## **QCS-AX**

# **Always ON DFS**

### Introduction

This document covers QCS Always ON DFS feature set which is introduced in its QCS-AX family of chipsets. This feature encompasses the use of CAC, WCAC, ZCAC, and S-DFS to clear DFS channels. These features can be controlled individually or as part of an algorithm controlled by the DFS Daemon. Refer to document QCS-AX-AN-DFS-Daemon.pdf.

### ABBREVIATIONS AND ACRONYMS

| Abbreviations and Acronyms | Description                                          |  |
|----------------------------|------------------------------------------------------|--|
| DFS                        | Dynamic Frequency Selection                          |  |
| CAC                        | Channel Availability Check                           |  |
| S-DFS                      | Sub-Band Dynamic Frequency Selection                 |  |
| WCAC                       | Wideband Channel Availability Check                  |  |
| xCAC                       | Any of the CAC methods (CAC, WCAC, ZCAC)             |  |
| ZCAC                       | Zero Wait Channel Availability Check (Zero Wait DFS) |  |
| QCS                        | Quantenna Connectivity Solutions Division            |  |
| QCS-AX                     | QSR10GU-AX and QSR5GU-AX family of chipsets          |  |

### Overview

Wi–Fi has become the default technology to access the internet within the home. The need for cleaner channels and higher available bandwidth has become crucial. Currently, there are two sets of 160 MHz channels from 5170 MHz – 5330 GHz and 5490 MHz – 5650 MHz. These are available in the 5 GHz spectrum which requires the use of DFS channels. Efficiently clearing DFS channels and maximizing the occupancy of these channels are crucial for high bandwidth applications.

# ON

### ON Semiconductor®

www.onsemi.com

### **USER MANUAL**

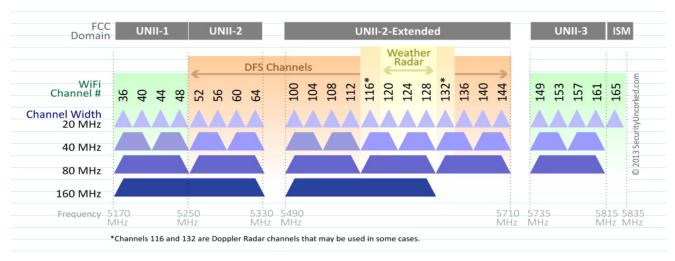



Figure 1. 802.11ac Channel Allocation (N America)

QCS has addressed these issues with QCS-AX generation of chipsets. QCS-AX chipsets using Always ON DFS provides a unique mechanism to efficiently enable the use of

DFS channels. Table 1 below provides a high level overview of each of the mechanisms that Always ON DFS is comprised of.

Table 1. OVERVIEW OF THE COMPONENTS OF ALWAYS ON DFS

| Feature              | Problem Addressed                              | Description                                                                                                 |
|----------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Zero Wait DFS (ZCAC) | Channel Acquisition                            | Ability to take one or more antennas off channel to perform a CAC without disrupting traffic.               |
| Wideband CAC (WCAC)  | Channel Acquisition                            | Ability to clear an adjacent 80 MHz DFS channel without disrupting traffic.                                 |
| Sub-Band DFS (S-DFS) | Maximizing occupancy of<br>cleared DFS channel | Ability to identify which Sub-Channel a DFS event was detected on and collapse the affected 80 MHz channel. |

### **Zero Wait DFS**

QCS's Wi-Fi 6 products have the ability to take one or more antennas off the operating channel to a DFS channel to perform the Channel Availability Check (CAC) required to occupy a DFS channel. This is done without disrupting user traffic. This enables devices to not have to wait 60 or 600 seconds to clear the DFS channel. Users can thus be moved to a cleaner and in some cases higher power channels faster, resulting in an overall better user experience. For an 8x8 design, second set of antennas 5,6,7,8 is taken off normal operation and is used for zero wait DFS. For a 5x5 design, the fifth antenna is used for zero wait DFS. This feature operates in AP mode only, and is not supported in repeater mode nor station mode. The operational bandwidth will be the same bandwidth of the scanned bandwidth. Table 2 shows the time required to perform radar detection in different scenarios.

Table 2.

|                           | Power Up CAC<br>Wait Time | Zero Wait DFS Wait<br>Time (assuming low<br>traffic load) |
|---------------------------|---------------------------|-----------------------------------------------------------|
| Regular Radar<br>Channels | 60 seconds                | 70 seconds                                                |
| Weather Radar<br>Channels | 600 seconds               | 5400 seconds                                              |

An example use case is shown in Figure 2 below. The AP boots up on CH42 (non–DFS channel) and then uses Zero Wait DFS to clear CH106 without disrupting traffic on CH42 and move to CH106 once it has been cleared.

NOTE: Green represents non–DFS channels. Yellow represents DFS channels. Red represents Weather Radar channel.

### AP selects non-DFS channel on Boot-up



Figure 2. Zero Wait DFS Enables Clearing a DFS Channel Without Disrupting Traffic

### Zero Wait DFS APIs

Relevant Zero Wait DFS APIs (See QCSAPI document for precise format):

- Configure ZCAC Feature Enable(1)/Disable(0): call\_qcsapi set\_zsdfs\_param <interface> enable <0/1> quantenna # call\_qcsapi set\_zsdfs\_param wifi0\_0 enable 1
- Query ZCAC Feature Enable(1)/Disable(0): call\_qcsapi get\_zsdfs\_param <interface> enable quantenna # call\_qcsapi get\_zsdfs\_param wifi0\_0 enable
- Configure Channel and Bandwidth to do ZCAC:
  call\_qcsapi set\_zsdfs\_param <interface> chan\_bw
  channel><bandwidth>
  quantenna # call\_qcsapi set\_zsdfs\_param wifi0\_0
  chan bw 100 80
- Query Channel and Bandwidth setting of ZCAC:
  call\_qcsapi get\_zsdfs\_param <interface> chan\_bw
  quantenna # call\_qcsapi get\_zsdfs\_param wifi0\_0
  chan bw

- Debugging ZCAC(script will print additional information when executing above commands): ./scripts/set\_zsdfs wifi0\_0 dbg 5
- Status of current ZCAC settings: /scripts/get\_zsdfs

NOTE: The sequence of programming ZCAC is setting the chan\_bw, then enabling it. Setting a channel that is part of the channel set in operation is not allowed. It is recommended to use DFS Daemon for any xCAC control.

### Wideband CAC

Wideband CAC (WCAC) is a unique QCS feature that seamlessly clears the adjacent 80 MHz DFS channel without disrupting traffic. Building on the Zero Wait DFS scenario shown above, once CH106 has been cleared, the AP can then use WCAC to clear CH122. Note, that CH122 is the Weather Radar channel and requires at least 600 seconds CAC to clear it. The ability to clear CH122 is crucial for 160 MHz operations. Figure 3 below shows how WCAC can be used to enable 160 MHz operations, or just move to CH122 and operate in 80 MHz mode.

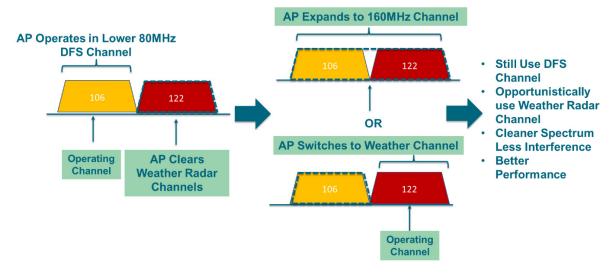



Figure 3. Wideband CAC (WCAC) Can Seamlessly Clear the Adjacent 80 MHz DFS Channel

### WCAC APIs

Relevant WCAC APIs (See QCSAPI document for precise format):

Configure WCAC Feature Enable(1)/Disable(0):
 call\_qcsapi set\_wifi\_param <interface> wcac\_cfg <0/1>
 quantenna # call\_qcsapi set\_wifi\_param wifi0\_0
 wcac\_cfg 1

Query WCAC Feature Enable(1)/Disable(0):
 call\_qcsapi get\_wifi\_param <interface> wcac\_cfg
 quantenna # call\_qcsapi get\_wifi\_param wifi0\_0
 wcac\_cfg

### Sub-Band DFS (S-DFS)

Sub-Band DFS is yet another advanced technique used by QCS to determine which 80 MHz channel the DFS event was detected. This is vital for staying in DFS channels longer. Once again, building on the WCAC example above, the AP has cleared CH106 and CH122 and is now operating in CH114, which is a 160 MHz channel. Radar pules are very narrow band pulses that do not occupy an entire 80 MHz

channel. Without S–DFS, if a radar pulse were to occur in either CH106 or CH122, the entire 160 MHz spectrum would have to be vacated. With QCS's S–DFS feature, QCS can determine which sub–band the radar event happened. If it happened in CH122, AP would simply collapse the bandwidth to 80 MHz and operate completely in CH106. This way, DFS channel usage is maximized. Figure 4 below shows a visual representation of this feature.

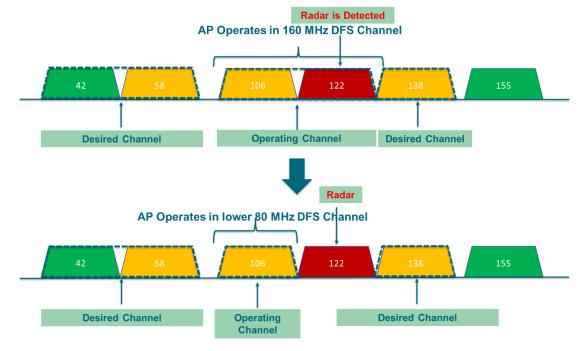



Figure 4. Sub-Band DFS (S-DFS) Can Identify Which Sub-Band the DFS Event Occurred on

Once the non-occupancy time for CH122 has expired, QCS can then make use of WCAC and once again seamlessly clear CH122 and resume 160 MHz operation.

### Sub-Band DFS APIs

Relevant Sub-Band DFS APIs (See QCSAPI document for precise format):

- Configure Sub-Band Feature Enable(1)/Disable(0):
  call\_qcsapi set\_option <interface> subband\_radar <0/1>
  quantenna # call\_qcsapi set\_option wifi0\_0
  subband\_radar 1
- Query Sub-Band Feature Enable(1)/Disable(0):
  call\_qcsapi get\_option <interface> subband\_radar
  quantenna # call\_qcsapi get\_option wifi0\_0
  subband\_radar

### **General DFS Related APIs**

APIs relating to DFS(See QCSPAI document for full list and details):

• Query for list of DFS channels supported: call\_qcsapi get\_list\_DFS\_channels <regulatory region> <0|1><20|40|80> quantenna # call\_qcsapi get\_list\_DFS\_channels us 1 40

- Query alternative DFS channel that will be switched to if radar is detected in current channel: call\_qcsapi get\_DFS\_alt\_channel <interface> quantenna # call\_qcsapi get\_DFS\_alt\_channel wifi0\_0
- Query if channel was switched from and to, due to most recent DFS channel change event: call\_qcsapi get\_dfs\_cce\_channels<interface> quantenna # call\_qcsapi get\_dfs\_cce\_channels wifi0\_0
- Query DFS channel for status:
  call\_qcsapi get\_radar\_status <interface> <DFS-Channel>
  quantenna # call\_qcsapi get\_radar\_status wifi0\_0 132
- Query DFS CAC status: call\_qcsapi get\_cacstatus quantenna # call\_qcsapi get\_cacstatus wifi0\_0
- Configure SCS:
  call\_qcsapi enable\_scs <interface><0 | 1>
  quantenna # call\_qcsapi enable\_scs wifi0\_0 1
- Query SCS:
  call\_qcsapi get\_scs\_status <interface>
  quantenna # call\_qcsapi get\_scs\_status wifi0\_0
- Query SCS Report to display channel information: call\_qcsapi get\_scs\_report <interface> all quantenna # call\_qcsapi get\_scs\_report wifi0\_0 all

### QCS-AX

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

### PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com TECHNICAL SUPPORT

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Phone: 011 421 33 790 2910

For additional information, please contact your local Sales Representative