

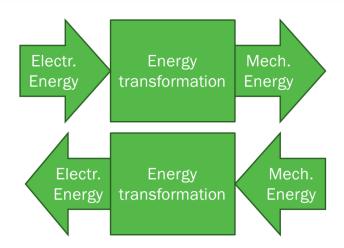
Modern Motor Control Applications and Trends

Tomas Krecek, Ondrej Picha, Steffen Moehrer

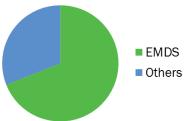
ON

Content

- Introduction
- Electric Machines
- Basic and Advance Control Techniques
- Power Inverters and Semiconductor Requirements
- Trends in Electric Drives
- Conclusion


Introduction

Electric Drive (definition)


- Transforming electrical energy into mechanical energy.
- Consists out of electric motor and optional components, like a control unit, feedback measurements and rectifier, booster, inverter to convert the electrical energy.
- Electric motor can operate in 4 quadrants on the speed/torque plain, so mechanical energy can have positive or negative sign.

Electric motor driven system (EMDS)

- about 45% of all global electricity consumption and 69% of the industrial electricity consumption is EMDS*.
- Increasing and developing industry.
- Regulations established (e.g. ErP directive 0,75..375kW VSD).

^{*}Source: www.iea.org (2011)

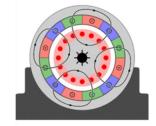
ON Semiconductor®

Electric Machines

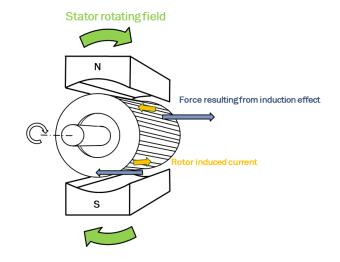
Induction Machine / Asynchronous Motor

- Industry most widespread machine
- High reliability and efficiency
- Simple construction

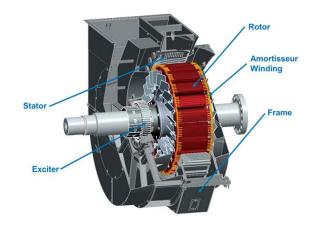
Used for pumps, cranes, fans, ...



Water pump motor and inverter application www.abb.com


Induction Machine / Asynchronous Motor

- Stator has a 3 phase winding Y or Δ connection
- Has to be fed with 3 phase current shifted by 120°
- Rotating field is created in the air gap
- Rotor has a squirrel cage (bars of Cu or Al connected on the end)
- Rotating field induces currents in the rotor
 - Tourque as a result of an interaction between stator and rotor field



www.en.wikipedia.org/wiki/Induction_motor


Synchronous Machine

- Stator has the same construction as IM
- Motor operates only at synchronous speed

Synchronous motor cut www.pumpsandsystems.com

- Rotor needs DC excitation
- Rings , Brushes and DC source add complexity

Synchronous Machine

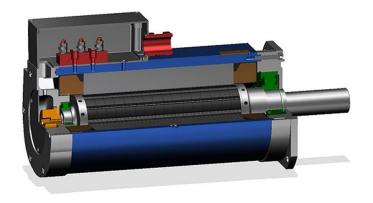
- Motor operates only at synchronous speed
- Used for high power drives with constant speed in paper or steel industry
- Synchronous generator in power plants
- Start-up without Inverter need effort

http://www.varspeedhydro.com

http://www.starterandalternator.com

 Two types of rotor exist – with salient poles and with cylindrical rotor

Reluctance synchronous motor – has no rotor winding

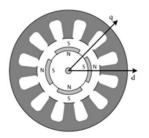


www.abb.com

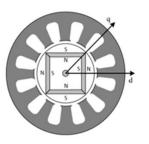
Synchronous Machine with Permanent Magnets (PMSM)

Construction similar as SM

www.servax.com


- Permanent magnets instead of rotor-winding
- High reliability due to brushless operation
- High efficiency (no dc losses in the rotor)
- High compactness
- Higher price (expensive magnets needed)
- Risk of demagnetization of the permanent magnets
- Rotor magnetic field cannot be changed

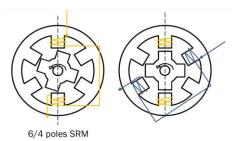
Synchronous Machine with Permanent Magnets (PMSM)


- Rotor with surface mounted magnets
- Best utilization of the magnets
- Mechanically less robust

10

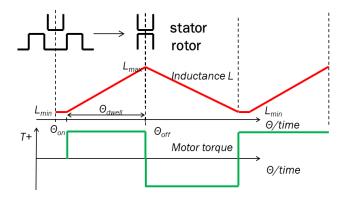
- Magnets are more sensible to demagnetization
- eddy current losses are present in them

- Rotor with interior mounted magnets (embedded magnets)
- Magnets are mechanically and electrically protected
- Higher leakage flux (typically ¼ of the total flux)



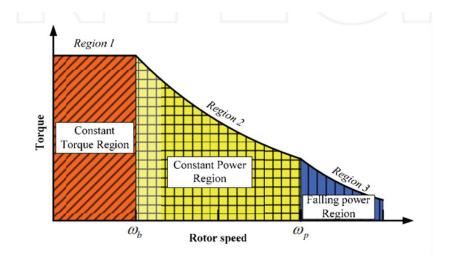
Switched Reluctance Motor (SRM)

- Cost effective
- High reliability due to robust structure
- High starting torque
- Fault tolerant operation possible
- High-speed operation (>100 000 RPM)
- Higher Torque ripple (reducable by more phases + advanced control)



- Rotor and stator have salient poles
- No winding on rotor
- Torque is created only by the reluctance effect
- Every stator tooth has its own winding
- The motor has to be excited by a sequence of consequent pulses

Switched Reluctance Motor (SRM)


- When current flows through the stator phase, torque is created in the direction of the increasing inductance
- Direction of the coil current does not play a role

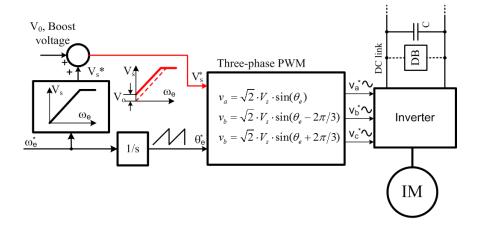
- The motor has to be excited by a sequence of consequent pulses
- When rotor poles are leaving the aligned position and approach the unaligned position, the torque is negative
- Feedback position sensors or sensorless control approach is needed
- Torque ripple depends on the number of poles
- High accoustic noise
- Driving reducing the current in the point of maximum Torque – reduces torque ripple

Animation: https://www.youtube.com/watch?v=LXJUYumwh-k

Switched Reluctance Motor (SRM)

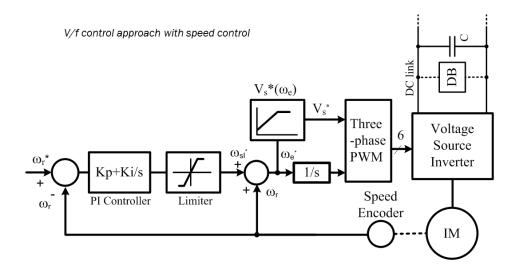
Jin-Woo Ahn (2011). Switched Reluctance Motor, Torque Control, Prof. Moulay Tahar Lamchich (Ed.), InTech, DOI: 10.5772/10520. Available from: https://www.intechopen.com/books/torque-control/switched-reluctance-motor

- High torque at low speed
- Const. Torque due to I-limit
- Due to BEMF, torque reduces proportional to speed -> const. Power
- In high-speed the torque decreases proportional to square of speed (BEMF)
- Speed limited by available voltage
- Ratio between max-speed and base-speed is up to 10
- Wie range of constant power makes SRM useful for EV application

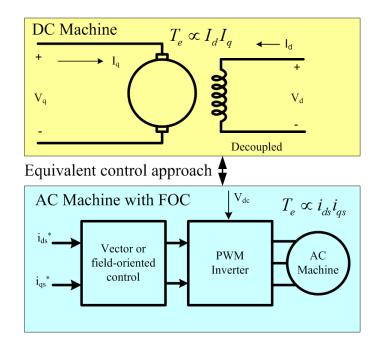


ON Semiconductor®

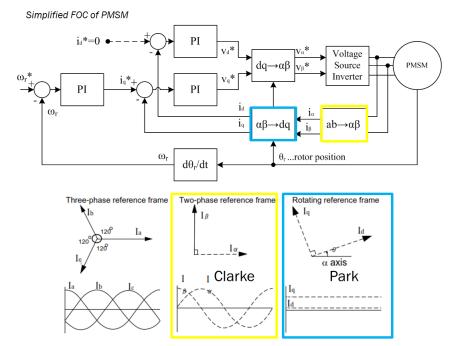
Basic and Advanced Control Techniques


Open-loop Control Structures for IM

Open-loop V/f control approach


- Called V/f control technique due to keep the flux constant $V_s/W_e = \psi$ =const
 - Stator voltage depends on required speed
- Rotor speed is less then requested due to the slip presence
- V_o called boost voltage is added to overcome the voltage drop across stator resistance R_s.
- Very simple control-method with weak response.
- Applications: pumps, fans or simple drives.

Closed-loop Control Structures for IM


- Closed loop always means that an encoder is needed
- The feedback provide information about $\omega_{sl} = \omega_{p} \omega_{r}$
- The electromagnetic torque of an IM is directly proportional to slip frequency ω_{sl}
- The method can be considered as an openloop torque control within a speed control loop
- The structure contains V/f function to keep machine with rated magnetic flux
- Convenient for all application where good transient is required and accurate speed regulation.

Field Oriented Control (FOC)

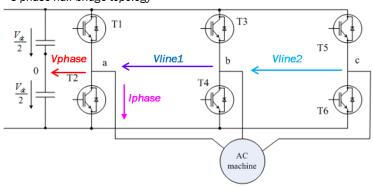
- Previous control methods have sluggish control response.
- Better: vector- or field-oriented control
- With FOC an ac motor can be controlled like a separately excited dc motor
- In a dc motor, the field flux and armature flux, established by the respective field current I_d and armature I_q
- torque component of current I_d is orthogonal in space so when torque is controlled by I_q , the field flux is not affected which result in fast torque response
- Similarly, in ac machine vector control, the synchronous reference frame currents \mathbf{i}_{ds} and \mathbf{i}_{qs} are analogous to \mathbf{I}_{d} and \mathbf{I}_{q} , respectively

Field-Oriented Control Structure for a PMSM

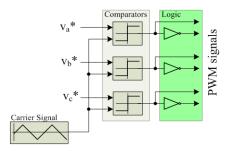
- The vector transformations makes the control of an AC machine very straightforward
- It removes dependencies on rotor position
- The structure handles DC and no AC (easy close-loop design)
- It makes possible to control AC machine as DC by independent regulation id (excitation current) and iq (torque)
- FOC provides excellent time response
- FOC is more complex and need rotor position information.

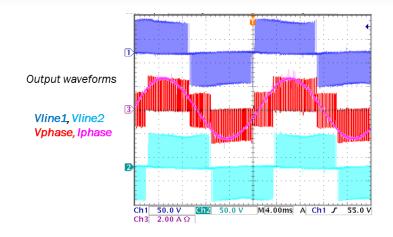
Source:Microsemi: park-inverse-park-and-clarke-inverse-clarke-transformationsmss-software-implementation-user-guide

ON Semiconductor®

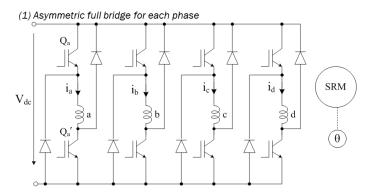

Power Inverters

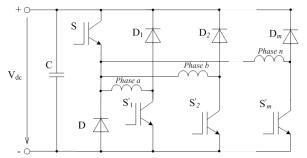
and


Semiconductor Requirements


Standard Voltage Source Inverters for AC Machines

3-phase half-bridge topology


Easy PWM modulation



- Most common topology widely used in the industry
- 3 halfbridges of switching-devices like IGBTs or MOSFETs to generate a 3phase voltage source.
- Useable for all machines except SRM or stepper motor where more suitable topologies exist

Voltage Source Inverters for SRM

(2) One switch for all phases topology

- The electromagnetic torque doesn't depend on current direction but on inductance slope (page13)
- There are couple of topologies for SRM differentiating in number of power devices and degree of phase independency
- Asymmetric full bridges for each phase (1)
 - minimize SC probability
 - No dead times needed
 - Completely independent phase control
 - More semiconductor devices
- One switching device for all phases (2)
 - Less semiconductor devices
 - No independent phase control

Key Requirements to Semiconductors

Electric drives require Robustness and Reliability

Definition of Robustness, Ruggedness and Reliability is complex. Here a couple of parameters which influence Reliability:

- Short Circuit Safe Operating Area (SCSOA) or SC withstand time)
- Maximum junction temperature, low R_{thic} and high P_D rating.
- Wide and Squared Reverse Bias Safe Operating Area (RBSOA)
- Wide Forward Bias Safe Operating Area (FBSOA).
- Self clamping capability Avalanche rating in Unclamped Inductive Switching (UIS).
- Positive $\Delta V_{ce(sat)}/\Delta T_j$ and tight distribution of parameters (Vge(th), Vce(sat))
- Low ratio of C_{res}/C_{ies} , this provides excellent $\Delta V/\Delta t$ immunity, short delay times and simple gate drive (low Miller capacity)

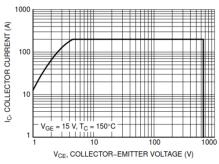


Figure 18. Reverse Bias Safe Operating Area

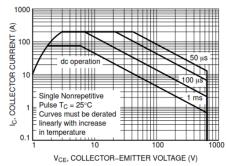


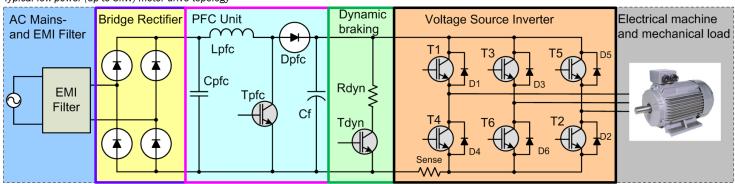
Figure 17. Safe Operating Area

Key Requirements to Semiconductors

Diode bridge rectifier:

1φ-600V. .1000V 3φ-1200V..1600V surge capability, low VF Active PWM rectifier: (PFC, recuperation, regulate DC=const): 1φ-600V/650V typ. -> 400 VDC, 3φ-1200V typ.-> 600 VDC) Fast IGBTs/FWDs, full rated diode

Boost (PFC regulate to VDC=const typ. 400V. Fast IGBT/MOSFET 600/650V. Fast Diode 600V (low


trr)
SiC plays perfect

Dynamic brake (breaking power dissipation) 400VDC: 600/650V, 600VDC: 1200V low VCEsat IGBT. Inverter: (DC to AC conversion) 400 VDC: 600V/650V,

dvnamic robustness

600 VDC: 1200V optimized based on fsw (white goods fsw \approx 16 kHz, industry 1-10 kHz), robust and Short-circuit rated IGBTs/MOSFETs with fast Diodes. Full or half rated diodes depends on motor/generator modes with high

Typical low power (up to 3kW) motor drive topology

ON Semiconductor®

Trends in Electric Drives

SRM becomes important in Industrial High Power

- Lowest manufacturing price of the motor
- High efficiency over a wide speed range
- Low inertia of the rotor
- Fault tolerant (overload)
- Wide supply range voltage

9kw Drill motor unit with integrated inverter http://kaskod.ee

- Suitable for high temperature operation
- Applications Industry drills
- HEV drives, train motors etc...

260kW SRM http://www.usmotors.com

Integrated Inverter (Inverter goes to motor)

Pro

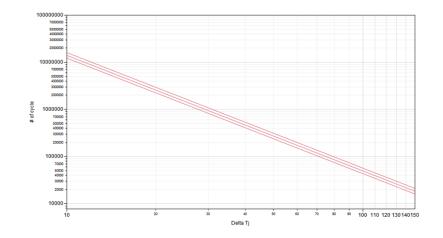
- Reduced volume
- Less cabling, connectors, housing
- Less manufacturing effort for assembling into the EV or in factory installation
- Sealed in one housing
- Lower EMI effects (better defined)
- Drive is optimized to motor attached

Explosion proof on site inverter www.dietzelectric.com

Con

- High thermal /mech. stress of electronics
- Cooling system more complex
- High level of miniaturization needed
- Reliability

750W integrated Servo motor www.ivl.dk



75kw In wheel motor unit www.proteanelectric.com

Integrated Inverter (Inverter goes to motor)

Integration-challenges can be solved by IPMs:

- excellent mechanical strength against vibration through moulded package
- High compactness, through integrated Gate-Driver and protection-functionality
- high reliability proven (power-cycling)
- Wide portfolio of power-level, size and functionality available (e.g. with PFC)
 500V/600V/1200V up to 10kW

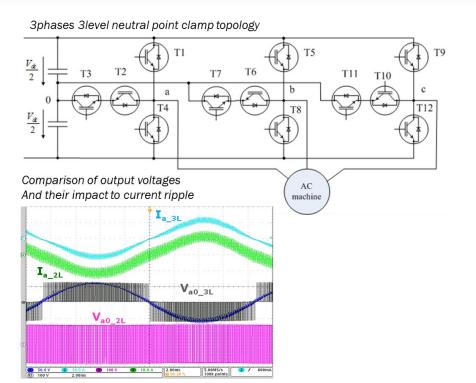
Fast Switching with SiC and GaN in Motor Control?

Pro

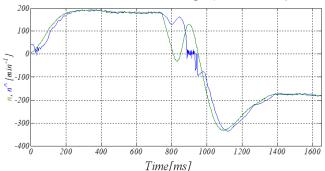
- Reduced switching losses
- Higher Efficiency reachable
 - Compactness (weight/size)
 - Reliability
 - Fullfil requirements high Eff.class
- Audible noise > 16kHz
- Fast regulation-loop

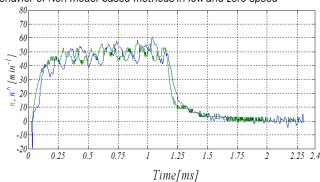
Con

- EMI more critical (PCB, wiring)
- Reliability of Motor (winding/bearings)
- Today cost of SiC/GaN devices


High Power Motor Drive System

Appliance Motor Drive System


Advanced Voltage Source Inverters for AC Machines

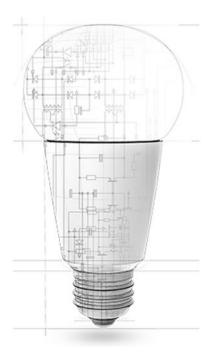

- Improving efficiency in DC-AC conversion.
- Output waveform with extremely low harmonic distortion (sinoidal)
- Switching frequency can be lower than that of a typical two-level application, allowing:
 - reduced silicon losses and reduced output filter results in a overall dimensions and costs reduction.
- More active devices, gate drivers and more complex PWM control.

Sensorless Control of AC Machines

Behavior of Non-model based methods in low and zero speed

- Rotor position information required for vector control.
- Possible by sensors like encoders or resolvers
- Sensors increase cost, size, weight, cabling and reduces reliability
- Two different methods exist to estimate speed and rotor position
- Model-based method (using mathematical calculation based on measured voltage and currents).
 - Good for high speed range
- Non-model based using HF voltage (around 1 kHz) signal injection and machines response in currents
 - good for low speed range or zero speed.

Green: how Processor sees the system


Blue: Reality

ON Semiconductor®

Conclusion

Conclusion

- SRM is an emerging alternative with simple construction, robustness, low cost and with good flat efficiency versus speed curve.
- FOC for PMSM, IM and SyRM (synchronous reluctance motor) is shown as state of the art alternative to simple control methods.
- Switched Reluctance Machines require special control techniques and different Inverter Topology.
- Also the Topology of 2- and 3-level-inverter is shown with the corresponding benefits.
- Various Trends are shown about System-level (Integration),
 Control-level (Sensorless control), Motors (SRM), Topology (3-level) down to Device-level (WBG-devices)

Thank You

For more information regarding these products or our complete portfolio of products, please contact your local sales person or authorized distributor.

www.onsemi.com