ON

ON Semiconductor ${ }^{\circledR}$
Design of a QR Adapter with Improved Efficiency and Low Standby Power

Agenda

1. Quasi-Resonance (QR) Generalities
2. The Valley Lockout Technique
3. The NCP1379/1380
4. Step by Step Design Procedure
5. Performances of a 60 W Adapter Featuring

Valley Lockout

Agenda

1. Quasi-Resonance (QR) Generalities
2. The Valley Lockout Technique
3. The NCP1379/1380
4. Step by Step Design Procedure
5. Performances of a 60 W Adapter Featuring

Valley Lockout

What is Quasi-Square Wave Resonance?

- MOSFET turns on when $V_{D S}(t)$ reaches its minimum value.
$>$ Minimizes switching losses
$>$ Improves the EMI signature

MOSFET turns on in first valley

MOSFET turns on in second valley

Quasi-Resonance Operation

- In DCM, $V_{D S}$ must drop from $\left(V_{i n}+V_{\text {reflect }}\right)$ to $V_{\text {in }}$
- Because of $L_{p}-C_{\text {lump }}$ network \rightarrow oscillations appear
- Oscillation half period: $t_{x}=\pi \sqrt{L_{p} C_{\text {lump }}}$

A Need to Limit the Switching Frequency

- In a self-oscillating $Q R, F_{s w}$ increases as the load decreases

Higher losses at light load if $F_{s w}$ is not limited

- 2 methods to limit $F_{s w}$:
- Frequency clamp with frequency foldback
- Changing valley with valley lockout

Frequency Clamp in QR Converters

\square In light load, frequency increases and hits clamp
> Multiple valley jumps
$>$ Jumps occur at audible range
$>$ Creates signal instability

Agenda

1. Quasi-Resonance (QR) Generalities
2. The Valley Lockout Technique
3. The NCP1379/1380
4. Step by Step Design Procedure
5. Performances of a 60 W Adapter Featuring

Valley Lockout

The Valley Lockout

- As the load decreases, the controller changes valley ($1^{\text {st }}$ to $4^{\text {th }}$ valley in NCP1380)
- The controller stays locked in a valley until the output power changes significantly.

- No valley jumping noise
- Natural switching frequency limitation

The Valley Lockout

- FB comparators select the valley and pass the information to a counter.
- The hysteresis of FB comparators locks the valley.
- 2 possible operating set points for a given FB voltage.

Agenda

1. Quasi-Resonance (QR) Generalities
2. The Valley Lockout Technique
3. The NCP1379/1380
4. Step by Step Design Procedure
5. Performances of a 60 W Adapter Featuring

Valley Lockout

NCP1379/1380 Features

- Operating modes:
- QR current-mode with valley lockout for noise immunity
- VCO mode in light load for improved efficiency
- Protections
- Over power protection
- Soft-start
- Short circuit protection
- Over voltage protection
- Over temperature protection
- Brown-Out

\square Mass production: Q4 2009

QR Mode with Valley Lockout

- Operating principle:
- Locks the controller into a valley (up to the $4^{\text {th }}$) according to FB voltage.
- Peak current adjusts according to FB voltage to deliver the necessary output power.

- Advantages
- Solves the valley jumping instability in QR converters
- Achieves higher min $F_{s w}$ and lower max $F_{s w}$ than in traditional $Q R$ converters
- Reduce the transformer size

VCO Mode

- Occurs when $V_{F B}<0.8 \mathrm{~V}$ ($P_{\text {out }}$ decreasing) or $V_{F B}<1.4 \mathrm{~V}$ ($P_{\text {out }}$ increasing)
- Fixed peak current (17.5% of $I_{p k, \text { max }}$), variable frequency set by the FB loop.

Combined ZCD and OPP

- Zero-Crossing Detection (ZCD) and Over Power Protection (OPP) are achieved by reading the Aux. winding voltage
- ZCD function used during the off-time of MOSFET (positive voltage).
- OPP function used during the on-time of MOSFET (negative voltage)

NCP1380 Versions

- 4 versions of NCP1380: A, B, C and D

	OTP	OVP	BO	Auto-Recovery Over current protection	Latched Over current protection
NCP1380 / A	X	X			X
NCP1380 / B	X	X		X	X
NCP1380 / C		X	X	X	
NCP1380 / D	X	X			

OTP: Over Temperature Protection
OVP: Over Voltage Protection
BO: Bown-Out

Short-Circuit Protection

- Internal 80 ms timer for short-circuit validation.
- Additional CS comparator with reduced LEB to detect winding short-circuit.
- $V_{C S(\text { stop) }}=1.5 * V_{\text {ILMIT }}$

Short-Circuit Protection (A and C versions)

- A and C versions: the fault is latched.
- $V_{C C}$ is pulled down to 5 V and waits for ac removal.

Short Circuit Protection (B and D)

- Auto-recovery short circuit protection: the controller tries to restart
- Auto-recovery imposes a low burst in fault mode.
m Low average input power in fault condition

Fault Pin Combinations

- OVP / OTP
- NCP1380 A \& B versions

- OVP / BO
- NCP1380 C \& D versions, NCP1379

- OVP and OTP or OVP and BO combined on one pin.
- Less external components needed.

Agenda

1. Quasi-Resonance (QR) Generalities
2. The Valley Lockout Technique
3. The NCP1379/1380
4. Step by Step Design Procedure
5. Performances of a 60 W Adapter Featuring

Valley Lockout

Step by Step Design Procedure

- Calculating the QR transformer
- Predicting the switching frequency
- Implementing Over Power Compensation
- Improving the efficiency at light load with the VCO mode
- Choosing the startup resistors
- Implementing synchronous rectification

Design Example

- Power supply specification:

$$
\begin{array}{ll}
- & V_{\text {out }}=19 \mathrm{~V} \\
- & P_{\text {out }}=60 \mathrm{~W} \\
- & F_{\text {sw, } \min }=45 \mathrm{kHz}\left(\text { at } V_{\text {in }}=100 \mathrm{Vdc}\right) \\
- & 600 \mathrm{~V} \mathrm{MOSFET} \\
- & V_{\text {in }}=85 \sim 265 \mathrm{Vrms}
\end{array}
$$

- \quad Standby power consumption $<100 \mathrm{~mW} @ 230$ Vrms

Turns Ratio Calculation

\square Derate maximum MOSFET $B V_{d s s}$:

$$
V_{d s, \max }=B V_{d s s} \overparen{k_{D}} \searrow_{k_{D} \text { : derating factor }}
$$

\square For a maximum bulk voltage, select the clamping voltage:

$$
V_{\text {clamp }}=V_{d s, \max }-V_{i n, \max }-\widehat{V o s}^{v_{o s}: \text { diode overshoot }}
$$

\square Deduce turns ratio:

$$
N_{p s}=\frac{N_{s}}{N_{p}}=\frac{k_{c}\left(V_{\text {out }}+V_{f}\right)}{V_{\text {clamp }}}
$$

$$
\begin{aligned}
& k_{c} \text { : clamping coef. } \\
& \left.k_{c}=V_{\text {clamp }} / V_{\text {reflect }}\right)
\end{aligned}
$$

How to Choose k_{c}

- k_{c} choice dependant of $L_{\text {leak }}$ (leakage inductance of the transformer)
- k_{c} value can be chosen to equilibrate MOS conduction losses and clamping resistor losses.

$$
\left\{\begin{array}{l}
P_{\text {Rclamp }}=k_{\text {leak }} \frac{P_{\text {out }}}{\eta} \frac{k_{c}}{k_{c}-1} \\
P_{\text {MOS, on }}=R_{\text {dson }} \frac{4 P_{\text {out }}{ }^{2}}{3 \eta^{2} V_{\text {in,min }}}\left(\frac{1}{V_{\text {in, min }}}+\frac{k_{c}}{B V_{\text {dss }} k_{D}-V_{\text {in, max }}-V_{\text {os }}}\right)
\end{array}\right.
$$

Curves plotted for:
$R_{d \mathrm{C}^{n}}=0.77 \Omega$ at $T_{j}=110$
$P_{\text {out }}=60 \mathrm{~W}$
$V_{i n, \text { min }}=100 \mathrm{Vdc}$

Primary Peak Current and Inductance

$\square P_{\text {out }}=\frac{1}{2} L_{\text {pri }} I_{\text {pri, peak }}{ }^{2} F_{\text {sw }} \eta$
DCM

$\square T_{s w}=\frac{I_{\text {pri, peak }} L_{p r i}}{V_{\text {in, min }}}+\frac{I_{p r i, \text { peak }} L_{p r i} N_{p s}}{V_{\text {out }}+V_{f}}+\pi \sqrt{L_{p r i} C_{\text {lump }}} \longleftarrow \quad{ }_{\text {ass }} \quad{ }_{\text {alone }}$ contribution

$$
I_{\text {pri, peak }}=2 \frac{P_{\text {out }}}{\eta}\left(\frac{1}{V_{\text {in, min }}}+\frac{N_{\text {ps }}}{V_{\text {out }}+V_{f}}\right)+\pi \sqrt{\frac{2 P_{\text {out }} C_{\text {lump }} F_{\text {sw }}}{\eta}}
$$

$$
L_{\text {pri }}=\frac{2 P_{\text {out }}}{I_{\text {pri, peak }}{ }^{2} F_{\text {sw }} \eta}
$$

RMS Current

- Calculate maximum duty-cycle at maximum $P_{\text {out }}$ and minimum $V_{i n}$:

$$
d_{\text {max }}=\frac{I_{p r i, p e k} L_{p r i}}{V_{i n, \text { min }}} F_{s w, \text { min }}
$$

- Deduce primary and secondary RMS current value:

$$
\begin{aligned}
& I_{p r i, m s}=I_{p r i, p e a k} \sqrt{\frac{d_{\text {max }}}{3}} \\
& I_{\text {sec, }, m s}=\frac{I_{p r i, p e a k}}{N_{p s}} \sqrt{\frac{1-d_{\text {max }}}{3}}
\end{aligned}
$$

$$
I_{\text {pri,rms }} \text { and } I_{\text {sec,rms }} \amalg \text { Losses calculation }
$$

Design Example

\square Based on equations from slides 11 to 14:
$>$ Turns ratio: $\quad N_{p s}=\frac{k_{c}\left(V_{\text {out }}+V_{f}\right)}{B_{\text {Vdss }} k_{D}-V_{\text {in, max }}-V_{\text {os }}}=\frac{1.3 \times(19+0.8)}{600 \times 0.85-375-10} \Rightarrow N_{p s} \approx 0.25$
$>$ Peak current: $\quad I_{\text {pri, peak }}=\frac{2 P_{\text {out }}}{\eta}\left(\frac{1}{V_{\text {in, , ,in }}}+\frac{N_{\text {ps }}}{V_{\text {out }}+V_{f}}\right)+\pi \sqrt{\frac{2 P_{\text {out }} C_{\text {lump }} F_{\text {sw }}}{\eta}}$

$$
=\frac{2 \times 60}{0.85}\left(\frac{1}{100}+\frac{0.25}{19.8}\right)+\pi \sqrt{\frac{2 \times 60 \times 250 p \times 45 k}{0.85}} \Rightarrow I_{\text {pri, peak }}=3.32 \mathrm{~A}
$$

$>$ Inductance: $\quad L_{\text {pri }}=\frac{2 P_{\text {out }}}{I_{\text {pri, peak }} F_{\text {sw }} \eta}=\frac{2 \times 60}{3.32^{2} \times 45 k \times 0.85} \Rightarrow L_{\text {pri }}=285 \mu \mathrm{H}$
$>$ Max. duty-cycle: $\quad d_{\text {max }}=\frac{I_{\text {pri, peak }} L_{p r i}}{V_{i n, \text { min }}} F_{s w, \text { min }}=\frac{3.32 \times 285 \mu}{100} 45 \mathrm{k} \Rightarrow d_{\max }=0.43$
$>$ Primary rms current: $\quad I_{\text {pri, rms }}=I_{\text {pri, peak }} \sqrt{\frac{d_{\text {max }}}{3}}=3.32 \sqrt{\frac{0.43}{3}} \Rightarrow I_{\text {pri, rms }}=1.26 \mathrm{~A}$
$>$ Secondary rms current: $\quad I_{\text {sec, }, \text { ms }}=\frac{I_{\text {pri, peak }}}{N_{p s}} \sqrt{\frac{1-d_{\text {max }}}{3}}=\frac{3.32}{0.25} \sqrt{\frac{1-0.43}{3}} \Rightarrow I_{\text {sec, }, m \mathrm{~s}}=5.8 \mathrm{~A}$

Predicting the Switching Frequency

- The controller changes valley as the load decreases.
=> How can we predict the switching frequency evolution as the load varies?

- Depending upon the power increase or decrease, the FB levels at which the controller changes valley are different => valley lockout

Predicting the Switching Frequency

- Knowing the FB threshold values, we can calculate $F_{s w}$ evolution and the corresponding $P_{\text {out }}$.

Replace $V_{F B}$ by the valley thresholds values in the previous slide

Predicting the Switching Frequency

- Calculate by hand (using the previous equations) or use the Mathcad spreadsheet to deduce the maxima of the switching frequency => EMI

VCO Mode

- The switching frequency is set by the end of charge of C_{t} capacitor
- The end of charge of C_{t} capacitor is controlled by the FB loop

$4^{\text {th }}$ Valley to VCO Mode Transition

- Output load slightly decreases:

How to Calculate C_{t} Capacitor?

- Switching frequency at the end of the $4^{\text {th }}$ valley operation $\left(V_{F B}=0.8 \mathrm{~V}\right)$:

$$
T_{\text {sw, thh-VCo }}=\left(\frac{0.8}{4 R_{\text {sense }}}+t_{\text {prop }} \frac{V_{\text {in,max }} \sqrt{2}}{L_{p}}\right) L_{p}\left(\frac{1}{V_{\text {in, max }} \sqrt{2}}+\frac{N_{p s}}{V_{\text {out }}+V_{f}}\right)+7 \pi \sqrt{L_{p} C_{o s s}}
$$

- $T_{s w}$ gap between $4^{\text {th }}$ valley and VCO mode must not exceed $\mathbf{1 0} \boldsymbol{\mu s}$ (based on lab experiments) for $V_{F B}=1.4 \mathrm{~V}$ (hysteresis):

$$
T_{s w, V C O}=T_{s w, 4 t h-V C O}+10 \mu \mathrm{~s}
$$

- The relationship between $V_{F B}$ and $V_{C t}$ is:

$$
\begin{gathered}
V_{C t}=6.5-(10 / 3) V_{F B}=6.5-(10 / 3) \times 1.4=1.83 \mathrm{~V} \\
C_{t}=\frac{I_{C t} T_{s w, V C o}}{1.83}
\end{gathered}
$$

C_{t} Design Example

- Switching frequency at the end of the $4^{\text {th }}$ valley operation:

$$
\begin{aligned}
T_{s w, 4 t h-V C O} & =\left(\frac{0.8}{4 \times 0.23}+300 n \frac{265 \sqrt{2}}{285 \mu}\right) 285 \mu\left(\frac{1}{265 \sqrt{2}}+\frac{0.25}{19+0.8}\right)+7 \pi \sqrt{285 \mu \times 250 p} \\
& =10.7 \mu \mathrm{~s}
\end{aligned}
$$

- $T_{\text {sw }}$ gap between $4^{\text {th }}$ valley and VCO mode must not exceed $10 \mu \mathrm{~s}$ (based on lab experiments):

$$
T_{s w, V C O}=T_{s w, 4 t h-V C O}+10 \mu s=10.7 \mu+10 \mu=20.7 \mu s
$$

- The timing capacitor value is:

$$
C_{t}=\frac{I_{C t} T_{s w, V c o}}{1.83}=\frac{20 \mu \times 20.7 \mu}{1.83}=226 p F
$$

- Finally, we choose $C_{t}=200 \mathrm{pF}$

OPP: How it Works ?

- $\mathrm{L}_{\text {aux }}$ with flyback polarity swings to $-\mathrm{NV}_{\mathbb{I N}}$ during the on time.
- Adjust amount of OPP voltage with $\left(\mathrm{R}_{\mathrm{zcd}}+\mathrm{R}_{\text {opu }}\right) / / \mathrm{R}_{\text {opl }}$.
- $\mathrm{V}_{\mathrm{CS}, \text { max }}=0.8 \mathrm{~V}+\mathrm{V}_{\mathrm{OPP}}$
- The diode bypass $\mathrm{R}_{\text {opu }}$ during the off-time for optimum zero-crossing detection.

OPP Amount Needed for the Design

- Because of the propagation delay, at high line:

$$
I_{p k(h i g h)}=\frac{0.8}{R_{\text {sense }}}+V_{i n, \max } \sqrt{2} \frac{t_{\text {prop }}}{L_{p}}
$$

$$
\longrightarrow I_{p k(h i g h)}=\frac{0.8}{0.23}+265 \sqrt{2} \frac{600 \times 10^{-9}}{290 \times 10^{-6}}=4.32 \mathrm{~A}
$$

- The switching frequency is:

$$
\begin{aligned}
T_{s w(h i g h)} & =I_{p k(h i g h)} L_{p}\left(\frac{1}{V_{i n, \max } \sqrt{2}}+\frac{N_{p s}}{V_{\text {out }}+V_{f}}\right)+\pi \sqrt{L_{p} C_{\text {lump }}} \\
& \Longrightarrow T_{\text {sw(high) }}=4.32 \times 290 \times 10^{-6}\left(\frac{1}{265 \sqrt{2}}+\frac{0.25}{19+0.8}\right)+\pi \sqrt{285 \times 10^{-6} \times 250 \times 10^{-12}}=19.5 \mu \mathrm{~s}
\end{aligned}
$$

- The power capability at high line is:

$$
P_{\text {out (high) }}=\frac{1}{2} L_{p} I_{p k(h i g h)}{ }^{2} \frac{1}{T_{s w(h i g h)}} \eta
$$

$$
\Longrightarrow P_{\text {out(high) }}=\frac{1}{2} 290 \times 10^{-6} \times 4.32^{2} \frac{1}{19.5 \times 10^{-6}} 0.85=116 \mathrm{~W}
$$

Amount of OPP Voltage Needed

- Limit the output power to $P_{\text {out(limit) }}=70 \mathrm{~W}$ at high line.
- What is the peak current $I_{p k(\text { limit })}$ corresponding to $P_{\text {out(limit) }}$?

$$
\begin{aligned}
I_{p k(\text { limit })}= & \frac{L_{p}\left(\frac{1}{V_{\text {in }(\max), d c}}+\frac{N_{p s}}{V_{\text {out }}+V_{f}}\right)+\sqrt{L_{p}^{2}\left(\frac{1}{V_{\text {in(max),dc }}}+\frac{N_{p s}}{V_{\text {out }}+V_{f}}\right)^{2}-2 \frac{L_{p} \eta}{P_{\text {out }(\text { limit })}} \pi \sqrt{L_{p} C_{\text {lump }}}}}{\frac{L_{p} \eta}{P_{\text {out }(\text { limit })}}} \\
& \longleftrightarrow I_{p k(\text { limit })}=\frac{285 \mu\left(\frac{1}{375}+\frac{0.25}{19+0.8}\right)+\sqrt{(285 \mu)^{2}\left(\frac{1}{375}+\frac{0.25}{19+0.8}\right)^{2}-2 \frac{285 \mu \times 0.85}{70} \pi \sqrt{285 \mu \times 250 \mathrm{p}}}}{\frac{285 \mu \times 0.85}{70}}=2.67 \mathrm{~A}
\end{aligned}
$$

- Amount of OPP voltage needed:

$$
V_{O P P}=0.8\left(1-\frac{I_{p k(\text { limit })}}{I_{p k(\text { max })}}\right)
$$

$$
\longrightarrow V_{\text {OPP }}=0.8\left(1-\frac{2.67}{4.32}\right)=300 \mathrm{mV}
$$

Calculating the OPP Resistors

- The amount of OPP voltage needed to limit $P_{\text {out }}$ to 70 W is : $\mathrm{V}_{\mathrm{OPP}}=300 \mathrm{mV}$
- Resistor divider law:

$$
\begin{aligned}
\frac{R_{\text {opu }}+R_{\text {zcd }}}{R_{\text {opl }}}= & \frac{N_{p, \text { aut }} V_{\text {IN }}-V_{\text {oPP }}}{V_{\text {oPP }}} \\
& \Longrightarrow \frac{R_{\text {opu }}+R_{\text {zcd }}}{R_{\text {opl }}}=\frac{0.18 \times 375-0.3}{0.3}=224
\end{aligned}
$$

- We choose: $R_{\text {opl }}=1 \mathrm{k} \Omega$ and $R_{z c d}=1 \mathrm{k} \Omega$

$$
R_{\text {opu }}=221 R_{\text {opl }}-R_{z c d}
$$

Why is the OPP Non Dissipative ?

- Input voltage information given by auxiliary winding
- In light load: VCO mode $=>T_{\text {sw }}$ expands, thus the average current in the resistor bridge decreases

$$
I_{\text {bridge }, \text { avg }}=\frac{1}{R_{\text {zcd }}+R_{\text {opu }}+R_{\text {opl }}\left(\frac{t_{\text {on }}}{T_{\text {sw }}}\right.} N_{p, \text { aux }} V_{\text {IN }}+\frac{1}{R_{\text {opu }}+R_{\text {opl }}} \frac{t_{\text {off }}}{T_{\text {sw }}}\left(V_{\text {CC }}+V_{f}\right)
$$

> Previous example: $R_{\text {opu }}=220 \mathrm{k} \Omega, \mathrm{R}_{\text {opl }}=1 \mathrm{k} \Omega, \mathrm{R}_{\text {zcd }}=1 \mathrm{k} \Omega$
At light load ($P_{\text {out }}=4 \mathrm{~W}$), $t_{\text {on }}=1.2 \mu \mathrm{~s}, t_{\text {off }}=3.6 \mu \mathrm{~s}, T_{\text {sw }}=40 \mu \mathrm{~s}$

$$
I_{\text {bridge, mean }}=\frac{1}{220 k+1 k+1 k} \frac{1.2 \mu}{40 \mu} \times 0.18 \times 375+\frac{1}{220 k+1 k} \frac{3.6 \mu}{40 \mu} 16=15 \mu \mathrm{~A}
$$

Startup Network

- The startup resistor can either be connected:
- To the bulk capacitor with $R_{\text {startup }}$
- To the half-wave - for a similar charging current, take $R_{\text {startup }} / \Pi$

Startup Capacitor Calculation

- $C_{V c c}$ calculated to allow the power supply to close the loop before $V_{C C}$ falls below $V_{C C \text { (off) }}$

$$
\begin{aligned}
& C_{V c c}=\frac{\left(I_{C C 3 A}+Q_{g} F_{s w}\right) t_{\text {reg }}}{V_{C C(o n)}-V_{C C(o f f)}} \\
& C_{V c c}=\frac{(2.4 m+17 n \times 45000) \times 10 \mathrm{~m}}{17-9}=3.9 \mu F
\end{aligned}
$$

We choose $C_{V c c}=4.7 \mu \mathrm{~F}$

- Needed startup current to charge $C_{V c c}$:

$$
I_{C v c c}=\frac{V_{C C(o n)} C_{V c c}}{t_{\text {startup }}}
$$

$$
\longrightarrow I_{\text {Cvec }}=\frac{17 \times 4.7 \mu}{2.8}=28.5 \mu \mathrm{~A}
$$

Startup Resistor Calculation

- Bulk capacitor connection
$>$ Resistor calculation:

$$
\begin{aligned}
& R_{\text {startup }}=\frac{V_{\text {in }, \text { min }} \sqrt{2}}{I_{C v c c}+I_{C C(\text { start })}} \\
& R_{\text {startup }}=\frac{85 \sqrt{2}}{28.5 \mu+15 \mu}=2.76 \mathrm{M} \mathrm{\Omega}
\end{aligned}
$$

> Power dissipation:

$$
\begin{aligned}
& P_{\text {startup }}=\frac{\left(V_{\text {in }, \max } \sqrt{2}-V_{C C}\right)^{2}}{R_{\text {startup }}} \\
& P_{\text {startup }}=\frac{(265 \sqrt{2}-16)^{2}}{2.68 \mathrm{M}}=55 \mathrm{~mW}
\end{aligned}
$$

- Half wave connection
$>$ Resistor calculation:

$$
\begin{aligned}
R_{\text {startup }} & =\frac{\frac{V_{\text {in }, \text { min }} \sqrt{2}}{\pi}}{I_{C V v c}+I_{C C(\text { start })}} \\
R_{\text {startup }} & =\frac{85 \sqrt{2} / \pi}{28.5 \mu+15 \mu}=880 \mathrm{k} \Omega
\end{aligned}
$$

> Power dissipation:

$$
\begin{aligned}
& P_{\text {startup }}=\frac{\left(\frac{V_{\text {in,max }} \sqrt{2}}{\pi}-V_{C C}\right)^{2}}{R_{\text {startup }}} \\
& P_{\text {startup }}=\frac{(265 \sqrt{2} / \pi-16)^{2}}{880 k}=16 \mathrm{~mW}
\end{aligned}
$$

Synchronous Rectification

- High rms currents in secondary side \rightarrow increased losses in the output diode.
- Replace the diode with a MOSFET featuring a very low $R_{\text {DS(on) }}$.

+	-
Increased efficiency	Degraded light load and standby power consumption

Losses in the Sync. Rect. Switch

$$
P_{\text {Qsync }}=P_{\text {ON }}+P_{\text {Qdiode }}
$$

- Body diode conduction losses

$$
\begin{aligned}
& P_{P_{\text {diode }}}=V_{f} I_{\text {out }} F_{\text {sw }} t_{\text {delay }} \\
& \mathbf{W} \longrightarrow \text { Low if } t_{\text {delay }} \text { small }
\end{aligned}
$$

- MOSFET conduction losses

$$
P_{O N}=R_{D S(o n) 120} I_{\text {sec }, r m s}{ }^{2}
$$

- Body diode conducts before the MOSFET is turned-on.
\longrightarrow No switching losses

\square Losses in the Sync. Rect. switch are mainly conduction losses.

Choosing the Sync. Rect. MOSFET

- Target around 1 W conduction losses in Sync. Rect. switch to avoid using an heatsink.

$$
R_{\text {DSon120 }}=\frac{1 \mathrm{~W}}{I_{\text {sec,RMS }}{ }^{2}}
$$

$$
\begin{aligned}
& \mathrm{V}_{\text {out }}=19 \mathrm{~V} \\
& \mathrm{~F}_{\text {sw,min }}=45 \mathrm{kHz} \\
& \text { Universal mains }
\end{aligned}
$$

60 W QR Sync. Rect. Calculations

Body diode losses: $\quad P_{\text {Qdiode }}=V_{f} I_{\text {out }} F_{\text {sw }} t_{\text {delay }}=0.7 \times 3.2 \times 45000 \times 70 n$

$$
P_{\text {Qdiode }}=7 \mathrm{~mW}
$$

- MOSFET losses: $\quad P_{O N}=R_{D S(o n) 120} I_{\text {sec, }, \text { ms }}{ }^{2}=30 \mathrm{~m} \times 5.8^{2}$

$$
P_{O N}=1 \mathrm{~W}
$$

Total Sync. Rect. switch losses: $P_{\text {Qsync }}=1+0.007 \approx 1 \mathrm{~W}$
Losses into the MBR20200 diode: 2.6 W
$\xrightarrow{\longrightarrow}$ Power loss saving: 1.6 W

Agenda

1. Quasi-Resonance (QR) Generalities
2. The valley lockout technique
3. The NCP1379/1380
4. Step by step design procedure
5. Performances of a 60 W adapter featuring
valley lockout

60 W Demo Board Schematic

NCP1380B in a 19 V, 60 W adapter

Startup

- Startup resistor connected to the bulk rail $\left(R_{\text {startup }}=2.7 \mathrm{M} \Omega\right)$
- $\mathrm{T}_{\text {startup }}=2.68 \mathrm{~s}$

- Startup resistor connected to the half-wave $\left(R_{\text {startup }}=910 \mathrm{k} \Omega\right)$
- $\mathrm{T}_{\text {startup }}=2.1 \mathrm{~s}$

Transient Load Step

- Load step:
3% to 100% of output load with a slew rate of $1 \mathrm{~A} / \mu \mathrm{s}$
- $V_{i n}=230 \mathrm{Vrms}$

The overshoot / undershoot is 1% of the nominal value of $V_{\text {out }}$

Short-Circuit

- A short-circuit is made at the board output.
- The circuit pulses with a low burst (5\%)
- The measured averaged input power is: $P_{\text {in }}=412.4 \mathrm{~mW}$ for $V_{\text {in }}=230 \mathrm{Vrms}$

Efficiency

115 Vrms			
$P_{\text {out }}(\mathrm{W})$	$P_{\text {out }}(\%)$	$P_{\text {in }}(\mathrm{W})$	Eff. (\%)
60.6	100	68.65	$\mathbf{8 8 . 3}$
45.5	75	51.29	$\mathbf{8 8 . 7}$
30.3	50	34.40	$\mathbf{8 8 . 2}$
15.2	25	17.61	$\mathbf{8 6 . 4}$
$\mathbf{1 . 0}$		1.30	76.4
$\mathbf{0 . 7}$		$\mathbf{0 . 9 4}$	74.5
$\mathbf{0 . 5}$		0.69	72.0

Average efficiency $\left(25,50,75,100 \%\right.$ of $\left.P_{\text {out, max }}\right): 87.9 \%$

230 Vrms			
$P_{\text {out }}(\mathrm{W})$	$P_{\text {out }}(\%)$	$P_{\text {in }}(\mathrm{W})$	Eff. (\%)
60.6	100	68.00	$\mathbf{8 9 . 1}$
45.5	75	51.43	$\mathbf{8 8 . 4}$
30.3	50	34.78	$\mathbf{8 7 . 3}$
15.2	$\mathbf{2 5}$	17.66	$\mathbf{8 6 . 1}$
$\mathbf{1 . 0}$		1.325	75.4
$\mathbf{0 . 7}$		$\mathbf{0 . 9 5 8}$	$\mathbf{7 3 . 0}$
$\mathbf{0 . 5}$		0.71	70.2

Average efficiency $\left(25,50,75,100 \%\right.$ of $P_{\text {out,max }}$): 87.7\%

Improving the No Load Consumption

- At very low output load, the TL431 bias is removed using a special circuit:

No Load Consumption

- $R_{\text {startup }}$ connected to the bulk rail:
- Without TL431 bias:

	115 Vrms	230 Vrms
$P_{\text {out }}=0 \mathrm{~W}$	$P_{\text {in }}=60 \mathrm{~mW}$	$P_{\text {in }}=98 \mathrm{~mW}$

- With TL431 bias:

	115 Vrms	230 Vrms
$P_{\text {out }}=0 \mathrm{~W}$	$P_{\text {in }}=\mathbf{9 8} \mathrm{mW}$	$P_{\text {in }}=128 \mathrm{~mW}$

[^0]
No Load Consumption

- $R_{\text {startup }}$ connected to the half wave:
- Without TL431 bias, $R_{\text {startup }}=1.1 \mathbf{M \Omega}\left(T_{\text {startup }}=2.6 \mathrm{~s} @ 85 \mathrm{Vrms}\right)$

	115 Vrms	230 Vrms
$P_{\text {out }}=0 \mathrm{~W}$	$P_{\text {in }}=55 \mathrm{~mW}$	$P_{\text {in }}=90 \mathrm{~mW}$

$3 \mathrm{M} \Omega$ resistor to discharge X2 capacitor included

Synchronous Rectification Schematic

- TL431 and NCP4302 bias removed at light load.

Efficiency and No Load Consumption

115 Vrms			
$P_{\text {out }}(\mathrm{W})$	$P_{\text {out }}(\%)$	$P_{\text {in }}(\mathrm{W})$	Eff. (\%)
60.5	$\mathbf{1 0 0}$	67.18	$\mathbf{9 0 . 1}$
45.4	$\mathbf{7 5}$	50.23	$\mathbf{9 0 . 5}$
30.3	$\mathbf{5 0}$	33.78	$\mathbf{8 9 . 8}$
15.2	$\mathbf{2 5}$	17.39	$\mathbf{8 7 . 4}$
$\mathbf{1 . 0}$		1.319	75.7
$\mathbf{0 . 7}$		$\mathbf{0 . 9 4 5}$	$\mathbf{7 4 . 0}$
$\mathbf{0 . 5}$		0.690	72.4

230 Vrms			
$P_{\text {out }}(\mathrm{W})$	$P_{\text {out }}(\%)$	$P_{\text {in }}(\mathrm{W})$	Eff. (\%)
60.5	$\mathbf{1 0 0}$	66.48	$\mathbf{9 1 . 0}$
45.4	$\mathbf{7 5}$	50.38	$\mathbf{9 0 . 1}$
30.3	$\mathbf{5 0}$	34.2	$\mathbf{8 8 . 6}$
15.2	$\mathbf{2 5}$	17.48	$\mathbf{8 6 . 8}$
$\mathbf{1 . 0}$		1.368	72.9
$\mathbf{0 . 7}$		$\mathbf{0 . 9 9 2}$	$\mathbf{7 0 . 5}$
$\mathbf{0 . 5}$		0.737	67.6

Average efficiency $\left(25,50,75,100 \%\right.$ of $\left.P_{\text {out,max }}\right): 89.5 \% \quad$ Average efficiency $\left(25,50,75,100 \%\right.$ of $\left.P_{\text {out,max }}\right): 89.1 \%$
No load consumption:

$$
\begin{array}{|c|c|c|}
\cline { 2 - 3 } & 115 \mathrm{Vrms} & 230 \mathrm{Vrms} \\
\hline P_{\text {out }}=0 \mathrm{~W} & P_{\text {in }}=62 \mathrm{~mW} & P_{\text {in }}=107 \mathrm{~mW} \\
\hline
\end{array}
$$

Conclusion

- The valley lockout technique allows to solve the valley jumping problem in QR power supplies.
- NCP1380, NCP1379 features:
- QR current-mode with valley lockout for noise immunity for high load.
- VCO mode in light load for improved efficiency.
- OPP, OVP, BO, OTP, soft-start for building safe power supplies
- A complete design method has been presented.
- It is possible to achieve standby power consumption below 100 mW at 230 Vrms with the NCP1380.
- Good efficiency at light load with Sync. Rect if the bias of the TL431 and the Sync. Rec. controller is removed.
- Mathcad spreadsheet and simulations models available.

For More Information

- View the extensive portfolio of power management products from ON Semiconductor at www.onsemi.com
- View reference designs, design notes, and other material supporting the design of highly efficient power supplies at www.onsemi.com/powersupplies

[^0]: $3 \mathrm{M} \Omega$ resistor to discharge X2 capacitor included

