
© SCILLC, 2023
Previous Edition © 2021
“All Rights Reserved”

RSL10 Sample Code User’s Guide

M-20840-015
June 2023

www.onsemi.com

2

onsemi
RSL10 Sample Code User’s Guide

Page

1. Introduction . 3
1.1 Purpose . 3
1.2 Intended Audience . 3
1.3 Conventions . 3
1.4 Further Reading . 3

2. Using Sample Applications . 4
2.1 Requirements . 4
2.2 Setup . 4
2.3 Accessing Sample Code Files . 4

3. The peripheral_server Application . 5
3.1 Purpose . 5

3.1.1 What Does The Peripheral-Server Application Do? 5

3.1.2 What peripheral_server Demonstrates 5

3.2 File Structure . 5
3.2.1 Types of Files and Stacks . 5

3.2.2 How Files Relate . 6

3.3 Walkthrough of the peripheral_server Application 6
3.3.1 System Initialization . 6

3.3.2 GAP and GATT Services -- Establishing Communication 6

3.3.3 The Kernel Scheduler . 6

3.3.4 Message Handlers . 7

3.3.5 Standard Profiles/Services . 7

3.3.6 Custom Profiles/Services. 7

3.3.7 The Main Loop—peripheral_server Event Kernel Execution 7

3.4 Walkthrough of the Message Sequence Chart (MSC) 8
3.5 How to Run peripheral_server with the Evaluation and Development Board 8
3.6 Adding New Profiles/Services . 9

3.6.1 How to Add a New Standard Service/Profile 9

3.6.2 How to Add a New Custom Service/Profile 9

3.6.3 More About Working with Custom Services 10

4. Available Sample Applications . . 12
A. Message Sequence Chart for Peripheral Device with Server Sample Application 20

Table of Contents

www.onsemi.com

3

CHAPTER 1

1.Introduction
1.1 PURPOSE

RSL10 Sample Code User’s Guide explains how to use the sample applications provided with the RSL10 software
development tools. As you follow this guide, you learn about setting up your system, accessing code files, and how the
sample application Peripheral Device with Server (peripheral_server) works. In addition, this manual shows you what
this sample code demonstrates, and how the principles can be used in the RSL10 applications you develop. The guide
also points you to more information about using RSL10.

1.2 INTENDED AUDIENCE

This manual is for people who intend to develop applications for RSL10. It assumes that you are familiar with
software development activities and the use of Bluetooth low energy technology.

1.3 CONVENTIONS

The following conventions are used in this manual to signify particular types of information:

monospace Commands and their options, file and path names, error messages, code samples and code
snippets.

mono bold A placeholder for the specified information. For example, replace filename with the actual
name of the file.

bold Graphical user interface labels, such as those for menus, menu items and buttons.

italics File names and path names, or any portion of them.

1.4 FURTHER READING

For more information, refer to the following documents:

• RSL10 Getting Started Guide
• RSL10 Hardware Reference
• RSL10 Firmware Reference
• RSL10 Evaluation and Development Board Manual

IMPORTANT: onsemi acknowledges that this document might contain the inappropriate terms “white list",
"master" and "slave”. We have a plan to work with other companies to identify an industry wide solution that
can eradicate non-inclusive terminology but maintains the technical relationship of the original wording. Once
new terminologies are agreed upon, future products will contain new terminology.

www.onsemi.com

4

CHAPTER 2

2.Using Sample Applications
2.1 REQUIREMENTS

To use any sample application, such as the peripheral_server sample application, you must have the installed
RSL10 software development tools, along with the RSL10 Evaluation and Development Board, a computer running
Windows®, and a cable to connect the two. You also need a device to serve as the central client, such as another RSL10
Evaluation and Development Board, a control panel, or a device of your choice that complies with the Bluetooth low
energy standard, and fills the GAP central and GATT client roles.

2.2 SETUP

Refer to the RSL10 Getting Started Guide for information on how to connect the Evaluation and Development
Board to your computer.

2.3 ACCESSING SAMPLE CODE FILES

This guide assumes that you have installed the RSL10 software development tools and that you know how to
import sample applications into your workspace. If not, see the RSL10 Getting Started Guide for basic instructions. For
alternate ways of accessing the sample applications, such as copying the files or linking to them from a project, see the
documentation for your IDE.

www.onsemi.com

5

CHAPTER 3

3.The peripheral_server Application
3.1 PURPOSE

For the purpose of understanding the sample code as a whole, this chapter provides a deeper explanation of the
Peripheral Device with Server (peripheral_server) sample application. This application is a basic Bluetooth® low
energy technology based sample application that demonstrates many of the fundamentals of an end user device, and this
guide answers the following questions:

• What does the peripheral_server application do?
• What are components of the peripheral_server application?
• How does the peripheral_server application works?

3.1.1 What Does The Peripheral-Server Application Do?

In this program, RSL10 fills two Bluetooth technology roles:

• It is a GATT server because it provides data in the form of GATT characteristics that can be read by remote
GATT clients.

• It acts as a GAP peripheral because it advertises its presence and willingness to connect with a GAP central
device.

The peripheral_server program implements a battery service and a custom service, then starts undirected,
connectable advertising. Your central device scans the advertising and a connection is established. During advertising,
LED DIO#6 on the Evaluation and Development Board blinks. It turns steadily on once the link is established. The
application then reads the device’s battery level every 200 milliseconds, as dictated by a kernel timer event. It calculates
the average for 16 reads of the battery level (3200 ms). If the average value of the level changes, the program sets a flag
to send a battery level update to the stack. If notification of battery level is enabled, then the stack sends a battery level
notification to the peer device. It also demonstrates a custom service in which two characteristics are defined. For one of
them, a notification with an incremented value is sent every 30 kernel timer events (6 seconds), if the notification is not
disabled by the client device.

3.1.2 What peripheral_server Demonstrates

The application is an example of both standard service and custom service use. The code shows how to connect
RSL10 (which takes the role of a server) with a central client device, send requests to the Bluetooth low energy stack,
receive and handle responses, perform calculations, use kernel timer events, and send notifications. All of these
functionalities - generating a service, connecting, measuring, timing, and notifying - are some of the basic building
blocks of the Bluetooth low energy applications you can develop for RSL10.

3.2 FILE STRUCTURE

This application uses various kinds of files to communicate and perform functions with Bluetooth low energy client
devices.

3.2.1 Types of Files and Stacks

The peripheral_server application resides in two folders and one file. The folders are called code and include.

The files in the code folder (.c files) contain functions, which are responsible for different functionalities in the
application. For instance, the main program loop is one of the functions found in the file called app.c; the initialization
functions are in theapp_init.c file; and so on.

onsemi
RSL10 Sample Code User’s Guide

www.onsemi.com

6

The include folder contains application-related public header files (.h files) which allow the code to access
libraries.

The sample application peripheral_server uses the Bluetooth low energy stack.

3.2.2 How Files Relate

Some of the functions in the code files call other functions during the operation of the application; they also
communicate with the Bluetooth low energy stack. The include files serve as access points for libraries, which are not
part of the project itself but are required by application functionality.

3.3 WALKTHROUGH OF THE PERIPHERAL_SERVER APPLICATION

This walkthrough shows the details of peripheral_server’s functionalities, so that you can understand and use them
in your RSL10 application development.

3.3.1 System Initialization

When the main function begins, it calls the function App_Initialize(). This function, in turn, calls other
functions to initialize everything, including Bluetooth low energy, the kernel, power supplies, clock dividers, interrupts,
and any environments used by the application.

3.3.2 GAP and GATT Services -- Establishing Communication

The Generic Access Profile (GAP) contains guidelines for the broadcasting and connecting mechanisms by which
a Bluetooth low energy device can communicate with the outside world. The GAP is divided into GAPM (GAP
Manager) and GAPC (GAP Controller) services.

The Generic Attribute Profile (GATT) contains rules for how attributes (data) are formatted, packaged, and sent
between Bluetooth low energy devices once they have a dedicated connection. The GATT is divided into GATTM
(GATT Manager) and GATTC (GATT Controller) services.

3.3.3 The Kernel Scheduler

After initialization, an infinite While loop begins running the kernel scheduler.

The kernel scheduler is responsible for constantly checking messages communicated by different tasks. In this
application there is only one task, but in any application there can be different instances of the same task. Different
application tasks control different Bluetooth low energy functionalities. An application sometimes needs to
communicate with different tasks, such as GAPM, GAPC, GATTM, GATTC, and different standard and custom
profiles (services). The kernel scheduler is responsible for handling these messages.

When the application needs to send a message, it allocates memory in the kernel buffer, fills in the message with
any parameter that it wants to send, and then fills in the source address and destination address as the message identifier.
Then the application calls a function from the kernel asking to send this message to the destination. The kernel
scheduler checks that buffer. If it is filled, then the scheduler sends the message to the destination task by automatically
calling a pre-defined message handler. The kernel scheduler also handles all timers used by the stack, services, or
application. When a timer expires, the kernel scheduler automatically calls a function or message handler allocated to
the timer’s identifier.

onsemi
RSL10 Sample Code User’s Guide

www.onsemi.com

7

3.3.4 Message Handlers

Another important location in the code is for message handlers. For example, any message, request or command
sent from the application to the GAPM has an associated GAPM_COMPLETE event. This event message is sent from the
stack to the application. Based on its message identifier, this message is called automatically by the kernel. The
definition for this event message is in BLE_MESSAGE_HANDLER_LIST, found in ble_standard.h. Any message that you
want to add, and that you want a message handler for, needs to be listed in BLE_MESSAGE_HANDLER_LIST. You might
read the CEVA documentation for GATT and GAP and decide to add your own message handler for some specific API
or message. That also must be listed here.

To add a message handler, first, you need to add DEFINE_MESSAGE_HANDLER in the corresponding .h file, and
define a function in the corresponding file, which can be ble_standard.h, application.h, or standard_profile.h.

3.3.5 Standard Profiles/Services

Standard services are pre-defined methods by which Bluetooth low energy devices can communicate specific types
of data to one another. You can think of a profile as a group of one or more services.

The attributes of standard services are already recognized by the Bluetooth low energy stack, so you do not need to
list the attributes when adding standard services to an application. Each standard service has a 16-bit UUID (unique
numeric identifier).

3.3.6 Custom Profiles/Services

Custom services, like standard services, are methods by which Bluetooth low energy devices can communicate,
and work with your Bluetooth low energy applications to add functionalities. Unlike standard services, custom services
are not pre-defined. You can control what they do, creating them to your own specifications. You also need to list all the
attributes you want for a custom service because the stack cannot automatically tell which attributes to add. Each
custom service needs a 128-bit UUID.

3.3.7 The Main Loop—peripheral_server Event Kernel Execution

The primary functionality of peripheral_server is performed by the program’s main loop, located in app.c. This
loop checks to see whether the new value for a battery has changed, and sets a flag called send_batt_ntf. Next, the
loop calls a function, Batt_LevelUpdateSend, to send the value of the battery level to the Battery Service. If
notification is enabled for this service, the Bluetooth stack notifies the peer device (client device) in communication
with RSL10 of the updated battery value.

There is also an additional flag which is set when the value of one of the custom attributes is changed. The flag is
called tx_value_exchange. Based on this flag, the function custom_service_send_notification is called to
send a new value to the stack, which is then responsible for sending the message over the air to the peer device. In this
example we are communicating some parameters from the peripheral, RSL10, to the client device/central device. To
show that the link is established and communicating, we send the value of tx_attribute every six seconds.

On the central side, you can use any central client device—another RSL10 Evaluation and Development Board, a
Bluetooth Low Energy Explorer on an RSL10 dongle, or any central application that can connect to the peripheral
device and show the service attribute values. Using your central device, you can verify that the new battery data is
measured and read correctly every six seconds. If the battery level changes, the central device is notified and can show
the new value, provided the corresponding notification is enabled. Every six seconds, the central device is also notified
of a new value from one of the custom characteristics.

onsemi
RSL10 Sample Code User’s Guide

www.onsemi.com

8

3.4 WALKTHROUGH OF THE MESSAGE SEQUENCE CHART (MSC)

The MSC is a visual representation (as shown in Figure 1 on page 21) of the messages communicated between the
application and the Bluetooth low energy stack in establishing a connection so that data can be exchanged. All stages of
this process make changes to a variable called BLE_STATE, which shows the state of the Bluetooth low energy
application manager. At first it is initialized to APPM_INIT, when the application is initializing and is configured in an
idle state.

After initializing the Bluetooth stack, the kernel, and any environments that the application works with, the code
sends a reset to the Bluetooth low energy stack. If this is successful, the stack sends back a GAPM_COMP_EVENT, which
contains the name of the operation, and its status. The application receives it and checks that the operation is
GAPM_RESET; it also checks whether the status is successful. If these conditions are met, the
GAPM_SET_DEV_CONFIG_CMD command is sent to the stack. Again, the stack sends back a GAPM_COMP_EVENT. The
status is checked for errors because if the parameter is set incorrectly, the stack might not accept the application’s
message, and will not properly configure itself. If no errors occur, the application receives a successful
GAPM_COMP_EVENT. The application is now set to the APPM_CREATE_DB (create database) state, beginning to add
databases to the Bluetooth low energy stack, and configure GAP.

The program now sends a GAPM_PROFILE_TASK_ADD_CMD command for adding a standard service to the stack,
and receives an indicator if the service has been added successfully. Next, the program sends a GATTM_ADD_SVC_REQ
request to the stack, to request the addition of a custom service. GATTM_ADD_SVC_RSP is the response from the stack,
informing the program whether the custom service can be added.

After adding services, the application is in the APPM_READY state. Now the code runs a function that checks
whether any further service is waiting to be added. Once it sees that no further service is to be added, it sends a
GAPM_START_ADVERTISING command to begin advertising. If the parameter is set correctly, the code has no need to
wait for a GAPM_COMP_EVENT response from the stack because advertising begins as soon as the command is sent. The
application is now in the APPM_ADVERTISING state.

Once advertising starts, the central device can scan the peripheral device (RSL10). Once the central device
observes that the peripheral is advertising, it can establish a connection. The application receives a
GAPC_CONNECTION_REQ_IND indication, which informs it which Bluetooth address it is connected to. The application
then sends a GAPC_CONNECTION_CONFIRMED notification to the stack, indicating that the program has received the
stack’s message, and that the message has provided the necessary parameters. The application is now in the
APPM_CONNECTED state.

 When the link is established, the program sends a BASS_ENABLE request to enable battery service in the stack.
After receiving the response to this message, BASS_SUPPORT_ENV.ENABLE is set to indicate to the application that
battery service is enabled. From this point it can send custom service notification, receive a read request from the
central device for a custom service characteristic value, or perform any other sort of communication with the central
device.

3.5 HOW TO RUN PERIPHERAL_SERVER WITH THE EVALUATION AND DEVELOPMENT BOARD

Refer to RSL10 Getting Started Guide for information on how to connect the RSL10 Evaluation and Development
Board to your computer, and a demonstration of how to import, build, and run sample code. The example used in RSL10
Getting Started Guide is a program called blinky. Import peripheral_server instead, and work with it according to the
information presented for blinky.

onsemi
RSL10 Sample Code User’s Guide

www.onsemi.com

9

3.6 ADDING NEW PROFILES/SERVICES

3.6.1 How to Add a New Standard Service/Profile

You can add standard services to the Bluetooth low energy stack by sending a GAPM_ProfileTaskAdd command
in your program, with the message stating which standard service is being added. In this sample program, you are
adding ble_bass – the battery service server. You can add more standard profiles the same way. After sending a
GAPM_ProfileTaskAdd command, your program needs to wait until the GAPM_ProfileAddedInd indication is
received to make sure that this service is successfully added. Incorrect parameter values can cause the stack to reject the
command. This is also true of the GATTM services.

Here are step-by-step instructions for adding a new standard profile/service:

1. Find the document related to the desired profile/service API, located in the documentation/ceva folder.
2. Create two files, a .c file and a .h file, and name them based on the service that you have selected. For example,

if you want to add the ANPS service, you would create the files ble_anps.c and ble_anps.h, for consistency
with the code structure.

3. In Eclipse, go to the Project setting, in Build Configuration for Cross Arm C Compiler, and add the symbol
CFG_PRF_ANPS. Adjust CFG_NB_PRF based on the maximum the number of profiles that are added to the
project.

4. In the Project setting, at Cross Arm C Link under Libraries, add “anps” under the -l section.
5. In the ble_anps.h file, define all message handlers that are required for this profile according to the CEVA

documentation, and create corresponding functions for them. For example, for BASS we have:

#define BASS_MESSAGE_HANDLER_LIST \
DEFINE_MESSAGE_HANDLER(BASS_ENABLE_RSP, Batt_EnableRsp_Server), \

DEFINE_MESSAGE_HANDLER(BASS_BATT_LEVEL_NTF_CFG_IND, Batt_LevelNtfCfgInd)

6. Define the anps variable environment as struct anp_support_env_tag, with at least the bool enable
field, plus any other fields that are required for this profile.

7. All message handler functions and any other functions must have their prototype declarations in ble_anps.h.
8. Declare anps_supprt_env in the ble_anps.c file, and then initialize it with the Anps_Env_Initialize

function. This function should be added to App_Env_Initialize().
9. In the function BLE_SetServiceState(), this example for BASS has an If condition. When the condition

is true, add Anp_ServiceEnable_Server(ble_env.conidx). If the else is true instead, add
anps_support_env.enable = false.

10. In app.h, write a service add function for anps in this way:

#define SERVICE_ADD_FUNCTION_LIST \

DEFINE_SERVICE_ADD_FUNCTION(Batt_ServiceAdd_Server), \

DEFINE_SERVICE_ADD_FUNCTION(Anp_ServiceAdd_Server), \

DEFINE_SERVICE_ADD_FUNCTION(CustomService_ServiceAdd)

In app.c or app_process, you can call any function that you have created for anps, such as to send something if
ble_env.state is in APPM_CONNECTED and anps_support_env.enable==true.

3.6.2 How to Add a New Custom Service/Profile

After adding standard services, you can add custom services.

 Custom services are added by using the message gattm_add_svc_req. In it you list all the characteristics
(attributes) you want for this custom service. First you define the service UUID, and then any characteristics that you
want to add, such as characteristic UUID, client configuration characteristics (CCCD), and optional user descriptors

onsemi
RSL10 Sample Code User’s Guide

www.onsemi.com

10

which function as names for characteristics. Your application sends a GATTM_ADD_SVC_REQ message. When a
successful response is received, the stack sends a start handle value to the application in the GATTM_ADD_SVC_RSP
message. This start handle indicates where in the stack your requested service has been added, and serves as this
service’s reference in the stack. The service’s characteristics that you add to the stack also have handle values, but they
are offset from this start handle value. For example, if the start handle value is 10, the handle value for the first
characteristic added to the service in the stack is 11.

Here is an example of adding a new custom service. The function is called CustomService_ServiceAdd, and is
part of the RSL10 software development tools.

First, send the GATTM_ADD_SVC_REQ message. Include a service UUID in it, and then a list of attributes
(characteristics) that you want to add. In this CustomService_ServiceAdd example, two groups of attributes, Tx and
Rx, are added. These two values make it possible for the peripheral and central devices to send values to each other in
two-way communication.

The Tx characteristic declaration is added first. It is a standard characteristic, but it needs to be added in this way
because a custom service requires a 128-bit UUID. (You need a standard UUID if you are adding a characteristic
declaration, but when adding value characteristics you need to use a custom UUID.) After adding the characteristic
declaration, you need to add the characteristic value, the client configuration characteristic (CCCD), and the user
description characteristic, so that you can add a name and observe it in the central device, rather than just seeing the
identification of the service as a number. Macros such as add_declaration_characteristic,
add_declaration_characteristic_UUID, add_declaration_characteristic_ccc, and
add_declaration_characteristic_user_description make this process easier.

You then need to define the permissions and properties of every characteristic you add. For example, one
characteristic in the Tx group is Tx_value. This characteristic can be modified, indicated, read from the central device,
and written by receiving either a write request or a write command. Any of these properties can be set here, along with
whether the characteristic will respond to read or write requests, whether it needs authentication, encryption,
permissions, or security – these properties get set here. (This example does not use security, permissions or
authentication.)

There are macros available for setting up permissions. For example, per_rd_command_enable sets permissions
to enable read commands. For the extra permission characteristic in this example, there is a flag in
attribute_declaration_characteristic_UUID_128, called per_ri_enable. This flag indicates that the
value of this attribute is not located in the stack, and should be handled in the application. Maximum size is another
characteristic: for custom length values, such as this example illustrates, you need to set the maximum length of this
attribute in bytes.

When all the attributes are listed, the application can send GATTM_SERVICE_ADD. To add another custom service,
the application needs to send another message with its own service UUID and characteristic definitions.

3.6.3 More About Working with Custom Services

When the application receives a GATTM_ADD_SVC_RSP response from the stack, it saves the start handle in the
custom service environment. For each custom service attribute, there is an index, because these attributes are listed in
the custom_service.h file. For example, if the RSL10 application receives a read request from a peer device, that request
will be sent by its handle. In effect, the request will say something like, “I am asking to read the value of handle number
11.” (Or another handle number, depending on the request.) To map the value of the handle onto the attribute index, the
application needs to find the offset between the start handle in the GATT database, minus one. The first index number,
0, is reserved for the service UUID, and the attribute in this example starts from number 1. So if the start handle is
located at number 10, the first attribute is located at start handle number 11. Therefore, index number 0 in this example

onsemi
RSL10 Sample Code User’s Guide

www.onsemi.com

11

points to handle number 11. The attribute index is calculated this way based on the attribute number in the function;
using a switch-case, the application can easily access any attribute that a peer device request is asking about.

Based on that attribute, the application can receive the value. Sometimes permissions do not allow responses to
requests about attributes. For example, if permission for the peer device to change the user description is not desired,
then write permission can be disabled.

To change the Rx value of this custom service using a central device, a write command or a write request can be
sent from the client device, and the application received GATTC_WRITE_REQ_IND when this message is received by the
stack.

To send a custom service notification, your program needs to use CUSTOM_SERVICE_SEND_NOTIFICATION. For
this you must indicate the link or connection for which the request is being sent, the attribute index this notification is
being sent for, what the value is, and the length of this value.

www.onsemi.com

12

CHAPTER 4

4.Available Sample Applications
Table 1 lists all the sample applications that are available with the RSL10 software development tools, and explains

what each one is intended to demonstrate.

If a Keil version of the sample exists, when you install the Keil CMSIS-Pack, you will find the sample application
in a folder of the same name, but in the IDE_Configuration/Keil subfolder.

Table 1. Sample Code

Name Folder Description
Keil
Version

IAR
Version

ADC with UART ADC_UART A sample project that demonstrates the ADC and battery
monitor block. The program measures the voltage of the
supply voltage provided at the battery input and reports it on
the UART port. Detecting under voltage conditions triggers a
battery monitor alarm. This sample project demonstrates the
usage of ADC and BATMON interrupts.

Yes Yes

AES-128 aes128 A complete Arm Cortex-M3 processor implementation for
AES-128 ECB mode encryption/ decryption in C according to
the NIST recommendations. The encryption demonstrates
encryption using the hardware engine of the baseband block,
or using a pure software implementation. The decryption side
is performed only in software.

Android Audio
Streaming for
Hearing Aid
Profile with Server

ble_android_asha Implements an Android ASHA server device. The ASHA profile
supports streaming either the left or right audio channels from
a BLE 5.0 Android phone. It only supports a single client at a
time.

NOTE: Android ASHA is an experimental
feature in Android and is not enabled in
factory builds. A custom Android
version with ASHA enabled is required.

This sample application also implements a battery service and
the device information service. It supports pairing and bonding.
The application stores the bond information in the RSL10
NVR2 flash and has the ability to perform Private Address
Resolution.

Scanning with
Central Device

ble_central_client_scan This sample application demonstrates a Bluetooth scanning
procedure. It scans for advertisements and prints a list of
scanned devices over UART. You can use a UART terminal
application (like TeraTerm) with a baud rate of 115200 to see
scanned devices and connect up to four peripheral peer

devices. This application makes use of the RSL10 UART
CMSIS-Driver to manage the interface communication.

Yes Yes

onsemi
RSL10 Sample Code User’s Guide

www.onsemi.com

13

Pairing and
Bonding with
Peripheral Device

ble_peripheral_server_bond This sample project generates a battery service and a custom
service. It then begins undirected connectable advertising. Up
to four simultaneous connections are supported. Any central
device can scan, connect, pair/bond, perform service
discovery and read the battery/custom services
characteristics. The application sends periodic notifications of
the battery level and a custom service characteristic to the
connected clients. The application stores the bond information

in the RSL10 NVR2 flash and has the ability to perform
Private Address Resolution. Additionally, it demonstrates how
to use the BATMON alarm hardware of RSL10 to trigger an
interrupt when the battery level falls below a configured
threshold.

Yes Yes

Heart Rate
Peripheral FOTA

ble_peripheral_server_hrp_
fota

This application is similar to the Heart Rate Bluetooth Low
Energy application (ble_peripheral_server_hrp) with added
features to support Firmware Over-The-Air (FOTA) updates.
See the Firmware Over-The-Air User's Guide for more
information.

Yes

Heart Rate
Peripheral Device
with Server

ble_peripheral_server_hrp This sample code extends the ble_peripheral_server_bond
application to support the Heart Rate Profile (HRP) and the
required paring/bonding sequences. The Heart Rate Profile is
used to enable a data collection device to obtain data from a
Heart Rate Sensor that exposes the Heart Rate Service
(intended for fitness applications). This sample demonstrates
how to implement the Heart Rate Sensor portion, including
advertising, pairing, bonding and whitelisting; you must
provide the Collector that receives the data. Data includes
battery level notifications and the measured battery voltage.

Yes

Private
Resolvable
Address with
Peripheral Device

ble_peripheral_server_PRA This application is similar to ble_peripheral_server_bond. In
addition, it generates and changes the application Private
Resolvable Address every 150 seconds.

Pairing and
Bonding with
Client Device

ble_central_client_bond This sample project generates a battery service and a custom
service client. It then connects up to four peripheral peer
devices in direct connectable mode with known Bluetooth peer
addresses. Once the connection is established with any peer
device, the central device attempts to pair/bond and start
encryption. It also starts battery/custom service discovery for
that device. If the services are discovered, the application
periodically sends read requests for the battery level and
custom service attributes, using a kernel timer. The application

stores the bond information in the RSL10 NVR2 flash, and
can perform Private Address Resolution. Upon reconnection,
the application starts encryption using the saved bond
information.

Yes Yes

SAI CMSIS-Driver sai_cmsis_driver This sample project demonstrates how to use the SAI
CMSIS-Driver to transfer data in both master and slave modes
between two RSL10 Evaluation and Development Boards. The
project introduces you to using the SAI CMSIS-Driver with
RSL10.

Table 1. Sample Code (Continued)

Name Folder Description
Keil
Version

IAR
Version

onsemi
RSL10 Sample Code User’s Guide

www.onsemi.com

14

Central and
Peripheral Device

ble_central_peripheral This sample project fills both the central and the peripheral
GAP roles, preparing the battery service and custom service
clients for the central role of the application, and the battery
service and custom service servers for the peripheral role.
When the peripheral role establishes a connection with a
central device (or fails to form a connection after advertising
for 10 seconds), the application switches to the central role,
and sends start connection commands to put the device in
automatic connectable mode. This also applies to the central
role of the application. This code demonstrates how a single
application can switch between central and peripheral roles
under conditions when this might be advantageous.

Blinky—Simple
GPIO I/O

blinky A simple sample project that causes the LED on the
Evaluation and Development Board to flash. It is a gentle
introduction to programming the RSL10 SoC, and
demonstrates successful communication with the board, use
of an interrupt, and GPIO functionality.

Yes Yes

Bootloader bootloader This sample project provides a simple UART-based bootloader
application. This allows the user to load their own software
over the UART interface rather than using the JTAG/SWD
debug port. The bootloader provides basic CRC verification of
the loaded software to ensure that invalid applications are not
executed on the device. If an invalid application is detected,
the device remains in the bootloader state until new software is
loaded. A helper application for the PC is also provided to aid
in the loading process; it is written in Python for portability.

Central Device
with Client UART

central_client_uart This sample project generates a battery service client and a
client for a bi-directional UART custom service. After
initialization, this application uses the device in
direct-connectable scan mode, looking to connect to a device
with a known Bluetooth peer address. Once connected, this
application queries the available services, and if the expected
UART custom service is found, it uses this service to transmit
data received on UART to the peer peripheral device, and to
receive data from the peer device to be transmitted on the
local UART interface.

Table 1. Sample Code (Continued)

Name Folder Description
Keil
Version

IAR
Version

onsemi
RSL10 Sample Code User’s Guide

www.onsemi.com

15

Low Latency
Audio Sample
Application with
Custom Protocol

custom_protocol_trx This sample code demonstrates a complete audio path using
the low-latency custom protocol as the wireless carrier of data.

On the transmitter side, data is received over the SPI interface.
It is processed with the asynchronous sample rate converter
(ASRC) to synchronize the audio sample rate between the
Ezairo® 7100 Digital Signal Processor (DSP) system and
RSL10. Data is then encoded using the G.772 codec on the
LPDSP32 DSP, and sent wirelessly to the receiver using the
custom low-latency protocol. The receiver decodes the data
with a G.722 decoder implemented on LPDSP32 DSP,
resynchronizes the data to local timing using the ASRC, and
then sends the data via SPI to Ezairo 7100.

This code provides an example that shows how to use the
low-latency custom protocol to implement low-latency audio
streaming, which can be used as the basis for binaural
processing applications.

NOTE: Ezairo 7100 components of this
sample application set are provided in
the RSL10_Utility_Apps.zip file; you
need the Ezairo 7100 EDK to work with
these components.

DMIC and OD DMIC_OD This sample project creates an audio pass-through from the
DMIC interface to the output driver (OD). It shows the usage of
the DMIC and OD interrupts. By pressing the button, the user
can switch between four modes: DMIC0, DMIC1, DMIC0+1
mixed, and beam forming mode using fractional delay on the
DMIC1 input.

Default System
Initialization
Function

default_MANU_INFO_INIT This sample project:

• Erases the NVR3 area of flash memory, saving and
restoring the Bluetooth device address and IP
protection configuration

• Writes the MANU_INFO_INIT area of non-volatile
record #3 (NVR3) with:
a. A length variable indicating the length of the

default system initialization function
b. A default system initialization function
c. A CRC-CCITT value calculated over the length

variable and the initialization function's code

The default system initialization function loaded is an example
of how to load calibration settings that have been calculated
for each part during device manufacturing to the various
trimming bit-fields and registers for the system.

Yes Yes

Host Controller
Interface

hci_app The Direct Test Mode (DTM) application implements a UART
interface to the Bluetooth Host Controller Interface (HCI)
wrapper that can be used to perform DTM and other
HCI-based testing of the RSL10 device. This application
configures voltage regulators, RF power supplies, and UART
flow control signals to ensure that testing is performed
correctly. This code demonstrates how to use the HCI
interface, UART drivers, and different RF power supply
configurations when executing HCI commands in a test
environment.

Yes Yes

Table 1. Sample Code (Continued)

Name Folder Description
Keil
Version

IAR
Version

onsemi
RSL10 Sample Code User’s Guide

www.onsemi.com

16

Flash Copier and
CRC

flash_copier_and_crc This sample code project copies 4 KB of the flash into PRAM
and computes the CRC of the same data with the flash copier
block. It demonstrates usage of the flash copier interrupt.

DMA Driver dma_driver This sample project demonstrates how to use DMA to copy
data between two arrays, and shows how to verify data
correctness at the completion of the transfer. The project
introduces you to the use of the DMA driver in RSL10
applications.

GPIO Driver gpio_driver This sample project demonstrates an application that uses a
GPIO to toggle an LED on the RSL10 Evaluation and
Development Board, and to disable the LED toggling. It is an
introduction to using a GPIO driver in RSL10 applications.

I2C CMSIS-Driver i2c_cmsis_driver This sample project demonstrates how to operate the I2C

interface using the I2C CMSIS-Driver abstraction. It shows

how to transmit and receive messages between two RSL10
Evaluation and Development boards in both master and slave
modes.

Yes Yes

Kernel Timer kernel_timer A sample project that shows the usage of the kernel timer. The
timer is set to two seconds; the kernel calls the timer's handler
routine when the timer expires.

Yes Yes

Measure 32 kHz
RC Oscillator

measure_rc_osc A sample project that measures the 32 kHz RC oscillator
frequency every second by using the Audio Sink Clock
Counters block, and reports the value through the UART
interface to a terminal application on the host PC. It shows the
usage of the Audio Sink Period interrupt.

Yes Yes

Peripheral Device
with Server

peripheral_server This sample project generates a battery service and a custom
service. After initialization, this application advertises its
availability so that any central device can scan, connect,
perform service discovery, receive battery value notifications,
and read the battery level from this application. This code is an
example of communication (reading, writing, and
message-handling) between central and peripheral devices,
and kernel timer use.

The central device has the ability to read and write the custom
attributes provided by this sample application’s custom
service. The RSL10 ADC is used to read the battery level.
Reading the battery level happens every 200 ms when there is
a kernel timer event. The average for 16 reads is calculated. If
the average value changes, a flag is set to send the battery
level notification.

Peripheral Device
with Sleep Mode

peripheral_server_sleep This sample code incorporates a Sleep Mode into the
peripheral_server sample code project. This application places
the peripheral device into Sleep Mode whenever possible to
save power. On waking up, the device retains its Bluetooth low
energy connection with the central device and resumes all
normal operations of its application. This code serves as a
template for the use of Sleep Mode for power-saving in server
applications used for peripheral devices.

Table 1. Sample Code (Continued)

Name Folder Description
Keil
Version

IAR
Version

onsemi
RSL10 Sample Code User’s Guide

www.onsemi.com

17

Peripheral Device
with Standby
Mode

peripheral_server_standby This sample code incorporates a Standby Mode into the
peripheral device with a server sample code project. This
application places the device into Standby Mode whenever
possible to save power. On waking up, the device retains its
Bluetooth low energy connection with the central device and
resumes all normal operations of its application. This code
serves as a template for the use of Standby Mode for
power-saving in server applications used for peripheral
devices.

Yes Yes

Peripheral Device
with UART Server

peripheral_server_uart This sample project generates a battery service and a
bi-directional UART custom service. After initialization, this
application advertises, so that any central device can scan,
connect, perform service discovery, receive battery value
notifications, and read the battery level. If connected, the
application can use this service to notify the connected client
of data received on the UART interface to the peer central
device, and to receive data from the peer device to be
transmitted on the local UART interface.

Print NVR
Information Using
Semi-Hosting

print_nvr_info This sample project prints out the contents of the NVR sectors
via semi-hosting. The project has been created so that the
developer can easily see what data is stored in the NVR
sectors of RSL10 components mounted on any Evaluation and
Development Board. No external connection is required.

The program runs from PRAM. Executing it does not change
the contents of the flash.

PWM Driver pwm_driver This sample application uses pwm[0] to control the brightness
of the LED diode with use of the duty cycle, and uses the push
button (DIO5) input to change the brightness of the LED
(DIO6) by changing the Pulse With Modulator (PWM) duty
cycle.

Mono Audio
Stream Broadcast
Receiver Custom
Protocol
Coexistence

remote_mic_rx_coex This sample code shows how the Audio Stream Broadcast
Custom Protocol can be used by a remote microphone to
receive audio in RSL10 while coexisting with a Bluetooth low
energy connection. The code is configurable for raw or
encoded data streams.

The Bluetooth low energy application used in this case is
based on the peripheral_server sample application, defining a
custom service which allows reception of custom protocol
parameters from a central device. The custom service also
configures the process for starting and stopping audio
reception.

Stereo Audio
Stream Broadcast
Transmitter
Custom Protocol
Coexistence

remote_mic_tx_coex This RSL10 sample application demonstrates switching a
remote microphone from actively-connected Bluetooth low
energy mode, to stereo audio stream transmission in RSL10
through the Audio Stream Broadcast Custom Protocol.

Once the transmitter has established a Bluetooth low energy
connection with the receiver, the transmitter exchanges the
correct parameters to begin the audio stream, then cancels its
Bluetooth low energy connection and streams the audio
through the remote microphone custom protocol. The code is
configurable for encoded or raw data streams. This sample
code can be compiled and loaded onto the RSL10 transmitter.
Transmission of stereo audio is supported.

Table 1. Sample Code (Continued)

Name Folder Description
Keil
Version

IAR
Version

onsemi
RSL10 Sample Code User’s Guide

www.onsemi.com

18

Stereo Raw Audio
Stream Broadcast
Transmitter
Custom Protocol

remote_mic_tx_raw This RSL10 sample code shows a complete audio path for a
remote microphone in the transmitter side, with raw stereo
input audio stream, using the Audio Stream Broadcast Custom
Protocol.

The SPI, DMIC, or PCM interface receives the broadcast data
stream, and synchronizes the sampling rate to work with
RSL10 using an asynchronous sample rate converter. The
stereo audio stream then passes to the LPDSP32 DSP for
encoding, and is broadcast using the remote microphone
custom protocol. In addition, this sample application
represents a standard LPDSP32 framework for other codec
implementations.

Mono Raw Audio
Stream Broadcast
Receiver Custom
Protocol

remote_mic_rx_raw This RSL10 sample code shows a complete audio path for a
remote microphone in the receiver side, with raw output audio
stream, using the Audio Stream Broadcast Custom Protocol.

A remote microphone receives the broadcast data stream, and
passes it to the LPDSP32 DSP for decoding. An asynchronous
sample rate converter then synchronizes the sampling rate to
work with RSL10. After this, transmission of data takes place
through an SPI or OD interface.

Coded Audio
Stream Broadcast
Transmitter/
Receiver Custom
Protocol Sample
Application

remote_mic_trx_coded This RSL10 sample application shows a complete audio path
in a remote microphone use case, for both stereo transmitter
and mono receiver, using the Audio Stream Broadcast Custom
Protocol. No encoding or decoding takes place in RSL10; the
paired Ezairo 7100 performs these processes,

The compiled application can be loaded onto both the RSL10
transmitter and the receiver. On the transmitter side, an SPI
interface is used to receive the data, which is then sent to the
radio side for transmission.

UART
CMSIS-Driver

uart_cmsis_driver This sample project demonstrates how to operate the UART
peripheral using the UART CMSIS-Driver abstraction. It shows
how to transmit and receive messages between two RSL10
Evaluation and Development boards.

Yes Yes

Sleep and
Wakeup

sleep_RAM_retention This sample project demonstrates how to blink an LED, switch
to Sleep Mode (with or without memory retention) and wake up
from sleep via the RTC alarm or the WAKEUP pad on a rising
edge. Using the RTC as is demonstrates a 16 second sleep
with wakeup on RTC alarm. This code shows how to use the
Sleep Power Mode to save power, with different wakeup
methods. Additional options within this application allow
configuration to retain one or two memory instances during
Sleep Mode.

SPI CMSIS-Driver spi_cmsis_driver This sample project demonstrates how to simultaneously
operate both SPI0 and SPI1 interfaces using the SPI
CMSIS-Driver abstraction. It shows how to transmit and
receive messages between two RSL10 Evaluation and
Development boards in both master and slave modes.

Yes Yes

Standby Power
Mode

standby_power_mode This application briefly blinks an LED, switches to Standby
Mode, configured to wake up on the RTC alarm and restart
execution. This code demonstrates using Standby Mode with
an alarm to save power.

Table 1. Sample Code (Continued)

Name Folder Description
Keil
Version

IAR
Version

onsemi
RSL10 Sample Code User’s Guide

www.onsemi.com

19

Supplemental
Calibration

supplemental_calibrate This sample project:

• Calibrates VDDRF to 1.13 V (targeting a 1 dBm TX
power), VDDPA to 1.45 V (targeting a 4 dBm TX
power), and the RC start oscillator to 10.24 MHz
(targeting an even multiple of a 16 kHz sampling
frequency)

• Erases the NVR3 area of flash memory, saving and
restoring the Bluetooth device address and IP
protection configuration, and storing the
supplemental calibration information.

• Writes the MANU_INFO_INIT area of non-volatile
record #3 (NVR3) with:
• A length variable indicating the length of the

default system initialization function
• A custom system initialization function that

loads some the three supplemental calibrated
targets, some standard but non-default
calibration entries, and some default calibration
entries. This provides an example
implementation for a use case when the default
configuration is not what a user application
needs or will use.

• A CRC-CCITT value calculated over the length
variable and the initialization function’s code

The custom system initialization function is an example of how
to load calibration settings that have been calculated for each
part during device manufacturing, supplemented during
customer manufacturing, to the various trimming bit-fields and
registers for the system.

Yes Yes

Timer Driver timer_driver This application demonstrates the use of three timers running
in three different modes:

• Timer [0] gives the interval between each blink of the
LED; timer [0] works in free run mode.

• Timer [1] changes the timer[0] interval and starts
timer [2]; timer[1] works in single shot mode.

• Timer[2] gradually reduces the timer[0] interval four
times; timer[2] works in multi shot mode.

SysTick Timer
Using Reference
Clock

systick_ref_clk This sample project demonstrates the usage of the SysTick
timer. Pressing a push button causes the change of frequency
of the SysTick timer expiration by changing its load value,
which is indicated by an LED blinking on the Evaluation and
Development board.

Timer Free Run timer_free_run This sample project demonstrates the usage of a timer in free
running mode. Pressing a push button causes the change of
frequency which is indicated by an LED blinking on the
Evaluation and Development board. It shows the usage of the
timer interrupt as well.

Timer Multi-Shot timer_multi_shot This sample project demonstrates the usage of a timer in free
running mode and another timer in multi-shot mode. Pressing
a push button changes the number of LED blinks on the
Evaluation and Development board. It also shows the usage of
timer interrupts.

Table 1. Sample Code (Continued)

Name Folder Description
Keil
Version

IAR
Version

www.onsemi.com

20

APPENDIX A
A.Message Sequence Chart for Peripheral Device with

Server Sample Application
The messages communicated between the peripheral_server application and the Bluetooth low energy stack in

establishing a connection for data to be exchanged are illustrated in Figure 1.

onsemi
RSL10 Sample Code User’s Guide

www.onsemi.com

21

Figure 1. MSC for Peripheral Device with Server Sample Code

onsemi
RSL10 Sample Code User’s Guide

M-20840-015

Ezairo is a registered trademark of SCILLC. Bluetooth is a registered trademark of Bluetooth SIG, Inc. Windows is a registered trademark of Microsoft Corporation. All other brand
names and product names appearing in this document are trademarks of their respective holders.

onsemi and the onsemi logo are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi
owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at
www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty,
representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and
applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance
may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any
license under its patent rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any
FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal
injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part.
onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Literature Distribution Center for onsemi
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll
Free USA/Canada

Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910

onsemi Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local
Sales Representative

	RSL10 Sample Code User’s Guide
	Table of Contents
	1. Introduction
	1.1 Purpose
	1.2 Intended Audience
	1.3 Conventions
	1.4 Further Reading

	2. Using Sample Applications
	2.1 Requirements
	2.2 Setup
	2.3 Accessing Sample Code Files

	3. The peripheral_server Application
	3.1 Purpose
	3.1.1 What Does The Peripheral-Server Application Do?
	3.1.2 What peripheral_server Demonstrates

	3.2 File Structure
	3.2.1 Types of Files and Stacks
	3.2.2 How Files Relate

	3.3 Walkthrough of the peripheral_server Application
	3.3.1 System Initialization
	3.3.2 GAP and GATT Services -- Establishing Communication
	3.3.3 The Kernel Scheduler
	3.3.4 Message Handlers
	3.3.5 Standard Profiles/Services
	3.3.6 Custom Profiles/Services
	3.3.7 The Main Loop—peripheral_server Event Kernel Execution

	3.4 Walkthrough of the Message Sequence Chart (MSC)
	3.5 How to Run peripheral_server with the Evaluation and Development Board
	3.6 Adding New Profiles/Services
	3.6.1 How to Add a New Standard Service/Profile
	3.6.2 How to Add a New Custom Service/Profile
	3.6.3 More About Working with Custom Services

	4. Available Sample Applications
	A. Message Sequence Chart for Peripheral Device with Server Sample Application

