Enabling Energy Efficient Solutions

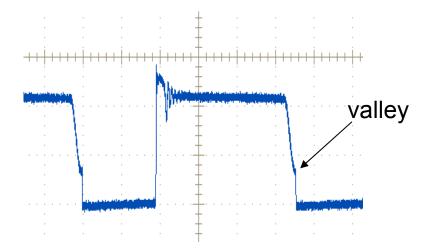
www.onsemi.com

ON Semiconductor[®]

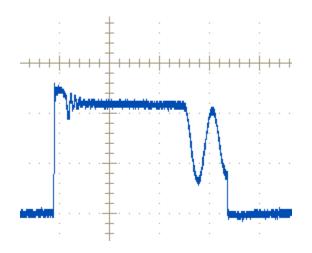
Design of a QR Adapter with Improved Efficiency and Low Standby Power

Agenda

- 1. Quasi-Resonance (QR) Generalities
- 2. The Valley Lockout Technique
- 3. The NCP1379/1380
- 4. Step by Step Design Procedure
- Performances of a 60 W Adapter Featuring Valley Lockout


Agenda

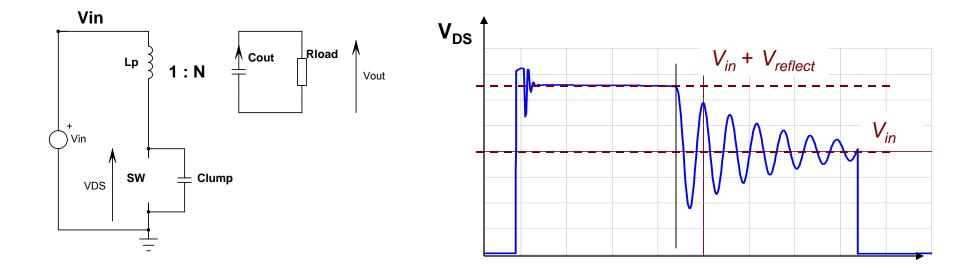
- 1. Quasi-Resonance (QR) Generalities
- 2. The Valley Lockout Technique
- 3. The NCP1379/1380
- 4. Step by Step Design Procedure
- 5. Performances of a 60 W Adapter Featuring Valley Lockout



What is Quasi-Square Wave Resonance ?

- MOSFET turns on when $V_{DS}(t)$ reaches its minimum value.
- Minimizes switching losses
- Improves the EMI signature

MOSFET turns on in first valley

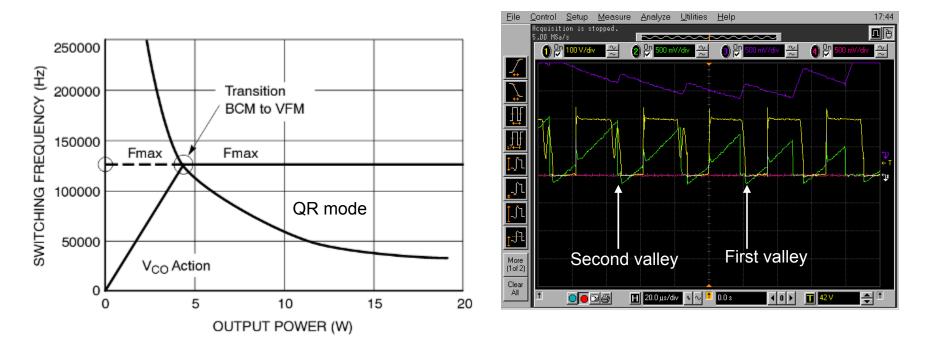

MOSFET turns on in second valley

N Semiconductor*

Quasi-Resonance Operation

- In DCM, V_{DS} must drop from $(V_{in} + V_{reflect})$ to V_{in}
- Because of L_p - C_{lump} network \rightarrow oscillations appear
- Oscillation half period: $t_x = \pi \sqrt{L_p C_{lump}}$

A Need to Limit the Switching Frequency


• In a self-oscillating QR, F_{sw} increases as the load decreases

Higher losses at light load if F_{sw} is not limited

- 2 methods to limit F_{sw} :
 - Frequency clamp with frequency foldback
 - Changing valley with valley lockout

Frequency Clamp in QR Converters

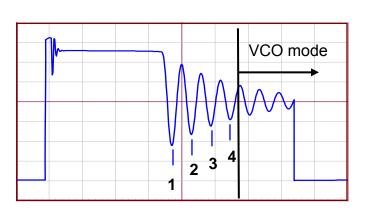
□ In light load, frequency increases and hits clamp

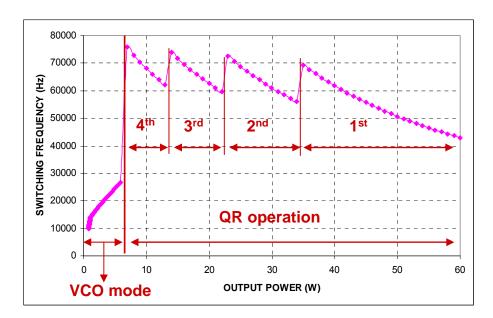
- Multiple valley jumps
- Jumps occur at audible range
- Creates signal instability

ÛN

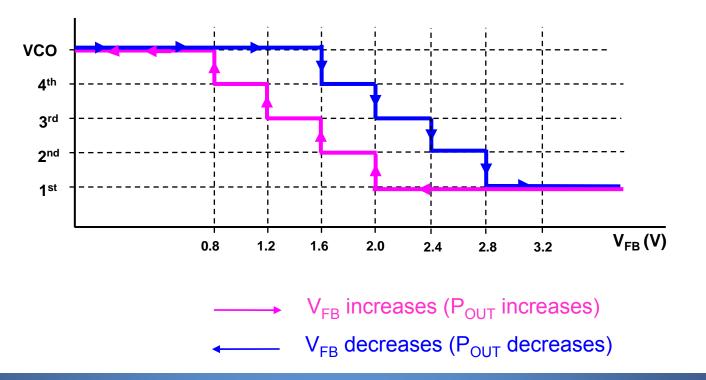
Agenda

- 1. Quasi-Resonance (QR) Generalities
- 2. The Valley Lockout Technique
- 3. The NCP1379/1380
- 4. Step by Step Design Procedure
- 5. Performances of a 60 W Adapter Featuring Valley Lockout




The Valley Lockout

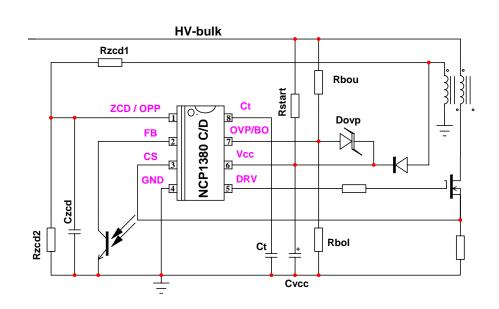
- As the load decreases, the controller changes valley (1st to 4th valley in NCP1380)
- The controller stays locked in a valley until the output power changes significantly.


- No valley jumping noise
- Natural switching frequency limitation

The Valley Lockout

- FB comparators select the valley and pass the information to a counter.
- The hysteresis of FB comparators locks the valley.
- 2 possible operating set points for a given FB voltage.

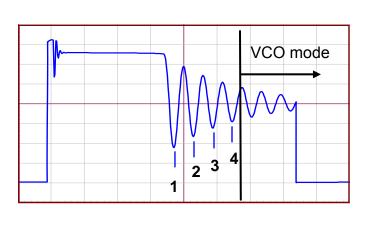
Agenda

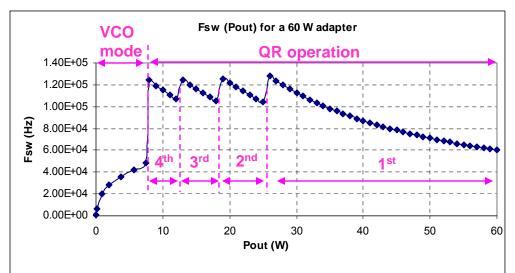

- 1. Quasi-Resonance (QR) Generalities
- 2. The Valley Lockout Technique
- 3. The NCP1379/1380
- 4. Step by Step Design Procedure
- 5. Performances of a 60 W Adapter Featuring Valley Lockout

NCP1379/1380 Features

- Operating modes:
 - QR current-mode with valley lockout for noise immunity
 - VCO mode in light load for improved efficiency
- Protections
 - Over power protection
 - Soft-start
 - Short circuit protection
 - Over voltage protection
 - Over temperature protection
 - Brown-Out

□ Mass production: Q4 2009



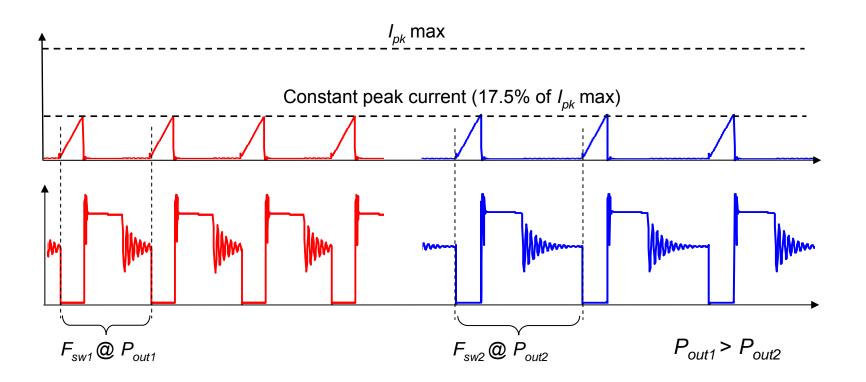


QR Mode with Valley Lockout

• Operating principle:

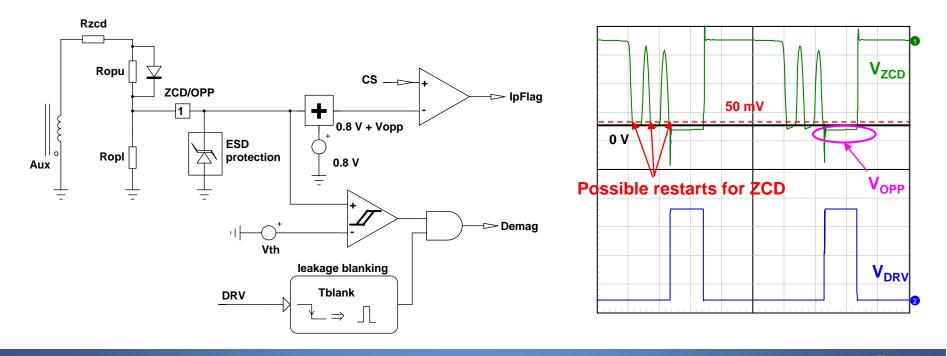
- Locks the controller into a valley (up to the 4th) according to FB voltage.
- Peak current adjusts according to FB voltage to deliver the necessary output power.

Advantages


- Solves the valley jumping instability in QR converters
- Achieves higher min F_{sw} and lower max F_{sw} than in traditional QR converters
- Reduce the transformer size

ON Semiconductor*

VCO Mode

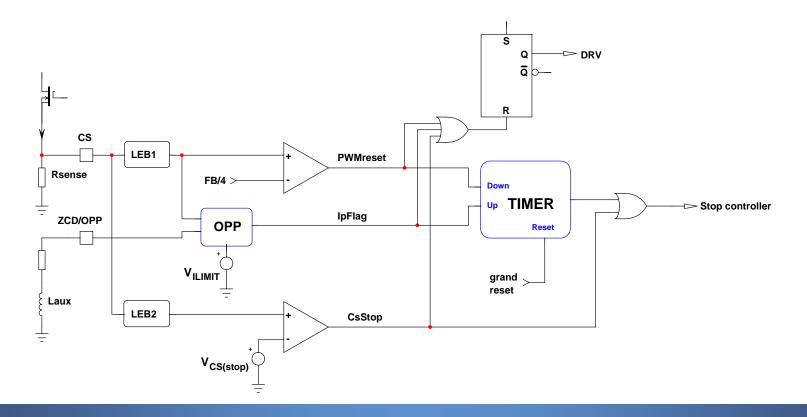

- Occurs when $V_{FB} < 0.8 \text{ V} (P_{out} \text{ decreasing}) \text{ or } V_{FB} < 1.4 \text{ V} (P_{out} \text{ increasing})$
- Fixed peak current (17.5% of $I_{pk,max}$), variable frequency set by the FB loop.

Combined ZCD and OPP

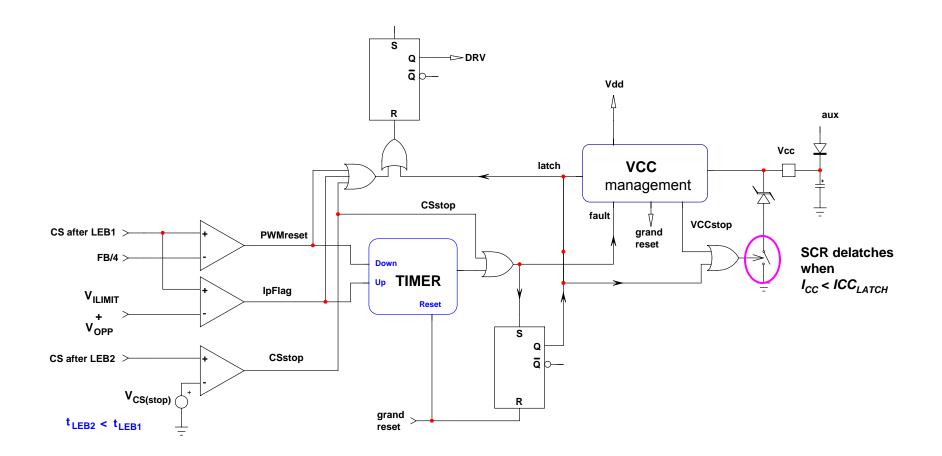
- Zero-Crossing Detection (ZCD) and Over Power Protection (OPP) are achieved by reading the Aux. winding voltage
 - ZCD function used during the off-time of MOSFET (positive voltage).
 - OPP function used during the on-time of MOSFET (negative voltage)

NCP1380 Versions

• 4 versions of NCP1380: A, B, C and D

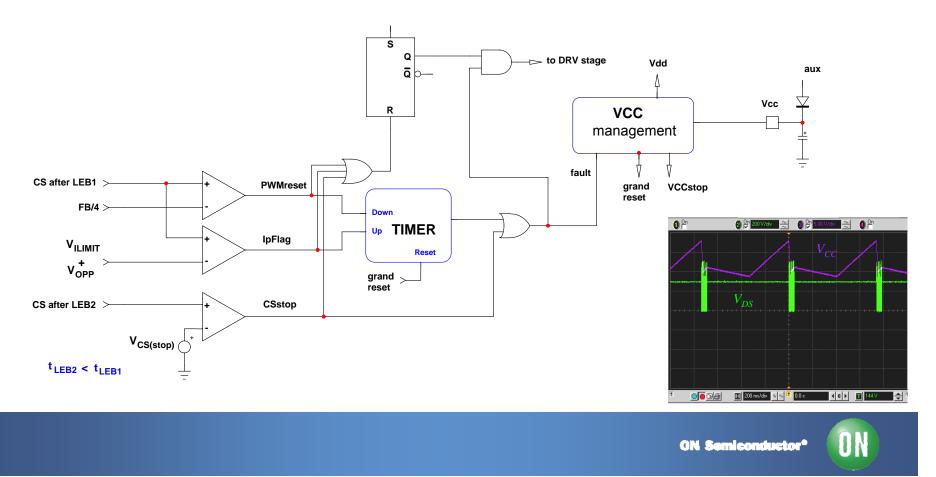

	ОТР	OVP	во	Auto-Recovery Over current protection	Latched Over current protection
NCP1380 / A	X	X			X
NCP1380 / B	x	X		X	
NCP1380 / C		X	X		X
NCP1380 / D		X	X	X	

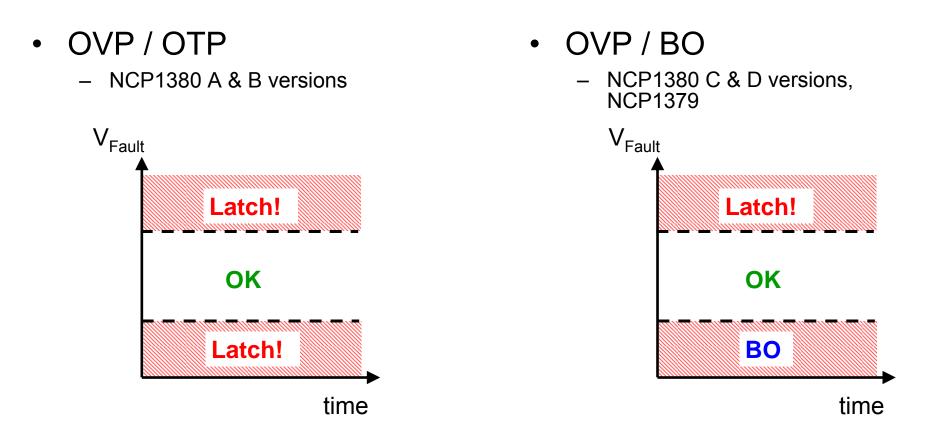
OTP: Over Temperature Protection **OVP**: Over Voltage Protection **BO**: Bown-Out


Short-Circuit Protection

- Internal 80 ms timer for short-circuit validation.
- Additional CS comparator with reduced LEB to detect winding short-circuit.
- $V_{CS(stop)} = 1.5 * V_{ILIMIT}$

Short-Circuit Protection (A and C versions)


- A and C versions: the fault is latched.
 - $-V_{CC}$ is pulled down to 5 V and waits for ac removal.


Short Circuit Protection (B and D)

- Auto-recovery short circuit protection: the controller tries to restart
- Auto-recovery imposes a low burst in fault mode.

Low average input power in fault condition

Fault Pin Combinations

- OVP and OTP or OVP and BO combined on one pin.
- Less external components needed.

ON Semiconductor*

Agenda

- 1. Quasi-Resonance (QR) Generalities
- 2. The Valley Lockout Technique
- 3. The NCP1379/1380

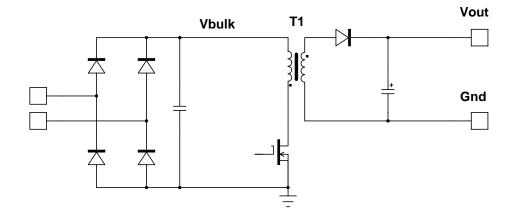
4. Step by Step Design Procedure

5. Performances of a 60 W Adapter Featuring Valley Lockout

Step by Step Design Procedure

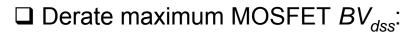
- Calculating the QR transformer
- Predicting the switching frequency
- Implementing Over Power Compensation
- Improving the efficiency at light load with the VCO mode
- Choosing the startup resistors
- Implementing synchronous rectification

Design Example


• Power supply specification:

$$V_{out} = 19 V$$

$$P_{out} = 60 \text{ W}$$

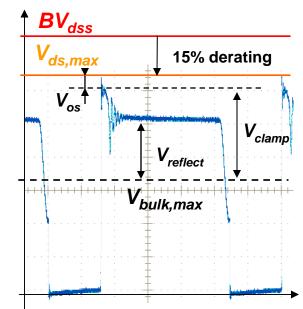

- $F_{sw,min} = 45 \text{ kHz} (at V_{in} = 100 \text{ Vdc})$
- 600 V MOSFET

– Standby power consumption < 100 mW @ 230 Vrms

Turns Ratio Calculation

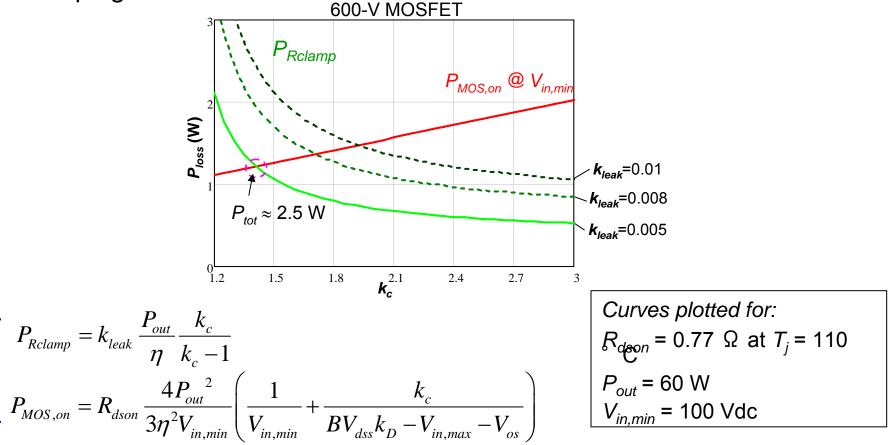
 $V_{ds,max} = BV_{dss}(k_D) - k_D$: derating factor

□ For a maximum bulk voltage, select the clamping voltage:

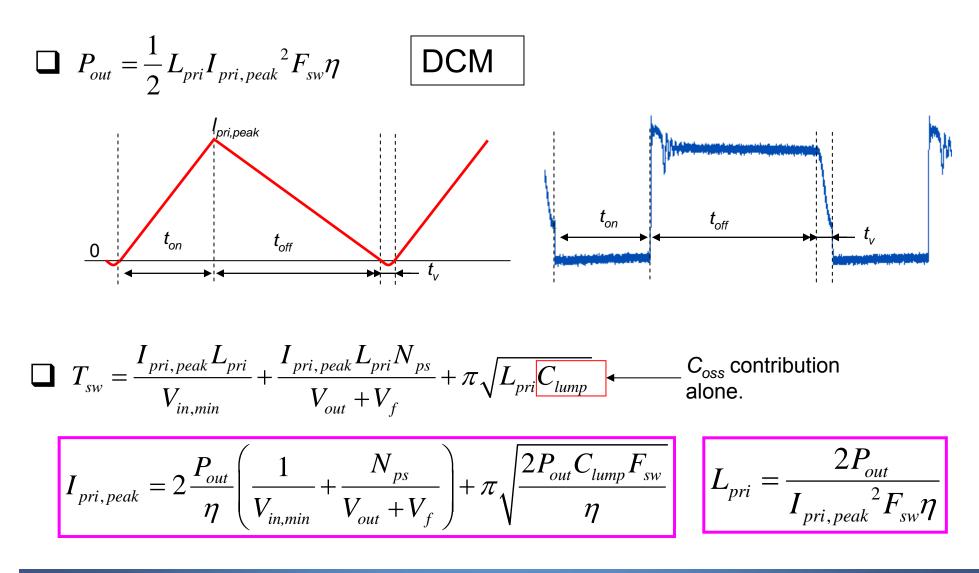

 $V_{clamp} = V_{ds,max} - V_{in,max} - V_{os}$ V_{os}: diode overshoot

Deduce turns ratio:

$$N_{ps} = \frac{N_s}{N_p} = \frac{k_c (V_{out} + V_f)}{V_{clamp}}$$


$$k_c: \text{ clamping coef.}$$

$$k_c = V_{clamp} / V_{reflect}$$



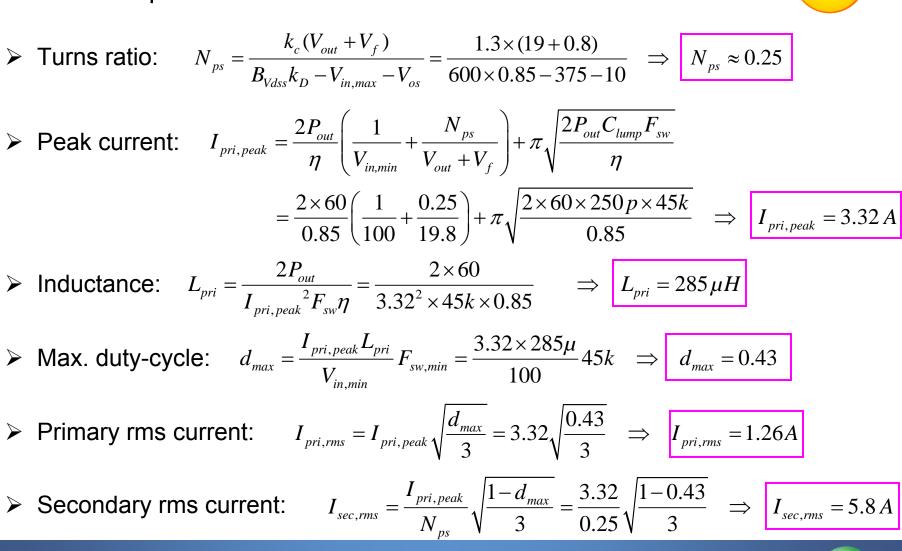
How to Choose k_c

- k_c choice dependent of L_{leak} (leakage inductance of the transformer)
- *k_c* value can be chosen to equilibrate MOS conduction losses and clamping resistor losses.

Primary Peak Current and Inductance

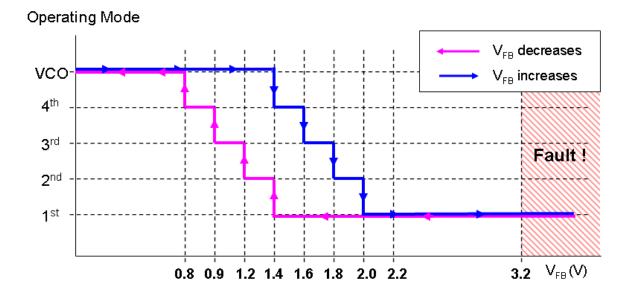
RMS Current

• Calculate maximum duty-cycle at maximum P_{out} and minimum V_{in} :


$$d_{max} = \frac{I_{pri, peak} L_{pri}}{V_{in, min}} F_{sw, min}$$

• Deduce primary and secondary RMS current value:

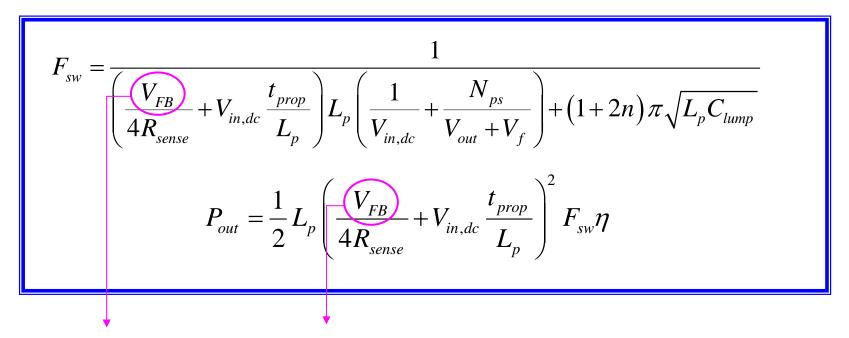
Design Example


Based on equations from slides 11 to 14:

0

Predicting the Switching Frequency

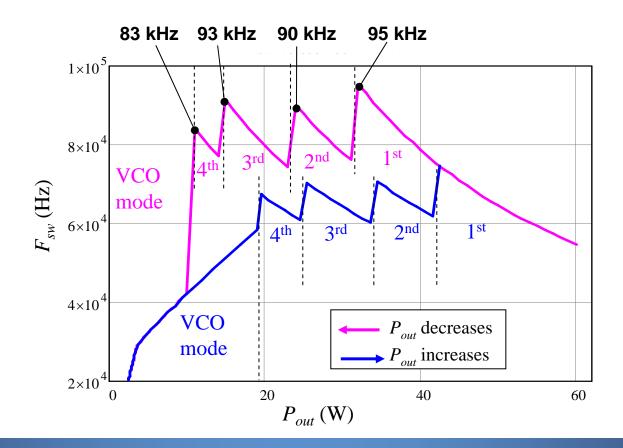
- The controller changes valley as the load decreases.
 - => How can we predict the switching frequency evolution as the load varies ?



 Depending upon the power increase or decrease, the FB levels at which the controller changes valley are different => valley lockout

Predicting the Switching Frequency

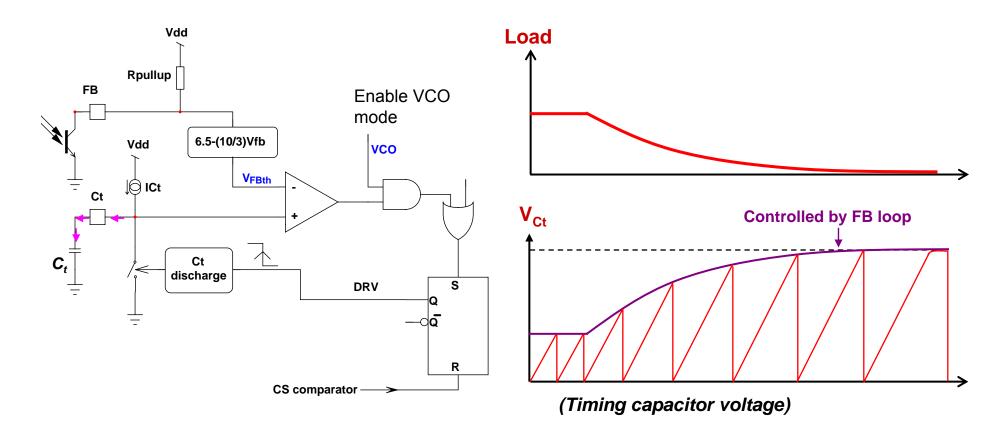
• Knowing the FB threshold values, we can calculate F_{sw} evolution and the corresponding P_{out} .


Replace V_{FB} by the valley thresholds values in the previous slide

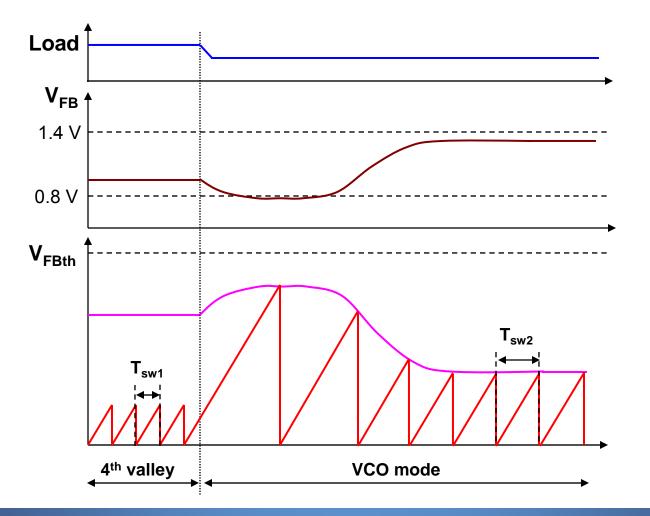
ON Semiconductor*

Predicting the Switching Frequency

 Calculate by hand (using the previous equations) or use the Mathcad spreadsheet to deduce the maxima of the switching frequency => EMI



ON Semiconductor*


VCO Mode

- The switching frequency is set by the end of charge of C_t capacitor
- The end of charge of C_t capacitor is controlled by the FB loop

4th Valley to VCO Mode Transition

• Output load slightly decreases:

How to Calculate C_t Capacitor ?

• Switching frequency at the end of the 4th valley operation ($V_{FB} = 0.8$ V):

$$T_{sw,4th-VCO} = \left(\frac{0.8}{4R_{sense}} + t_{prop} \frac{V_{in,max}\sqrt{2}}{L_p}\right) L_p \left(\frac{1}{V_{in,max}\sqrt{2}} + \frac{N_{ps}}{V_{out} + V_f}\right) + 7\pi\sqrt{L_p C_{OSS}}$$

• T_{sw} gap between 4th valley and VCO mode must not exceed **10 µs** (based on lab experiments) for V_{FB} = 1.4 V (hysteresis):

$$T_{sw,VCO} = T_{sw,4th-VCO} + 10 \ \mu s$$

• The relationship between V_{FB} and V_{Ct} is:

$$V_{Ct} = 6.5 - (10/3)V_{FB} = 6.5 - (10/3) \times 1.4 = 1.83 \text{ V}$$

1.83

C_t Design Example

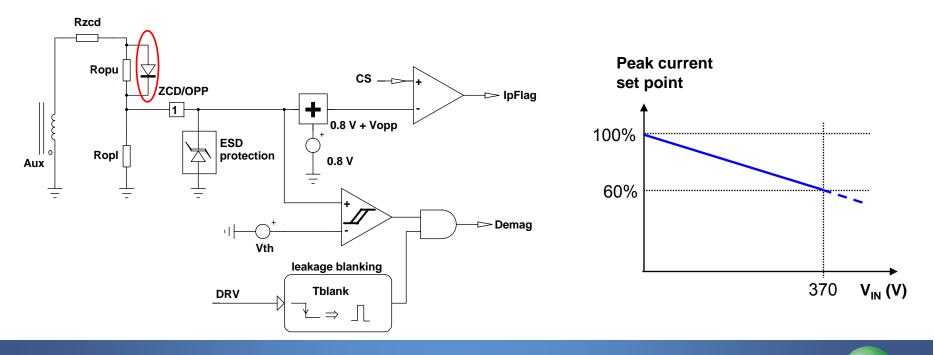
• Switching frequency at the end of the 4th valley operation :

$$T_{sw,4th-VCO} = \left(\frac{0.8}{4 \times 0.23} + 300n\frac{265\sqrt{2}}{285\mu}\right) 285\mu \left(\frac{1}{265\sqrt{2}} + \frac{0.25}{19 + 0.8}\right) + 7\pi\sqrt{285\mu \times 250p}$$
$$= 10.7\,\mu s$$

T_{sw} gap between 4th valley and VCO mode must not exceed 10 μs (based on lab experiments):

$$T_{sw,VCO} = T_{sw,4th-VCO} + 10 \ \mu s = 10.7\mu + 10\mu = 20.7\,\mu s$$

• The timing capacitor value is:


$$C_t = \frac{I_{Ct} T_{sw,VCO}}{1.83} = \frac{20\mu \times 20.7\mu}{1.83} = 226 \, pF$$

• Finally, we choose $C_t = 200 \text{ pF}$

OPP: How it Works ?

- L_{aux} with flyback polarity swings to $-NV_{IN}$ during the on time.
- Adjust amount of OPP voltage with (R_{zcd}+R_{opu}) // R_{opl}.
- $V_{CS,max} = 0.8 V + V_{OPP}$
- The diode bypass R_{opu} during the off-time for optimum zero-crossing detection.

ON Semiconductor⁴

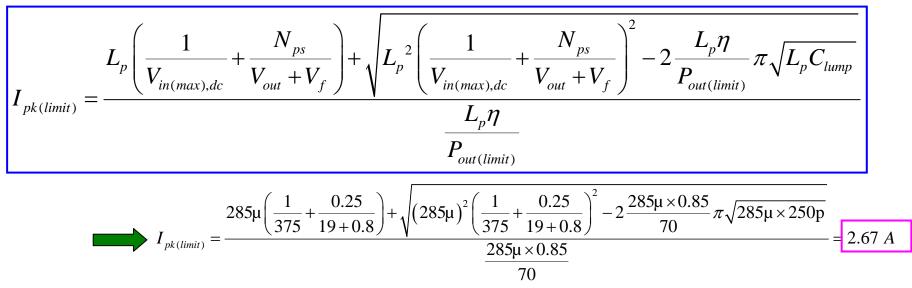
OPP Amount Needed for the Design

• Because of the propagation delay, at high line:

• The switching frequency is:

$$T_{sw(high)} = I_{pk(high)} L_{p} \left(\frac{1}{V_{in,max} \sqrt{2}} + \frac{N_{ps}}{V_{out} + V_{f}} \right) + \pi \sqrt{L_{p} C_{lump}}$$

$$\longrightarrow T_{sw(high)} = 4.32 \times 290 \times 10^{-6} \left(\frac{1}{265\sqrt{2}} + \frac{0.25}{19 + 0.8} \right) + \pi \sqrt{285 \times 10^{-6} \times 250 \times 10^{-12}} = 19.5 \,\mu s$$

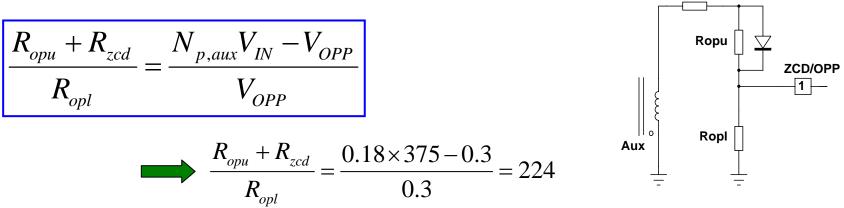

• The power capability at high line is:

$$P_{out(high)} = \frac{1}{2} L_p I_{pk(high)}^2 \frac{1}{T_{sw(high)}} \eta$$

$$P_{out(high)} = \frac{1}{2} 290 \times 10^{-6} \times 4.32^2 \frac{1}{19.5 \times 10^{-6}} 0.85 = 116 W$$

Amount of OPP Voltage Needed

- Limit the output power to $P_{out(limit)} = 70$ W at high line.
- What is the peak current I_{pk(limit)} corresponding to P_{out(limit)}?


Amount of OPP voltage needed:

$$V_{OPP} = 0.8 \left(1 - \frac{I_{pk(limit)}}{I_{pk(max)}} \right)$$

$$V_{OPP} = 0.8 \left(1 - \frac{2.67}{4.32} \right) = 300 \, mV$$

Calculating the OPP Resistors

- The amount of OPP voltage needed to limit P_{out} to 70 W is : V_{OPP} = 300 mV
- Resistor divider law:

• We choose: $R_{opl} = 1 \text{ k}\Omega$ and $R_{zcd} = 1 \text{ k}\Omega$

$$R_{opu} = 221R_{opl} - R_{zcd}$$

$$R_{opu} = 223k\Omega$$

Rzcd

Why is the OPP Non Dissipative ?

- Input voltage information given by auxiliary winding
- In light load: VCO mode => T_{sw} expands, thus the average current in the resistor bridge decreases


$$I_{bridge,avg} = \frac{1}{R_{zcd} + R_{opu} + R_{opl}} \left(\frac{t_{on}}{T_{sw}}\right) N_{p,aux} V_{IN} + \frac{1}{R_{opu} + R_{opl}} \left(\frac{t_{off}}{T_{sw}}\right) V_{CC} + V_{f} \right)$$

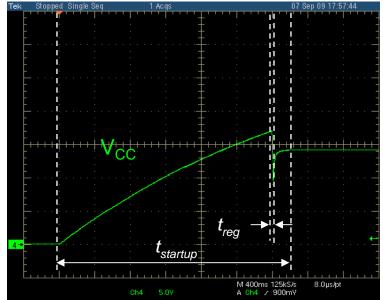
Previous example: R_{opu} = 220 kΩ, R_{opl} = 1 kΩ, R_{zcd} = 1 kΩ
At light load (P_{out} = 4 W), t_{on} = 1.2 μs, t_{off} = 3.6 μs, T_{sw} = 40 μs

$$I_{bridge,mean} = \frac{1}{220k + 1k + 1k} \frac{1.2\mu}{40\mu} \times 0.18 \times 375 + \frac{1}{220k + 1k} \frac{3.6\mu}{40\mu} 16 = 15 \ \mu A$$

Startup Network

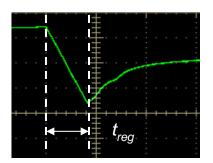
- The startup resistor can either be connected:
 - To the bulk capacitor with $R_{startup}$
 - To the half-wave for a similar charging current, take $R_{startup}/\Pi$

ΠN


Startup Capacitor Calculation

• C_{Vcc} calculated to allow the power supply to close the loop before V_{CC} falls below $V_{CC(off)}$

$$C_{Vcc} = \frac{\left(I_{CC3A} + Q_g F_{sw}\right)t_{reg}}{V_{CC(on)} - V_{CC(off)}}$$


$$C_{Vcc} = \frac{\left(2.4m + 17n \times 45000\right) \times 10m}{17 - 9} = 3.9\,\mu F$$

We choose
$$C_{Vcc} = 4.7 \ \mu F$$

• Needed startup current to charge C_{Vcc} :

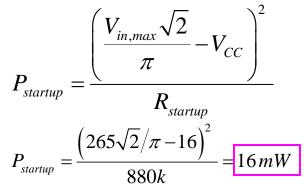
$$I_{Cvcc} = \frac{V_{CC(on)}C_{Vcc}}{t_{startup}} \qquad \qquad \blacksquare \qquad I_{Cvcc} = \frac{17 \times 4.7\mu}{2.8} = 28.5\,\mu A$$

Startup Resistor Calculation

- Bulk capacitor connection
 - Resistor calculation:

$$R_{startup} = \frac{V_{in,min}\sqrt{2}}{I_{Cvcc} + I_{CC(start)}}$$

$$R_{startup} = \frac{85\sqrt{2}}{28.5\mu + 15\mu} = 2.76\,M\,\Omega$$

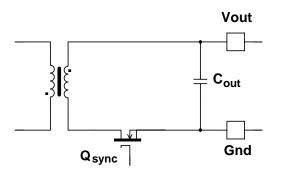

Power dissipation:

$$P_{startup} = \frac{\left(V_{in,max}\sqrt{2} - V_{CC}\right)^2}{R_{startup}}$$
$$P_{startup} = \frac{\left(265\sqrt{2} - 16\right)^2}{2.68M} = 55 \, mW$$

- Half wave connection
 - Resistor calculation:

$$\frac{V_{in,min}\sqrt{2}}{R_{startup}} = \frac{\pi}{I_{Cvcc} + I_{CC(start)}}$$
$$R_{startup} = \frac{85\sqrt{2}/\pi}{28.5\mu + 15\mu} = 880 k\Omega$$

Power dissipation:

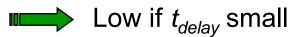


Synchronous Rectification

- High rms currents in secondary side → increased losses in the output diode.
- Replace the diode with a MOSFET featuring a very low $R_{DS(on)}$.

+	-
Increased efficiency	Degraded light load and standby power consumption

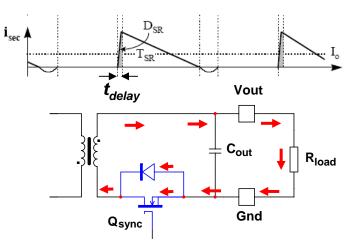
ON Semiconductor*



Losses in the Sync. Rect. Switch

$$P_{Qsync} = P_{ON} + P_{Qdiode}$$

Body diode conduction losses


 $P_{Qdiode} = V_f I_{out} F_{sw} t_{delay}$

MOSFET conduction losses

$$P_{ON} = R_{DS(on)120} I_{sec,rms}^{2}$$

- Body diode conducts before the MOSFET is turned-on.
 - No switching losses

Losses in the Sync. Rect. switch are mainly conduction losses.

Choosing the Sync. Rect. MOSFET

• Target around 1 W conduction losses in Sync. Rect. switch to avoid using an heatsink.

$$R_{DSon120} = \frac{1W}{I_{sec,RMS}^{2}}$$

$$V_{out} = 19 V$$

$$F_{sw,min} = 45 \text{ kHz}$$
Universal mains
$$R_{DSon110} = 70 \text{ m}\Omega$$

$$MBR20H150$$

$$R_{DSon110} = 50 \text{ m}\Omega$$

$$R_{DSon110} = 30 \text{ m}\Omega$$

60 W QR Sync. Rect. Calculations

Body diode losses:

$$P_{Qdiode} = V_f I_{out} F_{sw} t_{delay} = 0.7 \times 3.2 \times 45000 \times 70n$$
$$P_{Qdiode} = 7 \, mW$$

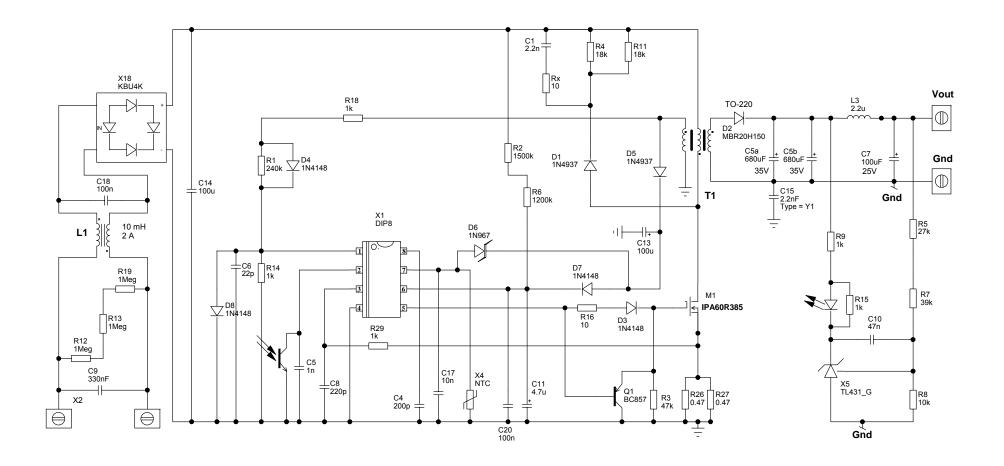
□ MOSFET losses:

$$P_{ON} = R_{DS(on)120} I_{sec,rms}^{2} = 30m \times 5.8^{2}$$
$$P_{ON} = 1W$$

□ Total Sync. Rect. switch losses: $P_{Qsync} = 1 + 0.007 \approx 1W$

□ Losses into the MBR20200 diode: 2.6 W

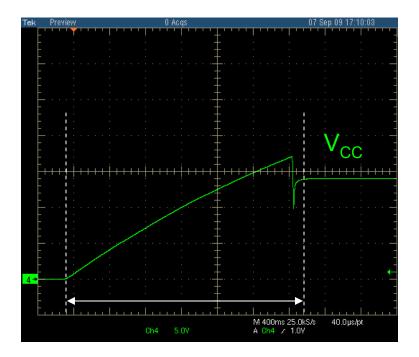
Power loss saving: 1.6 W



Agenda

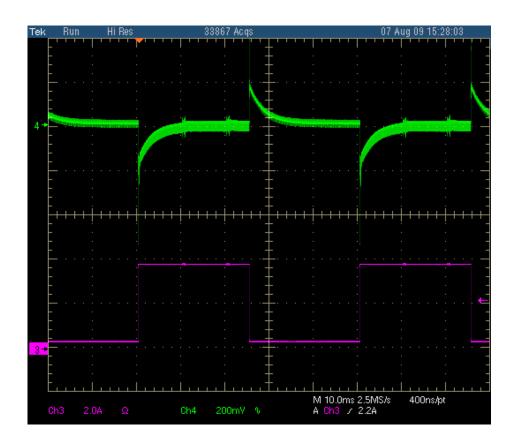
- 1. Quasi-Resonance (QR) Generalities
- 2. The valley lockout technique
- 3. The NCP1379/1380
- 4. Step by step design procedure
- 5. Performances of a 60 W adapter featuring valley lockout

60 W Demo Board Schematic


NCP1380B in a 19 V, 60 W adapter

ON Semiconductor*

Startup


- Startup resistor connected to the **bulk rail** (R_{startup} = 2.7 MΩ)
- T_{startup} = 2.68 s

- Startup resistor connected to the half-wave (R_{startup} = 910 kΩ)
- T_{startup} = 2.1 s

Transient Load Step

 Load step: 3% to 100% of output load with a slew rate of 1 A / µs

The overshoot / undershoot is 1% of the nominal value of V_{out}

Short-Circuit

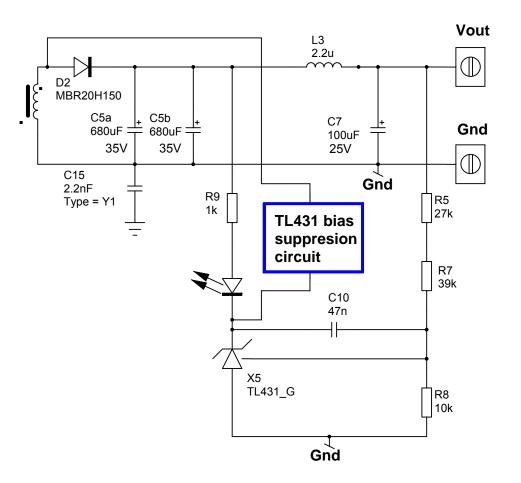
Tek Run	Sample	10 Acqs	16 Jan 09 11:03:30
		· · · · · · · · · · · · · · · · · · ·	
		· · +	· · · · -
F			
· · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
		· · +	
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
-		· · +	· · · · -
F			
-		· · +	
			· · · · · · · · · · · · · · · · · · ·
[<u> </u>		- <u>`</u>
-		· · · · · · ·	
			
E C	· 🔥	·	
	C(off)	······································	
	•		
-	· ·	· · +	· · · · · -
<u> </u>	i <mark>.</mark>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
-	· · · · ·	· · +	
F			
1.+			
-			
E		· · <u>+</u>	
Ch1 S	5.0V		M 100ms 125kS/s 8.0µs/pt
		Ch4 5.0V	M 100ms 125kS/s 8.0µs/pt A Ch4 ∿ 2.0V

- A short-circuit is made at the board output.
- The circuit pulses with a low burst (5%)
- The measured averaged input power is: P_{in} = 412.4 mW for V_{in} = 230 Vrms

Efficiency

115 Vrms				
$P_{out}(W)$	P_{out} (%)	P _{in} (W)	Eff. (%)	
60.6	100	68.65	88.3	
45.5	75	51.29	88.7	
30.3	50	34.40	88.2	
15.2	25	17.61	86.4	
1.0		1.30	76.4	
0.7		0.94	74.5	
0.5		0.69	72.0	

Average efficiency (25, 50, 75, 100% of P_{out,max}): **87.9%**


230 Vrms				
$P_{out}(W)$	P _{out} (%)	P _{in} (W)	Eff. (%)	
60.6	100	68.00	89.1	
45.5	75	51.43	88.4	
30.3	50	34.78	87.3	
15.2	25	17.66	86.1	
1.0		1.325	75.4	
0.7		0.958	73.0	
0.5		0.71	70.2	

Average efficiency (25, 50, 75, 100% of P_{out,max}): **87.7%**

Improving the No Load Consumption

At very low output load, the TL431 bias is removed using a special circuit:

ON Semiconductor*

ON

No Load Consumption

- *R*_{startup} connected to the bulk rail:
 - Without TL431 bias:

	115 Vrms	230 Vrms
$P_{out} = 0 W$	<i>P_{in}</i> = 60 mW	<i>P_{in}</i> = 98 mW

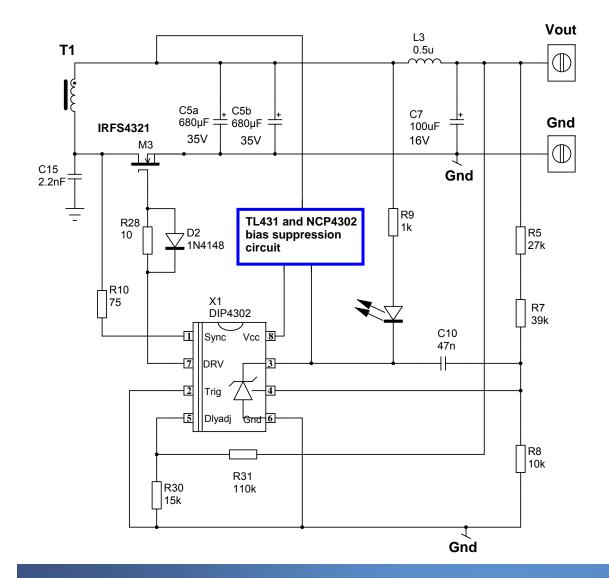
- With TL431 bias:

	115 Vrms	230 Vrms
$P_{out} = 0 W$	<i>P_{in}</i> = 98 mW	<i>P_{in}</i> = 128 mW

 $3 M\Omega$ resistor to discharge X2 capacitor included

No Load Consumption

• *R*_{startup} connected to the half wave:


- Without TL431 bias, $R_{startup} = 1.1 \text{ M}\Omega (T_{startup} = 2.6 \text{ s} @ 85 \text{ Vrms})$

	115 Vrms	230 Vrms
$P_{out} = 0 W$	<i>P_{in}</i> = 55 mW	<i>P_{in}</i> = 90 mW

 $3 M\Omega$ resistor to discharge X2 capacitor included

Synchronous Rectification Schematic

 TL431 and NCP4302 bias removed at light load.

Efficiency and No Load Consumption

	115 Vi	rms			230 Vi	rms	
$P_{out}(W)$	<i>P</i> _{out} (%)	P _{in} (W)	Eff. (%)	P _{out} (W)	P _{out} (%)	P _{in} (W)	Eff. (%)
60.5	100	67.18	90.1	60.5	100	66.48	91.0
45.4	75	50.23	90.5	45.4	75	50.38	90.1
30.3	50	33.78	89.8	30.3	50	34.2	88.6
15.2	25	17.39	87.4	15.2	25	17.48	86.8
1.0		1.319	75.7	1.0		1.368	72.9
0.7		0.945	74.0	0.7		0.992	70.5
0.5		0.690	72.4	0.5		0.737	67.6

Average efficiency (25, 50, 75, 100% of P_{out,max}): **89.5%** Average efficiency (25, 50, 75, 100% of P_{out,max}): **89.1%**

□ No load consumption

on:	115 Vrms	230 Vrms	
$P_{out} = 0 W$	<i>P_{in}</i> = 62 mW	<i>P_{in}</i> = 107 mW	

Conclusion

- The valley lockout technique allows to solve the valley jumping problem in QR power supplies.
- NCP1380, NCP1379 features:
 - QR current-mode with valley lockout for noise immunity for high load.
 - VCO mode in light load for improved efficiency.
 - OPP, OVP, BO, OTP, soft-start for building safe power supplies
- A complete design method has been presented.
- It is possible to achieve standby power consumption below 100 mW at 230 Vrms with the NCP1380.
- Good efficiency at light load with Sync. Rect if the bias of the TL431 and the Sync. Rec. controller is removed.
- Mathcad spreadsheet and simulations models available.

For More Information

- View the extensive portfolio of power management products from ON Semiconductor at <u>www.onsemi.com</u>
- View reference designs, design notes, and other material supporting the design of highly efficient power supplies at <u>www.onsemi.com/powersupplies</u>

