ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

50 W Constant Voltage Output Driver

Introduction

This document describes a high Power factor CV regulation solution with fast dynamic response. The input voltage range of the reference design is 90 $V_{RMS} \sim$ 305 V_{RMS} and 50 V is regulated for secondary stage and 3.3 V is regulated for MCU power source at output terminal. Also in this document is a general description of the FL7740, the power supply solution specification, schematic, bill of materials, and typical operating characteristics.

Table 1.

ON Semiconductor®

www.onsemi.com

REFERENCE DESIGN

D	escription	Symbol	Value	Comments
Input Voltage		V _{IN.MIN}	90 V _{AC}	Minimum AC Input Voltage
		V _{IN.MAX}	305 V _{AC}	Maximum AC Input Voltage
Output	Current	I _{OUT.MIN}	0 mA	Minimum Output Current
		I _{OUT.NOMINAL}	1000 mA	Nominal Output Current
	Voltage	V _{OUT.NOMINAL}	50 V	Nominal Output voltage
		CV Deviation	< ±3.1%	Line Input Voltage Change: 90~305 V _{AC}
		Without PFO	< ±3%	Output Current Change: 0~1000 mA
		CV Deviation	< ±2.7%	Line Input Voltage Change: 90~305 V _{AC}
		With PFO	< ±2.9%	Output Current Change: 0~1000 mA
	Efficiency	120 VAC	89.0%	120 V_{AC} Input Voltage With 100 $\%$ load condition
	277 VAC		90.8%	277 V _{AC} Input Voltage With 100 % load condition
	PF/THD 120 VAC		0.99 / 6.53%	120 V _{AC} Input Voltage With 25 % load condition
		277 VAC		277 V _{AC} Input Voltage With 50 % load condition
Sta	andby Power	120 VAC	270 mW	120 V_{AC} Input Voltage With 3.3 V/10 mA MCU winding load
		277 VAC	300 mW	120 V _{AC} Input Voltage With 3.3 V/10 mA MCU winding load

Key Features

High Performance

- Wide Universal Input Range (90 ~ 305 V_{AC})
- Precise CV Regulation in the Steady State : $< \pm 3\%$
- CV Regulation in the Load Transient: $< \pm 10\%$
- Overshoot–less Fast HV Start Up Time (< 0.3 sec)
- Standby Power < 300 mW with 10 mW Load Condition at MCU Winding
- PF Higher than 0.9 at High–line and Half Load by PF Optimizer

- Pulse-by-pulse Current Limit
- Output Short Protection
- Output Over Voltage Protection
- Output Diode Short Protection
- Sensing Resistor Short & Open Protection
- Over Load Protection

SCHEMATIC

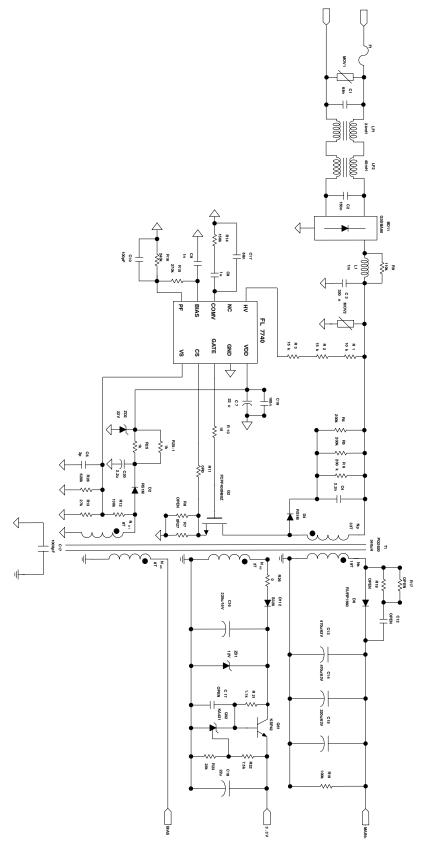


Figure 1. Schematic

Table 2. BILL OF MATERIAL (BOM)

ltem No.	Part Reference	Part Number	Description	Manufacturer
1	F1	SS-5-2A	2 A/250 V Fuse	Bussmann
2	MOV1	SVC471D-10A	10D471 Metal Oxide Varistor	Samwha
3	MOV2	SVC471D-7A	7D471 Metal Oxide Varistor	Samwha
4	BD1	G3SBA60	4 A / 600 V, Bridge Diode	Vishay
5	R1	RC1206 JR-07103RL	10 kΩ SMD Resistor 3216 F 1/4W	Yageo
6	R2,R3	RC1206 JR-07153RL	15 kΩ SMD Resistor 3216 F 1/4W	Yageo
7	R4,R5,R6	RC1206 JR-07204RL	200 kΩ SMD Resistor 3216 F 1/4W	Yageo
8	R7	MOR 1W TC R27	Metal Oxide Film Resistor RSD Type F 0.27 $\Omega/1W$ R–Forming	ABC
9	R9	RC1206 JR-07114RL	110 kΩ SMD Resistor 3216 F 1/4W	Yageo
10	R10	RC0805 JR-0715RL	15 Ω SMD Resistor 2012 F 1/4W	Yageo
11	R11	RC0805 JR-070R0RL	0R0 Ω SMD Resistor 2012 F 1/4W	Yageo
12	R12	RC0805 JR-07134RL	130 kΩ SMD Resistor 2012 F 1/4W	Yageo
13	R13	RC0805 JR-07273RL	27 kΩ SMD Resistor 2012 F 1/4W	Yageo
14	R14	RC0805 JR-07154RL	150 kΩ SMD Resistor 2012 F 1/4W	Yageo
15	R15	RC0805 JR-07274RL	270 kΩ SMD Resistor 2012 F 1/4W	Yageo
16	R16	RC0805 JR-07244RL	240 kΩ SMD Resistor 2012 F 1/4W	Yageo
17	R19	RC1206 JR-07104RL	100 kΩ SMD Resistor 3216 F 1/4W	Yageo
18	R21	RC1206 JR-07112RL	1.1 kΩ SMD Resistor 3216 F 1/4W	Yageo
19	R22	RC0805 JR-07752RL	7.5 kΩ SMD Resistor 2012 F 1/4W	Yageo
20	R23	RC0805 JR-07243RL	24 kΩ SMD Resistor 2012 F 1/4W	Yageo
21	R25	MOR 1W TC R511	Metal Oxide Film Resistor RSD Type F 1k Ω /1W R–Forming	Yageo
22	R25-1	MOR 1W TC R511	Metal Oxide Film Resistor RSD Type F 1k Ω /1W R–Forming	Yageo
23	R26	RC0805 JR-070R0RL	0 Ω SMD Resistor 2012 F 1/4W	Yageo
24	R28	RC0805 JR-07624RL	620 kΩ SMD Resistor 2012 F 1/4W	Yageo
25	C1	MPE 400V683	MPE 68 nF/400 V	Sungho Electronics
26	C2	MPE 400V104	MPE 100 nF/400 V	Sungho Electronics
27	C3	TF334*2*10B	MTF 330 nF/400 V	CARLI
28	C4		222J 630 V	
29	C6	C0603C030K8GACTU	3 pF/16 V SMD Capacitor 2012 NP0	Murata
30	C7	NXH 22uF50V	NXH series 22 µF/50 V Electrolytic Capacitor	Samyoung
31	C8	GRM185D71A105KE36#	1 uF/16 V SMD Capacitor 2012	Murata
32	C9	GRM1881X1E102JA01#	1 nF/16 V SMD Capacitor 2012	Murata
33	C10	C0603C101K8GACTU	100 pF/16 V SMD Capacitor 2012	Murata
34	C11	SCF2E102M14DW7	Y cap 1000pF	SAMWHA Capacitor
35	C13,C14	KMG 470 μF / 63 V	470 μF / 63 V, Electrolytic Capacitor	Samyoung
36	C15	KMG 220 μF / 63 V	220 μF / 63 V, Electrolytic Capacitor	Samyoung
37	C16	NXH 220 μF / 16 V	220 μF / 16 V, Electrolytic Capacitor	Samyoung
38	C17	GRM1881X1E683JA01#	68 nF/16 V SMD Capacitor 2012	Murata
39	C18	NXH 22uF50V	NXH series 22 µF/50 V Electrolytic Capacitor	Samyoung
40	C19	GRM1881X1E104JA01#	100 nF/50 V SMD Capacitor 3216	Murata
41	C20	NXH 2.2uF50V	NXH series 2.2 µF/50 V Electrolytic Capacitor	Samyoung

ltem No.	Part Reference	Part Number	Description	Manufacturer
42	LF1	CV613240H	24 mH Common mode inductor	TNC
43	LF2	B82733F	40 mH Common Inductor	EPCOS
44	D2	S320	200 V / 3 A Schottky Rectifier	ON Semiconductor
45	D4	RS1M	1000 V / 1.0 A SMA package fast recovery diode	ON Semiconductor
46	D6	RURP1560	600 V / 15 A, Ultrafast Rectifier	ON Semiconductor
47	D112	S320	200 V / 3 A Schottky Rectifier	ON Semiconductor
48	Q2	FCPF400N80Z	800 V, 14 A, 400 mΩ N-channel	ON Semiconductor
49	ZD1	MM3Z12VB	12 V, SOD-323	ON Semiconductor
50	ZD2	1N4748	22 V, DO-41	ON Semiconductor
51	Q51	KSP42	NPN Epitaxial Silicon Transistor VCEO 300 V	ON Semiconductor
52	Q52	KA431	Programmable shunt regulator	ON Semiconductor
53	U1	FL7740	Constant Voltage Primary-Side-Regulation PWM con- troller for Power factor Correction	ON Semiconductor

Table 2. BILL OF MATERIAL (BOM) (continued)

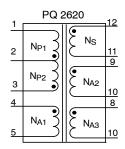


Figure 2. Pin Configuration

TRANSFORMER DESIGN

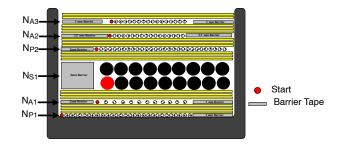


Figure 3. Transformer Winding Structure

No.	Winding	Pin (S → F)	Wire	Turns	Winding Method		
1	N _{P1}	3 → 2	0.33φ	19 Ts	Solenoid Winding		
2		Insulatio	n: Polyester Tape t = 0.02	25 mm, 3-Layer			
3	N _{A1}	4 → 5	0.2φ	8 Ts	Solenoid Winding		
4		Insulatio	n: Polyester Tape t = 0.02	25 mm, 3–Layer			
5	N _S	12 → 11	0.4φ (TIW)	19 Ts	Solenoid Winding		
6		Insulation: Polyester Tape t = 0.025 mm, 3-Layer					
7	N _{P2}	2 → 1	0.33φ	14 Ts	Solenoid Winding		
8		Insulatio	n: Polyester Tape t = 0.02	25 mm, 3-Layer			
9	N _{A2}	9 → 10	0.2φ	3 Ts	Solenoid winding		
10		Insulation: Polyester Tape t = 0.025 mm, 3-Layer					
11	N _{A3}	9 → 10	0.2φ	8 Ts	Solenoid winding		
12		Insulatio	n: Polyester Tape t = 0.02	25 mm, 3-Layer			

Table 3. WINDING SPECIFICATIONS

Table 4. ELECTRICAL CHARACTERISTICS

	Pins	Specifications	Remark
Inductance	1 – 3	340 uH ±10%	60 kHz, 1 V
Leakage	1 – 3 7 μH		60 kHz, 1 V, Short All Output Pins

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

PERFORMANCE

Table 5. TEST CONDITION & EQUIPMENT LIST

Ambient Temperature	$T_A = 25^{\circ}C$
Test Equipment	AC Power Source: PCR500L by Kikusui
	Power Analyzer: PZ4000000 by Yokogawa
	Electronic Load: PLZ303WH by KIKUSUI
	Multi Meter: 2002 by KEITHLEY, 45 by FLUKE
	Oscilloscope: 104Xi by LeCroy
	Thermometer: Thermal CAM SC640 by FLIR SYSTEMS

Startup

Figure 8 through Figure 9 shows the overall startup performance at full load and no load condition. The output voltage is increased up to 90% of rated output voltage at least 0.28 s after the AC input power switch turns on for input voltage 90 V_{AC} condition. Once output voltage reaches

close to the regulation level, gain control is smoothly changed to integration gain without output voltage overshoot and undershoot at the input voltage range from 90 to 305 V_{AC}. CH1: V_{IN} (100 V / div), CH2: COMV (1 V / div), CH3: VDD (10 V / div), CH4: V_{OUT} (10 V / div), Time Scale: (100 ms / div), Load: Electrical CC load.

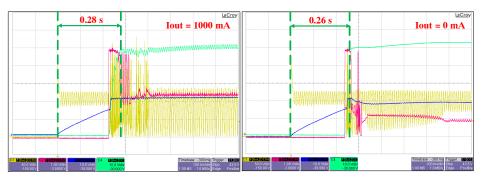


Figure 4. V_{IN} = 90 V_{AC} / 60 Hz

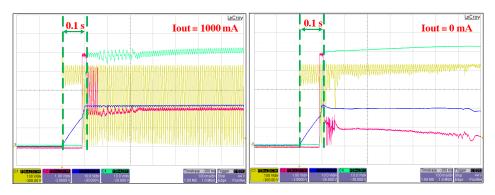


Figure 5. V_{IN} = 305 V_{AC} / 60 Hz

Fast Transient Response

Figure 10 through Figure 11 shows fast load transient performance. When output load is changed from full to no load, output voltage is managed less than + 10% of rated output voltage and when output load is changed from no to full load, output voltage is controlled higher than -10% of

output voltage at the input voltage range from 90 to 305 V_{AC} with dynamic control function.

CH1: GATE (10 V / div), CH2: V_{IN} (100 V / div), CH3: V_{OUT} (10 V / div), CH4: I_{OUT} (500 mA / div), Time Scale: (50 ms / div), Load: Electrical load.

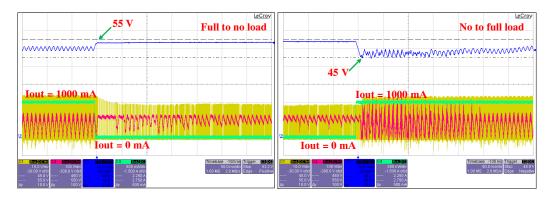


Figure 6. V_{IN} = 90 V_{AC} / 60 Hz

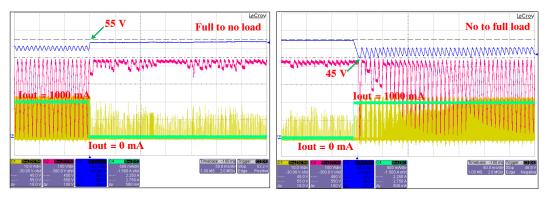


Figure 7. V_{IN} = 305 V_{AC} / 60 Hz

Figure 12 shows line transient performance. When input voltage is changed from 120 to 230 V_{AC} abruptly, output voltage is controlled lower than + 10% of rated output voltage. And when input voltage is changed from 230 to

120 VAC abruptly, output voltage is managed higher than -10% of rated output voltage. CH1: $V_{IN}(100 \text{ V / div})$, CH2: COMV (1 V / div), CH3: GATE (10 V / div), CH4: V_{OUT} (10 V / div), Time Scale: (20 ms / div), Load: Electrical load

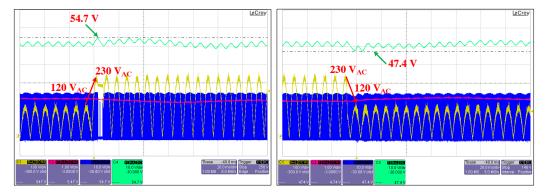


Figure 8. I_{OUT} = 1000 mA

Power Factor Optimizer Function

Figure 13 shows power factor and THD comparison data between without PF optimizer and with PF optimizer. Without PF optimizer function, power factor is lower than 0.84 at 230 VAC input voltage with 25% load condition. With PF optimizer function, power factor is significantly improved up to 0.93. While power factor is improved, it shows excellent THD performance, less than 20% even at 25% load condition at 230 VAC input voltage with PF optimizer function. In order to activate PF optimizer function, PF pin should be set higher than 1.5 V by adjusting PF resistors value to meet user's target as explained in datasheet

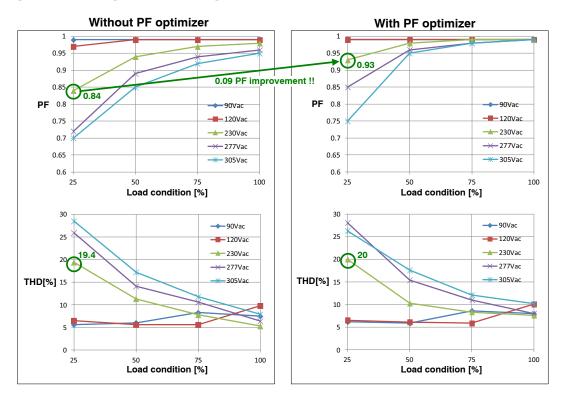


Figure 9. Power Factor & Total Harmonic Distortion Comparison

Constant Voltage Regulation Performance

Figure 14 shows excellent constant output voltage regulation result from no to full load with 3.3 V/20 mA load

for MCU at secondary auxiliary winding. Even at no load condition with MCU power consumption, CV deviation is less than $\pm 3.1\%$ regardless of PF optimizer function.

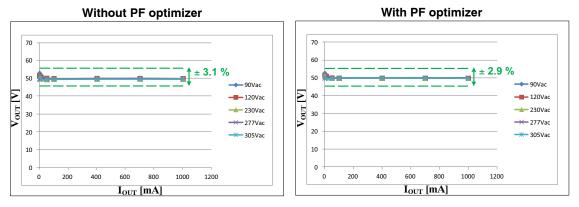


Figure 10. V_{IN} = 230 V_{AC} / 50 Hz

	Output current [mA]							
Input Voltage	1000	750	500	250	100	10	0	Tolerance
90 V _{AC} [60 Hz]	49.7 V	49.9 V	49.9 V	49.9 V	49.9 V	51.6 V	52.7 V	± 2.9 %
120 V _{AC} [60 Hz]	49.9 V	49.9 V	49.9 V	49.9 V	49.9 V	50.9 V	51.3 V	± 1.4 %
230 V _{AC} [60 Hz]	49.8 V	49.8 V	49.9 V	49.9 V	49.9 V	50.3 V	51.5 V	± 1.7 %
277 V _{AC} [60 Hz]	49.9 V	49.9 V	49.9 V	49.9 V	49.9 V	50.6 V	49.9 V	± 0.9 %
305 V _{AC} [60 Hz]	49.9 V	50.0 V	50.0 V	50.0 V	50.0 V	49.6 V	50.6 V	± 1.0 %

Table 6. CONSTANT VOLTAGE REGULATION BY LOAD CHANGE (90 \sim 305 V_{AC}) WITH PFO

Table 7. CONSTANT VOLTAGE REGULATION BY LINE CHANGE (0 ~ 1000 mA) WITH PFO

		In				
Output Current	90	120	230	277	305	Tolerance
1000 mA	49.7 V	49.9 V	49.8 V	49.9 V	49.9 V	± 0.2 %
750 mA	49.9 V	49.9 V	49.8 V	49.9 V	50.0 V	± 0.2 %
500 mA	49.9 V	49.9 V	49.9 V	49.9 V	50.0 V	±0.1 %
250 mA	49.9 V	49.9 V	49.9 V	49.9 V	50.0 V	± 0.2 %
100 mA	49.9 V	49.9 V	49.9 V	49.9 V	50.0 V	± 0.5 %
10 mA	51.6 V	50.9 V	50.3 V	50.6 V	49.6 V	± 2.0 %
0 mA	52.7 V	51.3 V	51.5 V	49.9 V	50.6 V	± 2.7 %

Efficiency

Figure 15 shows efficiency data at the input voltage range from 90 to 305 V_{AC} from 25 to 100% load condition. System

efficiency is over 89% from 120 ~ 305 V_{AC} with 100% load condition. And efficiency is over 89% from 120 ~ 305 V_{AC} over half load condition as well.

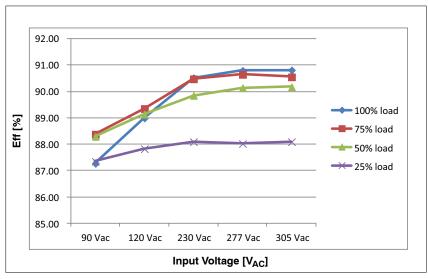


Figure 11. Efficiency by Line Voltage & Load Condition Change

Table 8. EFFICIENCY BY LOAD CHANGE WITH INPUT VOLTAGE VARIANCE

		Input Voltage [V _{AC}]					
Load Condition	90	120	230	277	305		
1000 mA	87.3 %	89.0 %	90.5 %	90.8 %	90.8 %		
750 mA	88.4 %	89.4 %	90.5 %	90.7 %	90.6 %		
500 mA	88.3 %	89.1 %	89.9 %	90.1 %	90.2 %		
250 mA	87.4 %	87.8 %	88.1 %	88.0 %	88.1 %		

Standby Power

Figure 16 shows standby power performance with no load condition at different MCU load cases. With no load condition at MCU winding output, standby power is lower

than 150 mW at the input range from 90 to 305 VAC. With 20 mA load condition at MCU winding output, standby power is lower than 410 mW

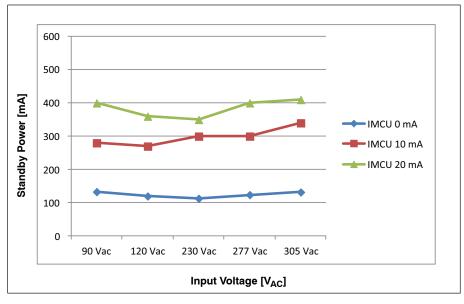


Figure 12. System Efficiency

Table 9. STANDBY POWER WITH DIFFERENT MCU WINDING LOAD

	MCU Winding Current				
Input Voltage	0 mA	10 mA	20 mA		
90 V _{AC} [60 Hz]	133 mW	280 mW	400 mW		
120 V _{AC} [60 Hz]	120 mW	270 mW	360 mW		
230 V _{AC} [60 Hz]	113 mW	300 mW	350 mW		
277 V _{AC} [60 Hz]	124 mW	300 mW	400 mW		
305 V _{AC} [60 Hz]	132 mW	340 mW	410 mW		

Output Short Protection (OSP)

Figure 17 shows waveforms for the protection and AR operation when main load terminal is shorted. When the main load terminal short occurs and then VS voltage reaches lower than 0.7 V for 35 ms, OSP is triggered and the controller then shuts down the switching MOSFET. After

3 s, the Startup sequence reinitiates. This behavior lasts until the fault condition is removed. Systems can restart automatically when normal condition resumes at least 3 seconds. CH1: GATE (10 V / div), CH2: V_{IN} (100 V / div), CH3: VDD (5 V / div), CH4: V_{OUT} (10 V / div), Time Scale: (1 s / div), Load: Electrical load

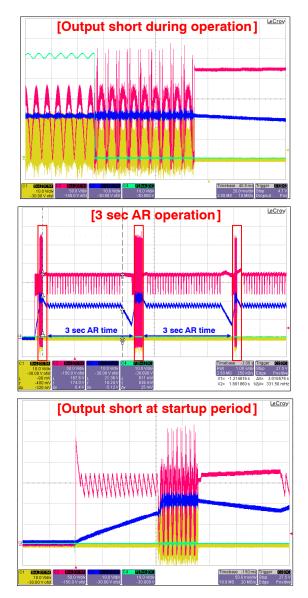


Figure 13. Output Short Protection

Over Load Protection

Figure 18 shows waveforms for the protection and AR operation when output is over loaded. When pulse–by–pulse current limit event is happened for 60 half line cycles consecutively, OLP is triggered and the controller then shuts down the switching MOSFET. After 3 s, the Startup

sequence reinitiates. This behavior lasts until the fault condition is removed. Systems can restart automatically when normal condition resumes at least 3 seconds. CH1: VDD (10 V / div), CH2: V_{CS} (500 mV / div), CH3: GATE (10 V / div), CH4: I_{OUT} (10 V / div), Time Scale: (100 ms / div), Load: Electrical load

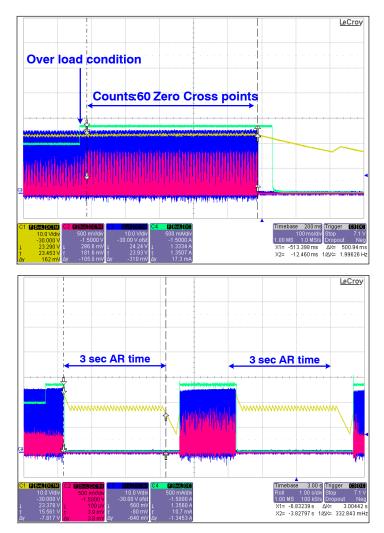


Figure 14. Over Load Protection

Sensing Resistor Short Protection

Figure 19 through Figure 20 shows waveforms for the protection when sensing resistor is shorted. If V_{CS} doesn't reach over $V_{CS-SRSP}$ (0.075 V) at the initial first switching operations during the Startup period, SRSP is triggered and the controller then shuts down the switching MOSFET.

After 3 s, the Startup sequence reinitiates. This behavior lasts until the fault condition is removed. Systems can restart automatically when normal condition resumes at least 3 seconds. CH1: V_{IN} (100 V / div), CH2: V_{CS} (500 mV / div), CH3: V_{GATE} (10 V / div), Time Scale: (10 ms / div), Load: Electrical load

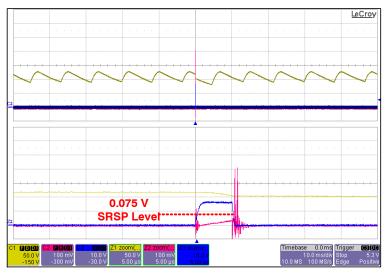


Figure 15. V_{IN} = 90 V_{AC} / 60 Hz

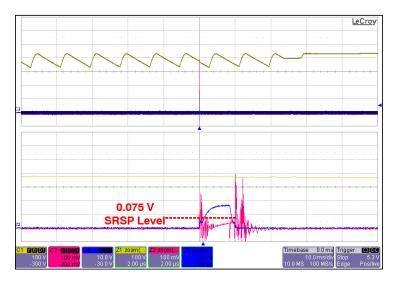
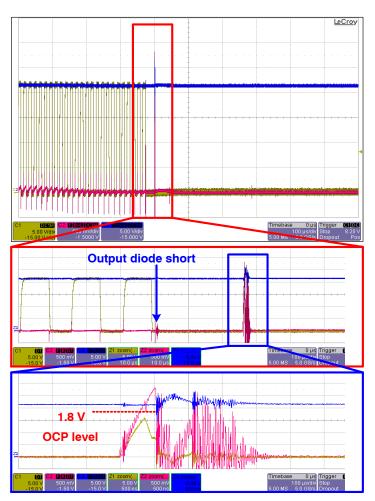
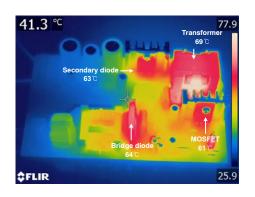


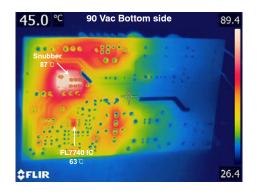
Figure 16. V_{IN} = 305 V_{AC} / 60 Hz

Output Diode Short Protection

Figure 21 shows a waveform for the protection operation when the secondary diode is shorted. V_{CS} is monitored during the gate turn–on time to detect over–current except for LEB time. Once V_{CS} goes higher than V_{CS-OCP} (1.8 V) after the LEB time, OCP is triggered and the controller then

shuts down the switching MOSFET. I_{peak} amplitude can be adjusted by using different magnetizing inductance and input voltage condition. CH1: GATE (5 V / div), CH2: V_{CS} (500 mV / div), CH3: VDD (10 V / div), Time Scale: (100 ms / div), Load: Electrical load


Figure 17. Output Diode Short Protection

Operating Temperature

The results were measured using the full load conditions after 30 minutes burn-in.

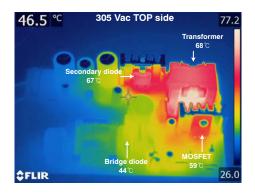
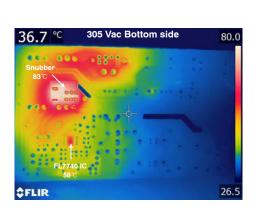



Figure 20. V_{IN} = 305 V_{AC}

Table 10. Surge Test

Condition	Surge	Note	Remark
Original EVB	3.4 kV	Only fuse is damaged	No issue at IC operation
Changed Fuse rating from 2 A to 3.15 A	5.4 kV	Only fuse is damaged	No issue at IC operation
Changed Fuse rating from 2 A to 10 A & Added 26 V TVS diode at GATE pin	7.8 kV	Fuse and MOV1 is damaged	No issue at IC operation

Electromagnetic Interference (EMI)

All measurements were conducted in observance of EN55022 criteria. The results were measured with FL7760 evaluation board using rated LED loads at output terminal

after 10 minutes burn-in. If it needs to be checked for only FL7740 evalutaion board's EMI performance, C17 (Y-cap) should be changed from 1000 to 4700 pF.

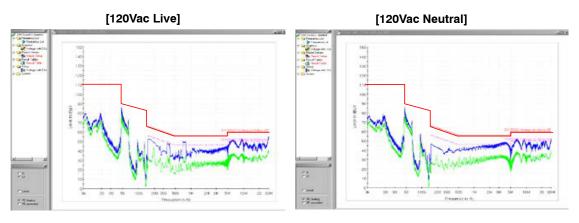
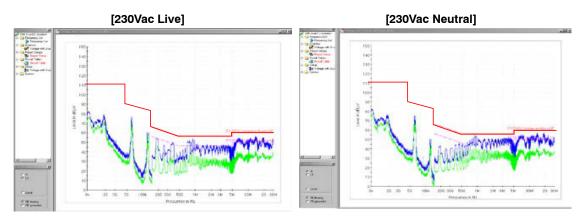
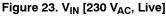




Figure 22. V_{IN} [120 V_{AC}, Live]

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent_Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor roducts, "typical" parameters which may be provided in ON Semiconductor dates the sets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products reading, explained applications, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associa

Phone: 421 33 790 2910

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative