154KB - 8KB approximately equal to 218KB). The boundary between the Bluetooth Low Energy stack and application
areas can be dynamic, so it is possible to increase the Bluetooth Low Energy stack size at the expense of the application
size, and vice versa.

When building a FOTA-compatible RSL10 sample application, you may notice that the libfota.a library is linked.
This library functions as a stub object, and implements the Bluetooth Low Energy library functions as pointers to the
real implementation, located in the fota.bin area. This makes the link between the application and the FOTA Bluetooth
Low Energy stack particularly strong, because the application code calls functions from the Bluetooth Low Energy
stack directly. Therefore, an application can only run together with the specific FOTA Bluetooth Low Energy stack
revision that is used when building that application. For this reason, it is not possible to update the Bluetooth Low
Energy stack without updating the application. On the other hand, it is possible to perform a FOTA update of the user
application only.

onsemi
RSL10 Firmware Over-The-Air User’s Guide

www.onsemi.com

7

Two types of FOTA updates are possible:

• Application only update
• Application + FOTA Bluetooth Low Energy stack update

The DFU component, an application embedded in the Bluetooth Low Energy stack area, implements a DFU
Bluetooth Low Energy custom service for FOTA updates. It contains characteristics that allow a client device to gather
information from the installed firmware (such as version numbers and IDs) and download the firmware image. As the
DFU is embedded into the FOTA Bluetooth Low Energy stack area, FOTA updates are possible even when no valid
user application is available in the device. More details about this component are provided in Chapter 6, “The DFU” on
page 20.

3.2 FIRMWARE STARTUP

Upon boot-up, the bootloader checks whether there is a valid user application or Bluetooth Low Energy stack
programmed. The sequence of operations is as follows:

1. If there is a valid user application, start it.
2. If no valid application is found, start the FOTA Bluetooth Low Energy stack DFU component (so the device

can receive FOTA updates).
3. If no valid FOTA Bluetooth Low Energy stack is found, start the bootloader updater (in this case, the device

can only receive firmware updates over UART/USB).

The FOTA Bluetooth Low Energy stack DFU component can be activated from the user application at any time,
through a call to Sys_Fota_StartDfu(). More details about this are provided in later chapters.

3.3 APPLICATION ONLY UPDATE

To update the application, the currently installed user application needs to start the DFU component from the
Bluetooth Low Energy stack. The DFU component then starts the FOTA process and receives the new application
image. The application image embeds the Build ID, calculated by the GNU linker over all symbols of fota.bin (see
Table 4 on page 23 for more about the FOTA stack Build ID). If this information does not match the installed Bluetooth
Low Energy stack revision, the FOTA update is aborted. At this point the currently installed application is not
destroyed.

If the Bluetooth Low Energy stack revision is compatible, the currently installed application is erased and the new
image is programmed as the data comes in. When the whole image is programmed successfully, the DFU component
marks the new application as valid and performs a restart. If the application update is aborted for any reason (power
loss, for example), this causes the application area to contain an invalid image. The update process can be restarted from
the beginning in this case, as the device still contains a valid Bluetooth Low Energy stack with the DFU component.

3.4 APPLICATION + FOTA BLUETOOTH LOW ENERGY STACK UPDATE

This type of update is performed in multiple steps:

1. Start the DFU component.
2. When the FOTA process receives a Bluetooth Low Energy stack image instead of an application image, no

revision check is performed, and the downloaded image is saved in the application area. The FOTA process
executes code from the Bluetooth Low Energy stack area, so it is not possible to directly replace the Bluetooth
Low Energy stack.

3. After completely programming the new Bluetooth Low Energy stack image into the download/application
area, the DFU component performs a reset and thereby activates the bootloader.

onsemi
RSL10 Firmware Over-The-Air User’s Guide

www.onsemi.com

8

4. The bootloader detects a valid Bluetooth Low Energy stack image in the download area and copies it to the
Bluetooth Low Energy stack area. This is now possible because the previous Bluetooth Low Energy stack is no
longer needed. After successfully copying the new Bluetooth Low Energy stack, the bootloader invalidates the
Bluetooth Low Energy stack in the download/application area and proceeds with the firmware startup.

5. As with a usual bootloader startup, the DFU component of the new Bluetooth Low Energy stack detects no
valid application, and therefore starts the FOTA DFU again to receive the new application image.

6. From this point on, the process is the same as it is with an application only upgrade.

Because the application area is used to temporarily hold the Bluetooth Low Energy stack image, the size of the
Bluetooth Low Energy stack cannot exceed half of the size of the area between the end of the bootloader area and the
end of the main flash area. This limits the Bluetooth Low Energy stack size to a maximum of (380-8)/2 = 186 KB.

If the bootloader copy operation of the Bluetooth Low Energy stack image from the application area to the
Bluetooth Low Energy stack area is aborted, at next startup the bootloader detects the still-valid Bluetooth Low Energy
stack image in the application area and repeats the copy. This makes it possible to recover from power loss during the
update process.

www.onsemi.com

9

CHAPTER 4

4.Performing Your First FOTA Update
4.1 OVERVIEW

Before we dive into all details regarding the FOTA tools, firmware images, and protocol specifications, this chapter
walks you step-by-step through the process of performing your first FOTA update. The goal is to provide you a basic
hands-on understanding of the RSL10 FOTA update process, and to ensure that your hardware and software are
correctly setup. This chapter shows how to:

1. Generate a FOTA firmware image using the preconfigured ble_peripheral_server_hrp_fota sample
application. This application is similar to the Heart Rate Bluetooth Low Energy application
(ble_peripheral_server_hrp) with added features to support FOTA updates.

2. Set up the RSL10 bootloader and load a firmware image using UART.
3. Perform a FOTA update using the FOTA.Console PC tool. Alternatively, a FOTA update can be performed

using the mobile application. See Chapter 9, “RSL FOTA Mobile Application” on page 37.

This tutorial assumes that you have installed the prerequisites and have the required version of the RSL10
CMSIS-Pack installed (see the RSL10 Getting Started Guide for instructions on how to import a CMSIS-Pack).

4.2 GENERATING THE FOTA FIRMWARE IMAGE

1. Open the Examples tab in the Pack Manager perspective to see example projects, included in the RSL10
CMSIS-Pack.

2. Find the ble_peripheral_server_hrp_fota example project and click the Copy button to import it into your
workspace. (See Figure 3.)

Figure 3. Importing the FOTA Sample Project

3. The C/C++ perspective opens and displays your newly copied project. In the Project Explorer panel, you can
expand your project folder and explore the files inside your project, as seen in Figure 4 on page 10. On the
right side, the ble_peripheral_server_hrp_fota.rteconfig file displays the selected software components,
including the new component named Fota. If you expand RTE > Device > RSL10, you can find the FOTA

onsemi
RSL10 Firmware Over-The-Air User’s Guide

www.onsemi.com

10

library (libfota.a), the FOTA Bluetooth Low Energy Stack binary file (fota.bin), and the Python tool
mkfotaimg.py. These files are automatically added to your sample project once the Fota component is selected.

Figure 4. Files in FOTA Sample Project

4. Build the ble_peripheral_server_hrp_fota project. After a successful build, the
ble_peripheral_server_hrp_fota.fota image is generated under the Debug folder, as seen in Figure 5:

onsemi
RSL10 Firmware Over-The-Air User’s Guide

www.onsemi.com

11

Figure 5. .fota Image in Debug Folder

The generated .fota file contains both the Fota Bluetooth Low Energy stack sub-image (fota.bin) and the
application sub-image. This file can be used by the bootloader UART PC updater tool to perform a UART
firmware update, or by the FOTA.Console.exe PC tool to perform a FOTA update.

4.3 SETTING UP THE RSL10 BOOTLOADER AND LOADING A FIRMWARE IMAGE USING UART

1. If you are running a FOTA update for the first time, your RSL10 EVB does not have the RSL10 bootloader
flashed into it.

2. Import and build the bootloader sample application, available in the Examples tab.
3. Start a debug session to flashload the bootloader application into the RSL10 Evaluation and Development

Board (or alternatively use the external flashloader to load the bootloader.hex file).
4. Reset your board. After reset, you can see that the LED of the RSL10 Evaluation and Development Board is

continuously on, indicating that bootloader has not found a valid user application or a valid FOTA Bluetooth
Low Energy stack, and therefore has activated its updater mode. In this mode, the bootloader is waiting for
commands over UART to download a new user application firmware image.

5. Use the Windows Device Manager to find out the COM port number assigned to your RSL10 EVB, identified
by the JLink CDC UART Port (COM4, as seen in Figure 6):

Figure 6. RSL10 EVB COM Port Number

6. Using a command prompt, navigate to the bootloader/scripts folder. You can see the updater.py tool together
with additional .dll dependencies.

7. Invoke the updater.py tool to load the ble_peripheral_server_hrp_fota.fota image over UART with the
following command:

onsemi
RSL10 Firmware Over-The-Air User’s Guide

www.onsemi.com

12

> python updater.py COM4 ble_peripheral_server_hrp_fota.fota
Image : PSHRP ver=2.4.0 / FOTA ver=2.4.0
Bootloader : BOOTL* ver=2.0.1
**

You can expect similar output. For each flash sector transferred and written to the flash memory, an asterisk (*)
symbol is printed on the screen.

If you find errors executing this step, make sure you have the required versions of Python and the pyserial
package.

8. You can use the RSL10 Bluetooth Low Energy Explorer or another application to confirm that your new
firmware is running and advertising under the name Peripheral_HRP_FOTA, as shown in :

Figure 7. Firmware Running

Your device is now ready to perform a FOTA update, as it contains all the required components: the bootloader
program and the Fota Bluetooth Low Energy stack.

4.4 PERFORMING A FOTA UPDATE USING THE FOTA.CONSOLE PC TOOL

1. Make sure no other process is using the RSL10 Dongle (e.g.: close RSL10 Bluetooth Low Energy Explorer).
2. Use the Windows Device Manager to find the COM port number assigned to your RSL10 Dongle, identified

by the Silicon Labs USB to UART Bridge (COM5, in the example in Figure 8):

Figure 8. RSL10 Dongle COM Port Number

3. The Fota.Console tool is available in the RSL10 Utility Apps zip package. Make sure to extract this package
and use a command prompt tool to navigate to the Fota.Console folder.

4. Run the Fota.Console.exe tool to start a FOTA update using the following command:

Fota.Console.exe /COM=COM5 /IN=ble_peripheral_server_hrp_fota.fota /
NAME=Peripheral_HRP_FOTA

onsemi
RSL10 Firmware Over-The-Air User’s Guide

www.onsemi.com

13

Make sure to copy the .fota image file into the same folder as the Fota.Console tool, or specify the full path to
this file in the command above.

5. The Fota.Console tool searches, connects and transmits the firmware image to the RSL10 Evaluation and
Development Board. If everything goes as expected, you have successfully performed your first RSL10 FOTA
update. You can expect output similar to this:

Fota.Console.exe /COM=COM5 /IN=ble_peripheral_server_hrp_fota.fota /
NAME=Peripheral_HRP_FOTA

Fota.Console v1.0.5.0
--

Searching for peripheral ...
Found peripheral (Address:AA:BB:FF:22:11:94 RSSI:-57dBm Name:Peripheral_HRP_FOTA)
Connecting
------------------------ Peripheral_HRP_FOTA ------------------------
FOTA stack version: FOTA 2.4.0
Application version: PSHRP 2.4.0
Device ID: None
------------------------ ble_peripheral_server_hrp_fota.fota ------------------------
FOTA stack version: FOTA 2.4.0
Application version: PSHRP 2.4.0
Device ID: None
Service UUID: b2152466-d600-11e8-9f8b-f2801f1b9fd1
FOTA build ID: 04 00 00 00 14 00 00 00 03 00 00 00 47 4E 55 00 5F 20 56 EC 3E E6 11 BD 98

4E F2 5E 21 48 E7 97

Establish

RebootToBootloader

Establish

UpdateAppImage
 <-- 100.0% 14.8kB/s UpdateAppImage
Finished
Completed with status Success

If you have trouble executing this step, make sure you have installed the required versions of the drivers and
.Net framework.

www.onsemi.com

14

CHAPTER 5

5.FOTA Image
5.1 OVERVIEW

The FOTA Image (.fota file) consists of two sub-images, with padding to a multiple of 2048 bytes in-between so
that the start of the second image lies on an RSL10 flash sector boundary. The first sub-image is the FOTA Bluetooth
Low Energy Stack (fota.bin) and the second one is the user application (app.bin). The Python utility mkfotaimg.py
generates the FOTA image, as illustrated below in Figure 9:

Figure 9. Image Format

The .fota file can then be used as input to the FOTA.Console.exe tool for a FOTA update, or as input to the
updater.py tool to perform a UART firmware update via the bootloader. For more information about the bootloader, see
the RSL10 Bootloader User's Guide.

5.2 MKFOTAIMG.PY

The mkfotaimg.py tool takes two positional arguments as inputs: the FOTA Bluetooth Low Energy stack sub-image
and the user application sub-image. Its usage and optional arguments are shown below.

Usage:

> mkfotaimg.py [-h] [--version] [-d UUID] [-s KEY-PEM] [-i UUID][-n NAME] [-o OUT-IMG]
FOTA-IMG APP-IMG

Arguments:

Table 1. Positional Arguments

Argument Meaning

FOTA-IMG FOTA stack sub-image containing the Bluetooth Low Energy
stack and the DFU component (.bin file)

APP-IMG application sub-image (.bin file)

onsemi
RSL10 Firmware Over-The-Air User’s Guide

www.onsemi.com

15

This Python utility can be integrated into the post-build steps of Eclipse to generate the .fota format file every time
a user application project is built. This configuration is available in Project > Properties > C/C++ Build > Settings >
Build Steps > Post-Build Steps. Two steps are required to generate the .fota image. First, we need to generate the
app.bin, which is the application sub-image. This is done using the objcopy tool, as follows:

arm-none-eabi-objcopy -O binary <app_name>.elf <app_name>.bin

Then, we can call the mkfotaimg.py utility to generate the final FOTA image (app.fota file) from the stack
sub-image (fota.bin) and the application sub-image (app.bin) generated above the .fota image, as follows:

mkfotaimg.py fota.bin <app_name>.bin

In order to invoke both commands, the two can be combined with the “&&” operator. Chapter 8, “Integrating
FOTA Into Your Application” on page 27, walks you step-by-step through generically configuring this post-build step
for any application, including the path for the Python utility, FOTA stack binary file, and application binary file.

5.3 SUB-IMAGE FORMAT

A sub-image contains the 1-to-1 flash content for RSL10. We use positions 7 and 8 of the vector table to store
pointers for the version info and the image descriptor:

Figure 10. Vector Table Positions

Every vector is a 32-bit value. With the Reset handler vector, the image start address can be calculated as:

Table 2. Optional Arguments

Argument Meaning

-h, --help show help message and exit

--version show program's version number and exit

-d UUID, --devid UUID device UUID to embed in the image (default: no ID)

-s KEY-PEM, --sign KEY-PEM name of signing key PEM file (default: no signing)

-i UUID, --srvid UUID advertised UUID to embed in the image (default: DFU service
UUID)

-n NAME, --name NAME advertised name to embed in the image (default: ON FOTA
RSL10)

-o OUT-IMG name of output image file (default: <APP-IMG>.fota)

onsemi
RSL10 Firmware Over-The-Air User’s Guide

www.onsemi.com

16

To find the version info and image descriptor, we calculate the corresponding image offsets by subtracting the
image start address from the vector value:

All multi-byte values in the description are in little-endian format.

The version info has the following format:

typedef struct
{
 char id[6]; // ID string
 uint16_t num; //<major[15:12]>.<minor[11:8]>.<revision[7:0]>
} version;

typedef struct
{
 version img_ver // image version
 uint8_t dev_id[16]; // device UUID set by mkfotaimg (default all 0s)
} version_info;

In the FOTA stack sub-image, the version info is directly followed by a configuration structure:

typedef struct
{
 uint32_t length; // length of this structure in bytes
 uint8_t pub_key[64]; // public signing key set by mkfotaimg
 // (default all 0s)
 uint8_t srv_id[16]; // service UUID used when advertising
 // set by mkfotaimg (defaults to the
 // DFU service ID)
 uint16_t dev_name_len; // device name length set by mkfotaimg
 // (defaults to 13)
 uint8_t dev_name[29]; // device name used when advertising
 // set by mkfotaimg (defaults to
 // “ON FOTA RSL10”)
 } config_info;

The image descriptor has the following format:

typedef struct
{
 uint32_t image_size; // image size in bytes excluding the signature
 uint32_t build_id[8]; // FOTA stack build ID
} image_descriptor;

<image start address> <Reset handler vector> & ~0x7FF=

<offset version info> <Pointer to version info> <image start address>–=

<offset image descriptor> <Pointer to image descriptor> <image start address>–=

onsemi
RSL10 Firmware Over-The-Air User’s Guide

www.onsemi.com

17

The FOTA stack build IDs from the two sub-images must match; otherwise it means that the application image has
been linked against another version of the FOTA stack image as included in the FOTA image, in which case an
IMAGE_DNL_BAD_BUILDID error is generated. The public key derived from the signing key is stored in the
configuration structure of the FOTA stack sub-image (see above struct config_info field pub_key). The image
size found in the image descriptor excludes the signature, so you must add 64 to the size to get the total sub-image size.

5.4 SIGNING THE FOTA IMAGE

The mkfotaimg.py tool provides an optional feature for signing the generated FOTA image with the -s or --sign
optional argument. It requires a PEM file that is used as the signing key. Both sub-images (Bluetooth Low Energy stack
and application) are appended by their 64-byte signatures before being concatenated into a single .fota file. These
signatures are SHA256 sub-image hashes, signed with the elliptic curve NIST256p derived from the provided signing
key. When the -s or --sign parameter is not used, the images are not signed, and a 64-byte dummy signature is
appended to the sub-images.

To generate a signing key, you can take advantage of the Python ecdsa package and save the generated key in a
PEM file, as shown below:

>>> import ecdsa
>>> sign_key = ecdsa.keys.SigningKey.generate(curve=ecdsa.curves.NIST256p)
>>> with open('key.pem', 'wt') as file:
... pem = sign_key.to_pem()
... file.write(pem.decode())

You can also use other tools to generate your signing key, such as openssl:

> openssl ecparam -name prime256v1 -genkey -noout -out key.pem

5.5 FOTA SIGNATURE VALIDATION

This section describes the validation of the FOTA image’s signature.

5.5.1 Performing Signature Validation

To perform FOTA signature validation, proceed as follows:

1. Create a signing key, as described above in Section 5.4, “Signing the FOTA Image” on page 17. This signing
key must be used for all FOTA image creations that apply to the same device.

2. Build your application, and call (normally implicit by post-build step) mkfotaimg.py with the parameter's
<signingkey> (see Section 5.2, “mkfotaimg.py” on page 14) to generate the initial FOTA image.

3. Program the bootloader to the RSL10 as shown in Section 4.3, “Setting Up the RSL10 Bootloader and
Loading a Firmware Image Using UART” on page 11.

4. Program the initial FOTA image into the device, via the bootloader, as shown in Section 4.3, “Setting Up the
RSL10 Bootloader and Loading a Firmware Image Using UART” on page 11.

5. Build the new release of the application.

IMPORTANT: The signing key is a secret. Keep it safe!

IMPORTANT: If the validation of the signature is critical from a secure update standpoint, make sure that a
public key is used. If the signature validation code does not encounter a public key, the code goes on to check for
image corruption, rather than returning an error. This allows you to do without a public key for such situations
as initial testing, but it creates a potential security fault if a public key is not used in more serious situations.

onsemi
RSL10 Firmware Over-The-Air User’s Guide

www.onsemi.com

18

6. Call mkfotaimg.py with the same signing key to generate the new FOTA image.
7. Download the new FOTA image to the device with Fota.Console.

This process guarantees that only FOTA images which are signed with the same key are accepted by the device.
The device can only check the image signature after the whole image has been transferred—and therefore, has already
overwritten the previous application. If the signature check fails, the device is without a valid application. You can still
download a valid FOTA image if one is available; without a valid FOTA image to download, the device is not operable.

Therefore, mkfotaimg.py provides the parameter -d (see Section 5.2, “mkfotaimg.py” on page 14). If you
provide this parameter with a device specific UUID (which you can generate yourself), this UUID becomes embedded
in the FOTA image, causing the device to accept only new FOTA images with the same UUID. The device can check
this UUID before the currently installed application is overwritten; and if there is a mismatch, the device still works.

The bootloader does no signature check; therefore, it is possible to install any FOTA image via the bootloader. An
update via FOTA is only possible if the signature of the new FOTA image corresponds with the signature key already
installed. If no signature key is installed on the device, any sub-image (signed or not) is accepted. If the transferred
sub-image is a signed FOTA stack sub-image, then only correctly signed sub-images will be accepted.

5.5.2 FOTA Image Checking with the DFU Component

When generating a FOTA image, mkfotaimg.py first embeds the information provided to it through parameters
(device UUID, advertising UUID, advertising name and public part of signing key) into the FOTA stack sub-image
(device UUID instruct version, advertising UUID, advertising name and public part of signing key instruct
config_info) and into the application sub-image (only device UUID instruct version). (See Section 5.3, “Sub-Image
Format” on page 15.) Then mkfotaimg.py signs both the FOTA and application sub-images with the private part of
the signing key, appends the signatures to the corresponding sub-images, pads the FOTA stack sub-image to RSL10
flash sector (2KiB) alignment, concatenates the FOTA stack sub-image followed by the application sub-image, and
finally writes the result as a FOTA image to disk (see Section 5.1, “Overview” on page 14).

The DFU client (Fota.Console) splits the FOTA image into the two sub-images again, and transfers first the FOTA
stack sub-image (only if needed) and then the application sub-image. The FOTA image can be split because both
sub-images contain data on their own lengths (see Section 5.3, “Sub-Image Format” on page 15). If the build ID of the
new FOTA image (see Section 5.3, “Sub-Image Format”, referring to struct image_descriptor) is different from the
build ID of the installed FOTA image (which can be read out via the FOTA Stack Build ID characteristic, shown in
Section 6.5, “DFU Service Characteristics” on page 23), the DFU client has to send the FOTA stack sub-image first.

The DFU component of the FOTA stack checks the embedded information in the already installed FOTA stack
sub-image version against a received sub-image (see code file fota/dfu/app_dfu.c function CheckImage), in this way:

1. Checks the start address of the sub-image; if the address is incorrect, the process aborts with error code
IMAGE_DNL_BAD_START.

2. Checks the image length against available space in flash memory; if the length is incorrect, the process aborts
with error code IMAGE_DNL_BAD_SIZE.

3. Checks the device UUID; if there is a UUID mismatch, the process aborts with error code
IMAGE_DNL_BAD_DEVID.

4. For application sub-images only, checks build ID; if there is a build ID mismatch, the process aborts with error
code IMAGE_DNL_BAD_BUILDID.

5. The verification steps 1 through 4 are performed as soon as the image header is received. If the verification is
successful, the DFU component continues to download the rest of the sub-image and starts overwriting the
application area in the flash memory.

onsemi
RSL10 Firmware Over-The-Air User’s Guide

www.onsemi.com

19

6. Checks the received signature against the calculated image hash and the public part of the signing key; if the
key is incorrect, the process aborts with error code IMAGE_DNL_BAD_SIG and the downloaded image is not
marked as valid.

7. Restarts the device. (If the bootloader then detects a valid FOTA stack sub-image in the application area, it will
copy it to the FOTA stack area first before starting the DFU component from the newly installed FOTA stack
sub-image.)

5.5.3 More About Digital Signature Validation

The public part of the signing key is stored in the already installed FOTA stack sub-image in the struct
config_info field pub_key (see Section 5.3, “Sub-Image Format” on page 15).

For the general workings of digital signatures, refer to:

https://en.wikipedia.org/wiki/Digital_signature

For the specific algorithms used by FOTA, refer to:

https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm

www.onsemi.com

20

CHAPTER 6

6.The DFU
6.1 DFU COMPONENT

The Device Firmware Update (DFU) component, which is embedded in the FOTA stack, acts as the server for the
DFU service. This component performs the actual update via the DFU custom service. The DFU component is activated
automatically at device startup if no valid application sub-image is found on the device. The application can also start
the DFU component by calling the function Sys_Fota_StartDfu().

6.2 UPDATE SEQUENCE

The DFU client scans for a device advertising the configured service ID (normally the DFU service ID). When the
device is found, the DFU client connects to the device and reads its characteristics (Device ID, Versions, Build ID). The
client must only accept FOTA images with matching Device IDs, unless the Device ID characteristic is all 0s, which
means the device is compatible with all FOTA images.

If the Build ID of the application sub-image differs from the Build ID characteristic, the client needs to download
the FOTA stack sub-image first. After this downloads successfully, the client needs to disconnect from the device,
which restarts the device with the new FOTA stack. Now the client needs to reconnect to the same device.

If the Build ID of the application sub-image matches the Build ID characteristic, the client needs to download the
Application sub-image. After successfully downloading, the client needs to disconnect from the device, which restarts
the device with the new user application.

6.3 FOTA STACK SOURCE CODE

The RSL10 CMSIS-Pack includes a prebuilt version of the FOTA Stack available in the form of a software
component, as shown in Chapter 4, “Performing Your First FOTA Update” on page 9. The fota.bin and libfota.a files
are located under <cmsis_pack_root>/ONSemiconductor/RSL10/<version>/lib/Release. The source code to
generate these files is also available in the CMSIS-Pack, under <cmsis_pack_root>/ONSemiconductor/RSL10/
<version>/source/firmware/fota.

If you would like to customize and rebuild these files, follow these steps:

1. Import the source code project. Navigate to File > Import > General > Existing Projects into Workspace,
set the Select root directory: option with the path to the source code, mark the checkbox Copy projects into
workspace, and click Finish. The project appears in the left side of Project Explorer, as shown in Figure 11
on page 21.

IMPORTANT: Sometimes smartphones do not handle a service changed indication correctly. Therefore, in the
DFU initialization, the first two bits of the device’s Bluetooth address are set to 0 to force the smartphone to
perform a service discovery.

onsemi
RSL10 Firmware Over-The-Air User’s Guide

www.onsemi.com

21

Figure 11. Copying the Project

2. Modify the source code. For example, change the FOTA stack version number in config.h.

#define VER_MAJOR 2
#define VER_MINOR 5 //4
#define VER_REVISION 0

3. Build the project. After building successfully, libfota.a and fota.bin are generated under the Debug or Release
folder, as shown in Figure 12.

onsemi
RSL10 Firmware Over-The-Air User’s Guide

www.onsemi.com

22

Figure 12. Building the Project

4. To use your customized files, replace the libfota.a and the fota.bin in your in your CMSIS-Pack installation
(<cmsis_pack_root>/ONSemiconductor/RSL10/<version>/lib/Release).

5. After replacing these files, it is necessary to refresh the RTE folder of existing projects in your workspace, so
that the IDE uses the newly generated files. The simplest way to do this is to delete the fota.bin and libfota.a
files under RTE > Device > RSL10, and refresh your sample project (for example, you can do this in
ble_peripheral_server_hrp_fota).

6. Rebuild the ble_peripheral_server_hrp_fota project so that a new .fota image is generated based on your
modified libfota.a and fota.bin files.

7. Run Fota.Console to perform a FOTA update. The tool detects the updated version number of the stack FOTA
stack version: FOTA <higher_version_number>, in comparison to the one installed on the device. (In
this example, we are using FOTA stack version: FOTA 2.5.0, for when version 2.4.0 is installed.) This
means a full update is required (FOTA Stack + application). This is performed in two steps: first, the FOTA
stack is updated; next, the device resets and the user application is updated. Notice the UpdateFotaImage
and UpdateAppImage logs below.

> Fota.Console.exe /COM=COM5 /IN=ble_peripheral_server_hrp_fota.fota /
NAME=Peripheral_HRP_FOTA

Fota.Console v1.0.5.0
--
Searching for peripheral ...
Found peripheral (Address:AA:BB:FF:22:11:94 RSSI:-43dBm Name:Peripheral_HRP_FOTA)
Connecting
------------------------ Peripheral_HRP_FOTA ------------------------

onsemi
RSL10 Firmware Over-The-Air User’s Guide

www.onsemi.com

23

FOTA stack version: FOTA 2.4.0
Application version: PSHRP 2.4.0
Device ID: None
------------------------ ble_peripheral_server_hrp_fota.fota ------------------------
FOTA stack version: FOTA 2.5.0
Application version: PSHRP 2.4.0
Device ID: None
Service UUID: b2152466-d600-11e8-9f8b-f2801f1b9fd1
FOTA build ID: 04 00 00 00 10 00 00 00 03 00 00 00 47 4E 55 00 23 F3 2C 65 FD E3 13 B0 EC

97 F5 8F 1F E0 E1 47

Establish
RebootToBootloader
Establish

UpdateFotaImage
 <-- 100.0% 15.0kB/s UpdateFotaImage
Establish

UpdateAppImage
 <-- 100.0% 6.3kB/s UpdateAppImage
Finished
Completed with status Success

6.4 DFU BLUETOOTH LOW ENERGY SERVICE

On the RSL10 device the DFU service is used as the server; the DFU service client runs on the PC (the
FOTA.Console tool).

If the device application does not implement this service, another method must be used to activate the DFU mode
in the device (e.g. push button).

6.5 DFU SERVICE CHARACTERISTICS

Table 3. DFU Service UUID

Requirement UUID

Mandatory for DFU component, optional for device application b2152466-d600-11e8-9f8b-f2801f1b9fd1

Table 4. DFU Service Characteristics and Their Properties

Characteristic UUID Properties Length Description Requirements

Transport b2152466-d601-11e8-
9f8b-f2801f1b9fd1

Notify,
Write
without
response

variable
(max.
512)

Internally used characteristic to
transport data with the DFU protocol.

Mandatory for DFU
component, prohibited for
device application.

Device ID b2152466-d602-11e8-
9f8b-f2801f1b9fd1

Read 16 Device ID as found in the version info
of the FOTA stack sub-image. Only
FOTA images with the same device ID
are compatible, unless this
characteristic is all 0s, in which case
all FOTA images are compatible.

Mandatory for DFU
component, optional for
device application.

onsemi
RSL10 Firmware Over-The-Air User’s Guide

www.onsemi.com

24

6.6 DFU PROTOCOL

The application layer uses a Command/Response scheme. Every Command/Response consists of a standard header
and an optional body. The header has the following format:

typedef struct
{
 uint8_t code; // unique Command/Response code
 uint8_t param[3]; // Command/Response specific parameters
 uint32_t body_len; // length of the following body (0 = no body)
} header;

Currently only a single Command/Response is specified: IMAGE_DOWNLOAD (code = 1). The command is
used to transfer a sub-image to the RSL10 device. The three parameters are not used by the command and must be set to
0. The body contains one of the two sub-images including the signature. The response signals back the success or
failure of the operation; in the case of failure, the device can send the response before the whole command body is
transferred. The response itself has no body. Param[0] is used for the status; the other parameters are not used, and
must be set to 0.

Table 5, below, shows the specific status codes:

BootLoader
Version

b2152466-d603-11e8-
9f8b-f2801f1b9fd1

Read 8

(Format
struct
version)

Version of the installed BootLoader. Mandatory for DFU
component, optional for
device application.

FOTA Stack
Version

b2152466-d604-11e8-
9f8b-f2801f1b9fd1

Read 8

(Format
struct
version)

Version of the installed FOTA stack
sub-image (of type struct version).

Mandatory for DFU
component, optional for
device application

Application
Version

b2152466-d605-11e8-
9f8b-f2801f1b9fd1

Read 8

(Format
struct
version)

Version of the installed application
sub-image. If no valid application
sub-image is currently installed, then
all 0s is returned.

Mandatory for DFU
component, optional for
device application.

FOTA Stack
Build ID

b2152466-d606-11e8-
9f8b-f2801f1b9fd1

Read 32 Build ID as found in the descriptor of
the FOTA stack sub-image. If the
Build ID of the FOTA image to
download is different from the one in
this characteristic, then both
sub-images must be updated;
otherwise, updating only the
application sub-image is sufficient.

Mandatory for DFU
component, optional for
device application

Enter DFU b2152466-d607-11e8-
9f8b-f2801f1b9fd1

Write 1 A write with the value 1 switches from
the Application mode to the DFU
mode.

Prohibited for DFU
component, mandatory
for device application.

Table 4. DFU Service Characteristics and Their Properties (Continued)

Characteristic UUID Properties Length Description Requirements

onsemi
RSL10 Firmware Over-The-Air User’s Guide

www.onsemi.com

25

For the transport layer, an HDLC-like protocol with windowing is used to transport the upper layer SDUs. For the
data-link layer, the transport characteristic of the DFU service is used.

Table 5. Status Codes

Code Meaning

0 The sub-image has been downloaded successfully

1 Download rejected due to incompatible Device ID

2 Download rejected due to incompatible Build ID (only for application sub-images)

3 Download rejected due to image size too large or small

4 Download failed due to flash storage error

5 Download failed due to invalid signature

6 Download rejected due to invalid start address

www.onsemi.com

26

CHAPTER 7

7.The Fota.Console Command Line Tool
7.1 FOTA.CONSOLE

Fota.Console is a simple PC command line tool for downloading firmware images using Bluetooth Low Energy
technology. An RSL10 USB dongle on the PC side is required to establish a Bluetooth Low Energy connection.

Usage:

> Fota.Console.exe /COM=COMx /IN=<APP-IMG>.fota [/NAME=<device name>][/
ADDR=<aa:bb:cc:dd:ee:ff>]

Parameters:

Table 6. Parameters

Parameter Meaning

/COM COM port connected to RSL10 Dongle (e.g. COM1)

/IN Path to a .fota file that is sent over a Bluetooth Low Energy connection.

/NAME Optional advertising name of the peripheral device

/ADDR Optional Bluetooth Low Energy address of the peripheral to connect. e.g.
60:C0:BF:00:14:62

www.onsemi.com

27

CHAPTER 8

8.Integrating FOTA Into Your Application
This chapter shows how to modify an existing sample application to make it capable of receiving FOTA updates.

We start with the ble_peripheral_server_bond application and walk you, step-by-step, through all the required project
configurations and firmware changes. Then, we show how to perform a FOTA update to confirm that the integration has
been executed successfully.

8.1 MODIFYING THE APPLICATION

1. Copy the ble_peripheral_server_bond sample application into your workspace. The C/C++ perspective opens
and displays your newly copied project, as shown below in Figure 13.

Figure 13. Bringing the Project Into the Workspace

2. Add the FOTA software component to your project by using the RTE Configuration Wizard (the
ble_peripheral_server_bond.rteconfig file). When you select the Fota component and click save, libfota.a,
fota.bin and the tool mkfotaimg.py are copied into your project, under RTE > Device > RSL10. In addition,
you need to deselect the BLE Stack and Kernel components and click to save, as shown in Figure 14.

onsemi
RSL10 Firmware Over-The-Air User’s Guide

www.onsemi.com

28

Figure 14. Adding the FOTA Software Component

3. Modify the source code to set the FOTA version number and ID:
a. In app.h, define your version numbers and ID:

/* --
* Application Version
* --- */

onsemi
RSL10 Firmware Over-The-Air User’s Guide

www.onsemi.com

29

#define VER_ID "PSBOND"
#define VER_MAJOR 2
#define VER_MINOR 4
#define VER_REVISION 0

b. In app.c, include sys_fota.h and use the SYS_FOTA_VERSION macro to set the version:

#include "sys_fota.h"

/* --
* Application Version
* --- */
SYS_FOTA_VERSION(VER_ID, VER_MAJOR, VER_MINOR, VER_REVISION);

4. Modify the sample application to activate the DFU when the button (DIO5) on the RSL10 EVB is pressed.
a. In app.h, define DIO5 as BUTTON_DIO, this way:

#define BUTTON_DIO 5

b. In app_config.c, modify the Device_Initialize() function to configure DIO5 as a GPIO input:

void Device_Initialize(void)
{
...
 /* Configure the push button of the RSL10 EVB as GPIO input */
Sys_DIO_Config(BUTTON_DIO, DIO_MODE_GPIO_IN_0 | DIO_WEAK_PULL_UP | DIO_LPF_DISABLE);
...
}

c. In app.c, add the code below in the while(1) loop of the main() function, to start the DFU when the
button is pressed:

while (1)
{
 ...

 /* Start Update when button is pressed */
 if (DIO_DATA->ALIAS[BUTTON_DIO] == 0)
 {
 Sys_Fota_StartDfu(1);
 }

 ...
}

The DFU component is activated by calling the Sys_Fota_StartDfu(mode) function defined in
sys_fota.h. The mode value 0 is for an application without the Bluetooth Low Energy stack (for example,
blinky), and 1 is for an application that uses the Bluetooth Low Energy stack (such as
ble_peripheral_server_bond).

5. Change the device name for testing:

/* Advertising data is composed by device name and company id */
//#define APP_DEVICE_NAME "ble_periph_server_bond"
#define APP_DEVICE_NAME "Peripheral_BOND_FOTA"

onsemi
RSL10 Firmware Over-The-Air User’s Guide

www.onsemi.com

30

6. Replace your sections.ld file with the one that contains the FOTA placement, and also replace your
startup_rsl10 file, as shown in Figure 15. The new sections.ld file and startup_rsl10 file can be copied from
ble_peripheral_server_hrp_fota, or directly from the CMSIS-Pack root folder as follows:
• sections.ld: <CMSIS Pack root folder>> onsemi > RSL10 > <version> > source > firmware >

fota > app
• startup_rsl10: <CMSIS Pack root folder> >onsemi > RSL10 > <version> > source > firmware >

fota > RTE > Device > RSL10
NOTE: For FOTA and sleep-based applications, use the sections.ld from the following location:

<CMSIS_Pack_root_folder>\onsemi\RSL10\<version>\source\firmware\fota\app\sleep_fot
a\sections.ld

Figure 15. Replacing the sections.ld and startup_rsl10.S Files

onsemi
RSL10 Firmware Over-The-Air User’s Guide

www.onsemi.com

31

7. Modify the project post-build steps (Figure 16) to generate the FOTA image in both Debug and Release build
configurations, by going to Project > Properties > C/C++ Build > Settings > Build Steps > Post-build
steps. Two steps are required to generate the .fota image. First, we need to generate the application sub-image
.bin file using objcopy. Then, we use the mkfotaimg.py tool to generate the FOTA image (.fota file). Both
commands can be concatenated with "&&" and added to the post-build steps as in the example that follows. To
use this command, copy the code from the Post-Build steps of the existing sample application
ble_peripheral_server_hrp_fota., as the code in the text below is not directly copyable.

${cross_prefix}objcopy -O binary "${BuildArtifactFileName}" "${BuildArtifactFileBaseName}.bin" && "${ProjDirPath}/
RTE/Device/RSL10/mkfotaimg.py" -o "${BuildArtifactFileBaseName}.fota" "${ProjDirPath}/RTE/Device/RSL10/
fota.bin" "${BuildArtifactFileBaseName}.bin"

Figure 16. Post-Build Steps

8. Build the ble_peripheral_server_bond application. If no error occurs, the FOTA image
(ble_peripheral_server_bond.fota file) can be found in the Debug or Release folder.

8.2 PERFORMING A FOTA UPDATE

1. Make sure you have bootloader running on your RSL10 EVB. If you have executed the steps in Chapter 4,
“Performing Your First FOTA Update” on page 9, you already have bootloader flashed on your board and you
can skip this step. Otherwise, refer to Section 4.3, “Setting Up the RSL10 Bootloader and Loading a Firmware
Image Using UART” on page 11 for instructions.

2. Activate the bootloader updater mode: press both the reset and the user (DIO5) push buttons on the RSL10
EVB simultaneously, and then release the reset button first. Upon releasing both push buttons, the LED (DIO6)
on the RSL10 EVB is set constant high, indicating that the bootloader updater is active, waiting for a firmware
image over UART.

NOTE: If there is a valid user application in flash (for example, the ble_peripheral_server_hrp_fota)
and no command is received over UART after a few seconds, the bootloader updater times out
and reboots into the user application.

NOTE: DIO5 is configured as an input to RSL10. In RSL10 EVBs, DIO5 is connected to both the
push-button SW1 and the Atmel ATSAM3U2CA-AU chip (which enables USB-to-JTAG). Care
must be taken to ensure that the Atmel chip is always powered in any power supply
configuration. If the Atmel chip is not powered, it can unexpectedly pull DIO5 low, and the
firmware code can be hung up in a while loop. Alternative procedures are to remove resistor
R31 so that DIO5 is not connected to the Atmel chip, or to use a different DIO to initiate the
FOTA process (this requires changes to the sample code).

3. Load the ble_peripheral_server_bond.fota image using the bootloader with the following command:

onsemi
RSL10 Firmware Over-The-Air User’s Guide

www.onsemi.com

32

> python updater.py COM4 ble_peripheral_server_bond.fota
Image : PSBOND ver=2.4.0 / FOTA ver=2.4.0
Bootloader : BOOTLD ver=2.0.1

After loading the image, the bootloader resets the device and boots up the user application.

4. Verify that your application is running by looking for the advertisement name Peripheral_BOND_FOTA on
the RSL10 Bluetooth Low Energy Explorer, as in Figure 17 on page 32:

Figure 17. Application Running

5. Push the DIO5 button on your RSL10 EVB so that the device starts the FOTA DFU mode. You can see the
name ON FOTA RSL10 on the RSL10 Bluetooth Low Energy Explorer, as in Figure 18, below:

Figure 18. FOTA DFU Mode Running

Note: after 30 seconds, the FOTA DFU Mode times out and reboots into the user application.

6. Within 30 seconds of activating the FOTA DFU Mode, use the FOTA.Console PC application to update the
firmware as follows:

onsemi
RSL10 Firmware Over-The-Air User’s Guide

www.onsemi.com

33

Fota.Console.exe /COM=COM5 /IN=ble_peripheral_server_bond.fota
Fota.Console v1.0.5.0
--

Searching for peripheral ...
Found peripheral (Address:20:C0:BF:03:05:9B RSSI:-43dBm Name:ON FOTA RSL10)
Connecting
------------------------ ON FOTA RSL10 ------------------------
Bootloader version: BOOTLD 2.0.1
FOTA stack version: FOTA 2.4.0
Application version: PSBOND 2.4.0
Device ID: None
------------------------ ble_peripheral_server_bond.fota ------------------------
FOTA stack version: FOTA 2.4.0
Application version: PSBOND 2.4.0
Device ID: None
Service UUID: b2152466-d600-11e8-9f8b-f2801f1b9fd1
FOTA build ID: 04 00 00 00 14 00 00 00 03 00 00 00 47 4E 55 00 5F 20 56 EC 3E E6 11 BD 98

4E F2 5E 21 48 E7 97

Establish

UpdateAppImage
 <-- 100.0% 4.4kB/s UpdateAppImage
Finished
Completed with status Success

7. You can repeat these steps to update the firmware with the ble_peripheral_server_hrp.fota image as well. The
steps described here can be applied to any RSL10 sample application.

8. You might have noticed that in this part of the tutorial we need to press the DIO5 push button to activate the
FOTA DFU mode. On the other hand, in Chapter 4, “Performing Your First FOTA Update” on page 9, we use
the Fota.Console tool to activate the DFU mode. The push button is required here, because we have not added
the DFU Bluetooth Low Energy custom service yet, and in particular, the characteristic Enter DFU
(Section 6.5, “DFU Service Characteristics” on page 23 for details).

NOTE: DIO5 is configured as an input to RSL10. In RSL10 EVBs, DIO5 is connected to both the
push-button SW1 and the Atmel ATSAM3U2CA-AU chip (which enables USB-to-JTAG). Care
must be taken to ensure that the Atmel chip is always powered in any power supply
configuration. If the Atmel chip is not powered, it can unexpectedly pull DIO5 low, and the
firmware code can be hung up in a while loop. Alternative procedures are to remove resistor
R31 so that DIO5 is not connected to the Atmel chip, or to use a different DIO to initiate the
FOTA process (this requires changes to the sample code).

9. Modify app.c to include ble_dfus.h and call DFUS_Initialize() in the main() function:

#include <ble_dfus.h>
...
int main(void)
{
...
 DFUS_Initialize(); /* Initialize DFU Service Server */
...
}

onsemi
RSL10 Firmware Over-The-Air User’s Guide

www.onsemi.com

34

10. Comment the call to GATTM_AddAttributeDatabase() in the APP_GAPM_GATTM_Handler() function in
app_msg_handler.c, so that the component from the application is not added. The DFU component in FOTA
already calls GATTM_AddAttributeDatabase() to add the characteristics for FOTA, so two separate calls
to set the attribute database would make the application confused. If you wish to include both components, you
need to merge their description in a single array.

void APP_GAPM_GATTM_Handler(ke_msg_id_t const msg_id, void const *param,
 ke_task_id_t const dest_id,
 ke_task_id_t const src_id)
{
 switch(msg_id)
 {
 case GAPM_CMP_EVT:
 {
 ...

 else if(p->operation == GAPM_SET_DEV_CONFIG && p->status == GAP_ERR_NO_ERROR)
 {
 //GATTM_AddAttributeDatabase(att_db, CS_NB); /* Add all custom services/

 attributes */

 }
 ...
 }

11. Farther along in the APP_GAPM_GATTM_Handler() function, also comment the two lines that set up the
condition for all expected profiles/services to be added before starting to advertise, as shown in the following
code example:

.

.

.
case GATTM_ADD_SVC_RSP:
case GAPM_PROFILE_ADDED_IND:
{
 if(msg_id == GATTM_ADD_SVC_RSP)
 {
 PRINTF("\n\r__CUSTOM SERVICE ADDED");
 }
 else
 {
 PRINTF("\n\r__GAPM_PROFILE_ADDED_IND");
 }
 /* If all expected profiles/services have been added */
 //if(GAPM_GetProfileAddedCount() == APP_NUM_STD_PRF &&
 // GATTM_GetServiceAddedCount() == APP_NUM_CUSTOM_SVC)
 {
 PRINTF("\n\r__START ADVERTISING");
 GAPM_StartAdvertiseCmd(&advertiseCmd); /* Start advertising */

12. Build the application and load it into your RSL10 EVB, using FOTA or the bootloader as shown in the
previous steps.

13. Connect and discover services using the RSL10 Bluetooth Low Energy Explorer, and you can see that the DFU
service is added in the attribute database, as shown in Figure 19 on page 35:

onsemi
RSL10 Firmware Over-The-Air User’s Guide

www.onsemi.com

35

Figure 19. DFU Service in Attribute Database

14. The last characteristic shown (the one with the input text box) is the Enter DFU characteristic. If you write 01
into it, it enters the DFU mode and starts advertising under the name ON FOTA RSL10. This is what the
Fota.Console application does prior to transmitting the image file.

15. Now that you have confirmed that your DFU service is up and running, you can use the Fota.Console tool with
the attribute /NAME=Peripheral_BOND_FOTA to perform a FOTA update without the need to manually enter
the DFU mode through the push button.

Fota.Console.exe /COM=COM5 /IN=ble_peripheral_server_bond.fota /
NAME=Peripheral_BOND_FOTA

Fota.Console v1.0.5.0
--

Searching for peripheral ...
Found peripheral (Address:D5:BB:FF:22:11:94 RSSI:-48dBm Name:Peripheral_BOND_FOTA)
Connecting
------------------------ Peripheral_BOND_FOTA ------------------------
FOTA stack version: FOTA 2.4.0
Application version: PSBOND 2.4.0
Device ID: None
------------------------ ble_peripheral_server_bond.fota ------------------------
FOTA stack version: FOTA 2.4.0
Application version: PSBOND 2.4.0
Device ID: None
Service UUID: b2152466-d600-11e8-9f8b-f2801f1b9fd1
FOTA build ID: 04 00 00 00 14 00 00 00 03 00 00 00 47 4E 55 00 88 5D D8 D8 CB 65 F0 94 C8

BE D6 07 99 2F D8 72

onsemi
RSL10 Firmware Over-The-Air User’s Guide

www.onsemi.com

36

Establish

RebootToBootloader

Establish

UpdateAppImage
 <-- 100.0% 7.7kB/s UpdateAppImage
Finished
Completed with status Success

www.onsemi.com

37

CHAPTER 9

9.RSL FOTA Mobile Application
RSL FOTA is a simple mobile application for iOS® and Android®, created to demonstrate Firmware-Over-The-Air

(FOTA) for onsemi RSL Bluetooth Low Energy devices. The RSL FOTA application acts as a central device to scan,
connect and transmit the firmware image to a remote RSL device. The remote RSL device firmware must have
FOTA-enabled firmware to receive the FOTA firmware image.

9.1 RSL FOTA APPLICATION

Follow these steps to use the RSL FOTA Mobile Application:

1. Download and install the RSL FOTA application from the Google Play Store or the Apple App Store.
2. Launch the application and select the FOTA enabled firmware device from the list of devices, as shown below

in Figure 20.

Figure 20. RSL FOTA Mobile Application Showing Bluetooth Low Energy Devices

3. When the appropriate device is selected, select the firmware image by clicking the Select File button.

https://play.google.com/store/apps/details?id=com.onsemi.fota&hl=en_US
https://apps.apple.com/us/app/rsl-fota/id1477779771

onsemi
RSL10 Firmware Over-The-Air User’s Guide

www.onsemi.com

38

4. Once the FOTA firmware image file is selected, click the Update button (see Figure 21 on page 38).

Figure 21. RSL FOTA Mobile Application: Updating Firmware

5. Upon firmware update completion, Update finished with code: 0 (Success) is displayed.

9.2 RSL FOTA ANDROID LIMITATIONS

Note the following important details when using the RSL FOTA Mobile Application:

• Device location permission is needed to scan for Bluetooth Low Energy devices. If the permission is not
granted at app startup, the app is prevented from finding any Bluetooth Low Energy devices.

• Device storage permission is needed to select a FOTA file.
• The FOTA file can be selected from the Downloads folder. The file can be transferred to the device, either over

USB or by email.
• Android version 6.0 or higher is required.

onsemi
RSL10 Firmware Over-The-Air User’s Guide

www.onsemi.com

39

9.3 RSL FOTA IOS LIMITATIONS

Note the following important details when using the RSL FOTA iOS Mobile Application:

• The RSL FOTA Mobile Application for iOS requires the Bluetooth Low Energy feature to be enabled to scan
for Bluetooth Low Energy devices.

• The easiest way to add a new FOTA file to the RSL FOTA Mobile Application is to send an email to the device
with the file attached. After downloading the file from the email, press the File icon once more, and a popup is
displayed where the user can select which app to use to open the file. Select the RSL FOTA Mobile
Application. The file is then imported to the application, and is visible when the user presses the Select File
button on the Update Firmware screen.

www.onsemi.com

40

CHAPTER 10

10.Performing FOTA Update with Bluetooth Low Energy
Explorer

Bluetooth Low Energy Explorer is a desktop application that runs on Windows®, developed to work with the
RSL10 USB Dongle. Bluetooth Low Energy Explorer can be used to perform Firmware-Over-The-Air (FOTA) for
onsemi RSL10 Bluetooth Low Energy devices.

NOTE: Refer to the RSL10_usb_dongle_ble_explorer_user_guide, for instruction to update the firmware
using Bluetooth Low Energy Explorer.

onsemi
RSL10 Firmware Over-The-Air User’s Guide

M-20860-007

Ezairo is a registered trademarks of SCILLC. Bluetooth is a registered trademark of Bluetooth SIG, Inc. Windows is a registered trademark of Microsoft Corporation. All other brand
names and product names appearing in this document are trademarks of their respective holders.

onsemi and the onsemi logo are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi
owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at
www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty,
representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and
applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance
may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any
license under its patent rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any
FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal
injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part.
onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Literature Distribution Center for onsemi
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll
Free USA/Canada

Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910

onsemi Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local
Sales Representative

	RSL10 Firmware Over-The-Air User’s Guide
	Table of Contents
	1. Introduction
	1.1 Purpose
	1.2 Intended Audience
	1.3 Conventions
	1.4 Further Reading

	2. Overview
	2.1 Prerequisites
	2.2 Overview

	3. The FOTA Firmware
	3.1 FOTA Partitioning
	3.2 Firmware Startup
	3.3 Application Only Update
	3.4 Application + FOTA Bluetooth Low Energy Stack Update

	4. Performing Your First FOTA Update
	4.1 Overview
	4.2 Generating the FOTA Firmware Image
	4.3 Setting Up the RSL10 Bootloader and Loading a Firmware Image Using UART
	4.4 Performing a FOTA Update Using the FOTA.Console PC Tool

	5. FOTA Image
	5.1 Overview
	5.2 mkfotaimg.py
	5.3 Sub-Image Format
	5.4 Signing the FOTA Image
	5.5 FOTA Signature Validation
	5.5.1 Performing Signature Validation
	5.5.2 FOTA Image Checking with the DFU Component
	5.5.3 More About Digital Signature Validation

	6. The DFU
	6.1 DFU Component
	6.2 Update Sequence
	6.3 FOTA Stack Source Code
	6.4 DFU Bluetooth Low Energy Service
	6.5 DFU Service Characteristics
	6.6 DFU Protocol

	7. The Fota.Console Command Line Tool
	7.1 Fota.Console

	8. Integrating FOTA Into Your Application
	8.1 Modifying the Application
	8.2 Performing a FOTA Update

	9. RSL FOTA Mobile Application
	9.1 RSL FOTA Application
	9.2 RSL FOTA Android Limitations
	9.3 RSL FOTA iOS Limitations

	10. Performing FOTA Update with Bluetooth Low Energy Explorer

