
AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
1

User Manual

AxCode::Blocks

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
2

TABLE OF CONTENTS

TABLE OF CONTENTS 2

1. Introduction 4

2. Installing AxCode::Blocks 7

3. Connecting the Hardware 8

4. Creating a New Project 9

4.1. AX8052 9

4.2. AXM0F243 12

5. Adding and Editing Files 17

6. Compiling the Project 18

7. Programming and Debugging the Project 19

7.1. Programming the project 19

7.2. Debugging the project 19

7.3. OPEN OCD Commands 22

8. Debugging Windows 25

8.1. Breakpoints 25

8.2. CPU Registers 25

8.3. Disassembly 28

8.4. Memory dump 29

8.5. Watches 30

8.6. Pin Emulation 30

8.7. Debug link 31

8.7.1. General Serial terminal 31

8.7.2. Windows power shell as Serial terminal 32

8.8. Call stack 34

8.9. Running threads 34

9. Advanced Debugger Configuration 35

9.1. AX8052 35

9.2. AXM0F243 37

10. Onsemi Project Wizard 38

10.1. AX8052 38

10.2. AXM0F243 40

11. Troubleshooting Guide 41

11.1. Compiler Auto-detection fails on first start 41

11.2. Remove all saved User Settings 46

11.3. SDCC Project does not compile 46

11.4. IAR Project does not compile 50

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
3

11.5. GCC Project does not compile 53

11.6. Project compiles, but debugging does not work 55

12. History 65

13. Contact Information 66

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
4

1. INTRODUCTION

Figure 1 and 2 shows a diagram of the ON Semiconductor Development System Architecture.

Radio Link parameters are set using the AX-RadioLAB GUI. AX-RadioLAB produces source

code, compiles it and downloads it into the target board.

AxCode::Blocks is the graphical Integrated Development Environment (IDE) for AX8052 and

AXM0F243 projects. It is a customized version of the popular Code::Blocks IDE. It can be

used to further customize the AX-RadioLAB generated code, or it can be used to create new

projects (such as those that do not involve a radio link).

Both AX-RadioLAB and AxCode::Blocks talk to the ON Semiconductor Symbolic (command

line) Debugger (AXSDB) for programming and debugging the AX8052 microcontroller.

Normally, Users need not directly interact with AXSDB. AXSDB can however be useful for

automated or scripted tasks, thanks to its command line and TCL scripting features.

For AXM0F243 microcontroller, OpenOCD debug interface software is used for programming

and debugging using the GDB (GNU) debugger.

The Debug Adapter provides the link between the developer’s workstation and the target

board.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
5

 AX-RadioLab AxCode : : Blocks IDE

 User Scripts

 AXSDB Command Line Debugger

 Target Board Debug Adapter

Figure 1: ON Semiconductor Development System Architecture for AX8052

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
6

 AX-RadioLab AxCode : : Blocks IDE

 GDB (GNU Debugger) + OpenOCD

 Target Board Debug Adapter

This document should guide the reader through the installation of AxCode::Blocks and its use

to create, compile and debug a little project.

AX-RadioLAB is documented in a separate document.

For general issues regarding Code::Blocks, please refer to its manual:

http://www.codeblocks.org/docs/manual_en.pdf

Figure 1: ON Semiconductor Development System Architecture for AXM0F243

http://www.onsemi.com/
http://www.codeblocks.org/docs/manual_en.pdf

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
7

2. INSTALLING AXCODE::BLOCKS

The AX-IDE installer contains everything you need: the SDCC compiler, GNU GCC Compiler

for ARM, AX-RadioLab, debug adapter drivers, the AXSDB debugger, OpenOCD software,

example files and libraries and, of course, AxCode::Blocks.

 Launch the installer.

 After accepting the terms of agreement you are asked to select the components to be

installed. We strongly suggest to install all components. Failure to do so could result

in missing links in your toolchain.

 Choose where to install AXSDB (it is recommended to keep the default settings). Hit

Install.

 When asked if you want to install AxCode::Blocks too, click Yes: the corresponding

setup wizard is started. This one is quite similar to the previous one: go through it.

 Next, you want to install the SDCC compiler and GNU GCC Compiler for ARM. Again,

the installation is pretty intuitive. Be sure to tick the option for adding the compiler

directory to the system path.

 When asked if you want to install AX-RadioLab, click Yes At the end, you will be asked

to reboot your computer. This is not necessary.

 Wait until the process finishes and you are done!

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
8

3. CONNECTING THE HARDWARE

Please refer to the application note available from the ON Semiconductor website:

http://www.onsemi.com

http://www.onsemi.com/
http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
9

4. CREATING A NEW PROJECT

4.1. AX8052

Start AxCode::Blocks. The first time AxCode::Block starts, it scans for installed compilers and

presents a list of the compilers found. Select SDCC as default.

Click on File → New → Project and Choose ON Semiconductor Project:

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
10

A dialog will pop-up. Go through it and change the settings if needed. The following

screenshots are intended as examples.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
11

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
12

Clicking on Finish will create the new project. For your convenience the most important build

options and compiler preferences are set automatically.

4.2. AXM0F243

Start AxCode::Blocks. The first time AxCode::Block starts, it scans for installed compilers and

presents a list of the compilers found. Select GNU GCC Compiler for ARM as default.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
13

Click on File → New → Project and Choose ON Semiconductor Project:

A dialog will pop-up. Go through it and change the settings if needed. The following

screenshots are intended as examples.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
14

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
15

Choose the board model as Minikit for AXM0F243

Choose the Debugger as AXDBG

Clicking on Finish will create the new project. For your convenience the most important build

options and compiler preferences are set automatically.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
16

After creating the project, user has the option to modify the stack size for AXM0F243

firmware using the macro “__STACK_SIZE” which is defined in “Project build options”

window under compiler settings.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
17

5. ADDING AND EDITING FILES

An example source file has been included. You can open it by double-clicking its name on the

project tree:

You can add existing files to the project using the menu entry Project → Add Files.

You can add new files to the project using the menu entry File → New → File.

Open files are shown on the right pane and can be edited.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
18

6. COMPILING THE PROJECT

The most important function can be accessed through the compiler toolbar:

① Build Compile and link the project

② Rebuild Delete existing files and build

③ Abort Stop the building process

④ Build target The Debug target generates automatically debug informations

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
19

7. PROGRAMMING AND DEBUGGING THE PROJECT

7.1. PROGRAMMING THE PROJECT

For just programming the device, choose Start / Continue option under Debug menu as shown

in the image below or hit the option ① in the debugger tool bar.

7.2. DEBUGGING THE PROJECT

Select the Debugger under Debug → Active debuggers and make sure the corresponding

toolbar is visible (View → Toolbars → Debugger).

For AX8052, choose either AXSDB debugger: Default option or Target’s default option under

Debug → Active debuggers as shown below.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
20

For AXM0F243, choose either GDB/CDB debugger: ARM option or Target’s default option

under Debug → Active debuggers as shown below.

Before the debugging process is started, the toolbar looks like this:

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
21

By hitting ① the debugger is started. If no devices are found, an error message is issued1.

If exactly one device is found, the device is automatically connected.

If changes are made to the project since the last build, the project is automatically compiled.

When debugging is started and once the device is programmed, the toolbar changes its

appearance to

The pause button ② stops the execution of the program to examine its state. The cursor

inside the editor is moved to the line corresponding to the current instruction. For AX8052,

Button ③ does not stop the execution, but disconnects the device and exits the debugger.

For AXM0F243, Button ③ stops the execution and exits the debugger. ④ and ⑤ are used to

reset the microcontroller. Options ④ and ⑤ are available only for the AX8052 microcontroller.

When a breakpoint in the code is hit or after hitting the pause button ② other functions

become enabled:

⑥ Run to cursor Execution is stopped on the selected line

⑦ Next line Execute the next line in the source code

⑧ Step into Execute the next line, if it’s a function step into it

⑨ Step out Continue execution until the end of the current frame

⑩ Next instruction Execute the next assembly instruction

Due to limitations in the debug information of 8052 compilers, the stepping commands ⑦,

⑧ and ⑨ require the microcontroller to be single-stepped. It can therefore take a long time

until these commands terminate. It is always possible to stop one of these commands

1 If you get an error message although a device is connected, you likely are missing the drivers. Open the Control Panel and

navigate to the Device Manager. Find the unrecognized devices (look for the exclamation marks) named “USB Serial Converter

A” or “USB Serial Converter B” or “USB Composite Device”, right-click them and choose to install or update the driver. Do not

search online for the driver. As search directory give the directory where you installed AXSDB followed by “\ftdi”, e.g. “C:\Program

Files (x86)\ON Semiconductor\AXSDB\ftdi”. Eventually, you need to disconnect the device and restart AxCode::Blocks.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
22

prematurely by hitting the pause button ② Usually, it is preferable to set breakpoints or use

the Run-To-Cursor feature over the stepping commands.

The drop-down menu ⑪ can be used to open the debugging windows described in the next

chapter.

7.3. OPEN OCD COMMANDS

This section will outline on how to start GDB server, connect device and execute Open

OCD commands on the device. For AXM0F243 microcontroller, OpenOCD debug interface

software is used for programming and debugging using the GDB (GNU) debugger.

1. Open a command prompt with 'Run as administrator'

2. Go to working directory

$ cd "C:\Program Files (x86)\ON Semiconductor\AXSDB\bin"

3. Start gdb sever

$ "C:\Program Files (x86)\GNU Tools ARM Embedded\5.4 2016q3\bin\arm-none-eabi-gdb.exe"

4. Launch open OCD

(gdb) target remote | openocd.exe -p -l openocd.log -f ../share/openocd/scripts/board/axm0f2_axdbg.cfg -d3

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
23

5. Open OCD commands to control and monitor device and flash

Device commands

Device reset halt

(gdb) monitor reset halt

Device halt

(gdb) monitor halt

Device reset

(gdb) monitor reset

Flash commands

Flash Erase (Erase command is not supported as auto erase is enabled for the flash write)

(gdb) monitor flash erase_address <address> <length>

 Flash Read

(gdb) monitor flash read_bank <bank_num> <file_name.bin> <address_offset> <length>

E.g.: monitor flash read_bank 0 filename.bin 0x0 0x100

Flash Write

(gdb) monitor flash write_bank <bank_num> <file_name.bin> <address_offset>

(gdb) monitor flash write_image <filename.elf>

E.g.: monitor flash write_image D:/test/MASTER_AXM0f2-GNU.elf

Flash verify

(gdb) monitor flash verify_bank <bank_num> <file_name.bin> <address_offset>

E.g.: monitor flash verify_bank 0 filename.bin 0x0

Flash info

(gdb) monitor flash info <bank_num>

Flash probe

(gdb) monitor flash probe <bank_num>

Flash banks list

(gdb) monitor flash banks

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
24

Flash fill

(gdb) monitor flash fillw <addrs> <val> <len>

Note: As AXM0F243 has single flash bank, <bank_num> will always be 0 (zero).

More detailed description of the open OCD commands can be found at

http://openocd.org/doc/pdf/openocd.pdf

http://www.onsemi.com/
http://openocd.org/doc/pdf/openocd.pdf

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
25

8. DEBUGGING WINDOWS

8.1. BREAKPOINTS

This window simply displays a list of the breakpoints set. In order to set a breakpoint, click

on the left of the corresponding line in the editor or hit F5. The same procedure removes an

already set breakpoint.

8.2. CPU REGISTERS

AX8052:

For Ax8052 microcontroller, this window shows the register contents while the microcontroller

is stopped. Registers of radio Chips or SoC functions are also displayed.

Registers are grouped into sections. Light gray bars show the section name, the + or – sign

to the left of the section name allows to show or hide the section.

The first line of the dialog shows the name of the chip. The chip is normally auto-detected.

Should auto-detection fail, the chip type can be manually set by right-clicking on the chip

name.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
26

Registers and their contents are shown in the remaining rows. The first column shows the

register name. The second column shows the current register contents as a hexadecimal

number. The third column displays the register contents as a decimal number; if this number

is greater or equal 32, it is also displayed as ASCII character. The fourth and fifth columns

display the address space and the address of the register, while the sixth column displays a

short description of the register.

Registers that have changed since the last processor break are displayed in red. Registers

that can cause side effects when read are not automatically read. They are displayed with a

light yellow background. Their values are also shown in light-gray, if they have not yet been

read.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
27

Registers can be (re-)read by either right-clicking into the row and selecting Read, or by

selecting the row and pressing the space-bar.

Register values can be changed by clicking into the second column and entering a number.

Numbers can be entered both in decimal format (eg. 18), as well as hexadecimal format (eg.

0x12).

AXM0F243:

For AXM0F243 microcontroller, this window shows the Processor core register contents while

the microcontroller is stopped.

The IDE uses OpenOCD debug interface software for programming and debugging the

AXM0F243 microcontroller. For more information on the OpenOCD software, refer

http://openocd.org/

http://www.onsemi.com/
http://openocd.org/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
28

8.3. DISASSEMBLY

The disassembly window shows the disassembly of the current function. A yellow triangle

indicates the next instruction that is executed when the microcontroller is stepped or run. If

mixed mode is selected, assembly instructions are interspersed by C source lines.

AX8052 disassembly window is shown in the below image

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
29

AXM0F243 disassembly window is shown in the below image

8.4. MEMORY DUMP

This dialog allows to read a range in the memory of the microcontroller unit and displays it.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
30

8.5. WATCHES

Watches allow the user to monitor the content of a variable which may be defined only in the

high-level programming language. The easiest way to add a watch is to right click on the

name of the variable and to choose the corresponding menu entry:

The watch window is able to display complex variable types. The last line is empty; its purpose

is to allow adding watches simply by typing a name into the first column of the last empty

row. Watch variables can be deleted by right-clicking into the name field of the watch to be

deleted. A context menu then allows to rename or delete the watch.

8.6. PIN EMULATION

This function emulates the two pins of the microcontroller occupied by the debugger. The

direction (input or output) is automatically detected. For both directions, the logic state of

the pin is shown. Additionally, the state of inputs can be toggled. This feature is available

only for AX8052 microcontroller.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
31

8.7. DEBUG LINK

AX8052:

This window provides a graphical front-end to the debug link, a console-like input and output

interface to the microcontroller unit. Local echo can be turned on for your convenience when

the firmware is not providing a feedback. Please notice that the entry field is only active when

the debugger is running.

AXM0F243:

8.7.1. GENERAL SERIAL TERMINAL

For AXM0F243 microcontroller, the debug link data can be seen using any serial terminal

software. Get the COM port (USB Serial Port) of the device from the device manager.

On the serial terminal software, set baud rate as 9600, Data bits as 8, Stop Bits as 1 and

Parity as None.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
32

If the debug link options are enabled in the project, then debug messages can be seen on

the serial terminal software as shown below.

8.7.2. WINDOWS POWER SHELL AS SERIAL TERMINAL

Configure Serial Terminal on codeblocks menu in order to open serial port and receive debug

information from the device on ‘Windows power shell’ window (Windows-7 built-in).

Step 1: Open Tools Dialog using Code::Blocks->Tools->Configure Tools->Add

Step 2: Add below details at respective fields

Step 2.1: Name: <Serial Terminal>

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
33

Step 2.2: Executable: <PowerShell -NoExit -NoProfile -ExecutionPolicy Bypass -

Command "& 'C:\Program Files (x86)\ON

Semiconductor\AxCodeBlocks\share\AxCodeBlocks\scripts\Serial_Terminal.PS1'">

Step 2.3: Working directory: <C:\Program Files (x86)\ON

Semiconductor\AxCodeBlocks\share\AxCodeBlocks\scripts>

Step 2.4: Click OK

This will create 'Serial Terminal' item under the tools menu

Step 3: Open Serial Terminal window using Menu item

Code::Blocks->Tools->Serial Terminal

This will open ‘windows power shell’ window, opens serial port and receives Serial

data from the device.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
34

8.8. CALL STACK

Whenever the program is paused by a breakpoint or during manual stepping, the current

stack is displayed in the call stack window. The call stack window displays the name of each

function and the file name in which the function is present. This feature is supported only for

AXM0F243 microcontroller. The call stack window is shown in the below image.

8.9. RUNNING THREADS

In the running thread window, the name of function that is currently executing will be shown.

This feature is available only for AXM0F243 microcontroller. The running threads window is

shown in the below image.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
35

9. ADVANCED DEBUGGER CONFIGURATION

9.1. AX8052

The advanced debugger configuration window can be reached by selecting

Project→Properties… from the menu bar, and then clicking on the “AXSDB Debugger” tab.

Whenever the CPU stops, for example because it hits a breakpoint or the user hits the pause

button, the debugger reads the current PC and looks up the file name and line number

corresponding to that PC in the debug information. If this file is found neither in the open

editor tabs, nor in the project directories, the debugger searches the directories listed under

“Additional debugger source file search dirs”. It is recommended to add the source and include

directories of all used libraries (such as libmf) to the directory list to enable source level

debugging even in library code.

Flash Erase Mode specifies the strategy the debugger uses to erase the flash memory before

reprogramming. Bulk Erase, the default, sends a bulk erase command to the microcontroller,

thus erasing the complete memory. If the debugger knows the device key, it saves and

restores the calibration data in the last flash sector. Bulk erase may be issued even without

knowing the device key; the calibration data will be lost however. The debugger warns you if

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
36

it does not know the correct key and asks you to confirm to continue. After a Bulk Erase, the

device key is set to the Main Key configured below.

All Sectors Erase instructs the debugger to issue individual page erase commands to all flash

sectors that need to be reprogrammed. Flash sectors not needed by the program to be loaded

are erased if they contain data. The device key cannot be changed, unless the device was

using the default key. This option may be faster than Bulk Erase if only little changes between

download cycles.

Needed Sectors Erase instructs the debugger to issue individual page erase commands to all

flash sectors that need to be reprogrammed. Flash sectors not needed by the program will

be left as-is. The device key cannot be changed, unless the device was using the default key.

This option may be the fastest if only little changes between download cycles, however left-

over contents are not necessarily cleared.

In order to protect the intellectual property of the customer while still allowing full debugging

capability, use of the debug interface is protected by a 64 bit key. The debug interface can

only be used if the device key is known. The default key (as shipped by ON Semiconductor,

and after a bulk erase) is FFFFFFFFFFFFFFFF. Main Key specifies the key the debugger should

set to protect the debug interface.

Additional Keys lists keys that are tried as well when connecting the device when the main

key does not unlock the device. This is useful if multiple projects use different keys, and

devices from other projects should be used. If their keys are listed under Additional Keys, the

debugger will be able to retain the calibration data and reprogram the key to the Main Key,

when the Flash Erase Mode is set to Bulk Erase.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
37

9.2. AXM0F243

The advanced Debugger configuration window can be reached by selecting

Project→Properties… from the menu bar, and then clicking on the “Debugger” tab.

For AXM0F243, the programming and debugging happens with the GDB/CDB (GNU) debugger

using OpenOCD commands at the background.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
38

10. ONSEMI PROJECT WIZARD

10.1. AX8052

The new project wizard supports the creation of a skeleton project template for AX8052. For

AX8052 microcontroller, both SDCC and IAR compilers are fully supported, with selectable

code models.

The code structure of the AX8052 example project's main.c looks like this:

#if defined(__ICC8051__)

#define coldstart 1

#define warmstart 0

//

// If the code model is banked, low_level_init must be declared

// __near_func elsa a ?BRET is performed

//

#if (__CODE_MODEL__ == 2)

__near_func __root char

#else

__root char

#endif

__low_level_init(void) @ "CSTART"

#else

#define coldstart 0

#define warmstart 1

uint8_t _sdcc_external_startup(void)

#endif

{

 DPS = 0;

 . . .

 GPIOENABLE = 1;

 /* Check for warmstart or coldstart */

 if (PCON & 0x40)

 return warmstart;

 return coldstart;

}

#undef coldstart

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
39

#undef warmstart

#if defined(SDCC)

extern uint8_t _start__stack[];

#endif

void main(void)

{

#if !defined(SDCC) && !defined(__ICC8051__)

 _sdcc_external_startup();

#endif

#if defined(SDCC)

__asm

G$_start__stack$0$0 = __start__stack

.globl G$_start__stack$0$0

__endasm;

#endif

 . . .

}

We need to distinguish the different compilers.

 SDCC

If available, SDCC arranges for a function named _sdcc_external_startup to be called

before main. The return value of this function determines whether static variables

should be initialized. The example code uses this to avoid overwriting static variables

on a wake-up from sleep.

Stack: The two ifdefs enclosing _start__stack define a global symbol so that the

debugger knows where the stack starts, and can find the call stack.

 IAR

If available, SDCC arranges for a function named __low_level_init to be called before

main. The return value of this function determines whether static variables should be

initialized. The function needs to reside in segment CSTART and its calling convention

is determined by the code model selected. The example code uses this to avoid

overwriting static variables on a wake-up from sleep.

 Keil

Keil does not call any startup routine, its runtime library does not support bypassing

static variable initialization. Therefore, the example code calls it explicitly if the

compiler is Keil.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
40

10.2. AXM0F243

The new project wizard supports the creation of a skeleton project template for AXM0F243.

For AXM0F243 microcontroller, GNU GCC Compiler for ARM is supported.

The code structure of the AXM0F243 example project's main.c looks like this:

#define coldstart 0

#define warmstart 1

uint8_t _axm0f2_external_startup(void)

{

 . . .

 return get_startcause() == STARTCAUSE_COLDSTART ? coldstart : warmstart;

}

#undef coldstart

#undef warmstart

void main(void)

{

 /* Initialize wakeup timer */

 wtimer_init();

 if (get_startcause() == STARTCAUSE_COLDSTART) {

 . . .

 }

 for (;;)

 {

 wtimer_runcallbacks();

 . . .

 uint8_t flg = WTFLAG_CANSTANDBY;

 flg |= WTFLAG_CANSLEEP;

 wtimer_idle(flg);

 . . .

 }

}

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
41

11. TROUBLESHOOTING GUIDE

11.1. COMPILER AUTO-DETECTION FAILS ON FIRST START

AX8052:

When AxCode::Blocks is run for the first time, it tries to auto-detect the compilers. If the

auto-detection fails, configure the compiler (SDCC) for Ax8052 manually as shown in the

screen shots below. The path C:\Program Files\ must be replaced by the actual installation

path if a non-default installation has been selected.

Open the compiler settings dialog by clicking on Settings→Compiler. Select SDCC (under

selected compiler). Click on “Set as default”. Click on “Search Directories” and “Compiler”,

and enter the directories as in the picture above.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
42

Click on “Linker”, and enter the directories as in the picture above.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
43

Click on “Toolchain Executables”, and verify the “Compiler's Installation directory”.

Click on “Additional Paths”, and enter the path as shown above.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
44

AXM0F243:

When AxCode::Blocks is run for the first time, it tries to auto-detect the compilers. If the

auto-detection fails, configure the compiler (GNU GCC Compiler for ARM) for AXM0F243

manually as shown in the screen shots below. The path C:\Program Files (x86)\ must be

replaced by the actual installation path if a non-default installation has been selected.

Open the compiler settings dialog by clicking on Settings→Compiler. Select GNU GCC

Compiler for ARM (under selected compiler). Click on “Set as default”. Click on “Search

Directories” and “Compiler”, and enter the directories as in the picture above.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
45

Click on “Linker”, and enter the directories as in the picture above.

Click on “Toolchain Executables”, and verify the “Compiler's Installation directory”.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
46

11.2. REMOVE ALL SAVED USER SETTINGS

Open an explorer. Type “%APPDATA%” (without double quotes) into the address bar. Type

enter. The directory now displayed should contain a folder (subdirectory) named

“axCodeBlocks”. This is where AxCode::Blocks stores per-user configuration settings. Delete

that subdirectory.

11.3. SDCC PROJECT DOES NOT COMPILE

First, make sure that AxCode::Blocks finds the compiler executable. Open the compiler

settings window.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
47

Check that SDCC is the default compiler and that the Compiler's Installation directory points

to SDCC's installation location. Normally, this is automatically set up correctly, but if you

manually move the SDCC directory, or re-install it at another location, you must manually

update the location.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
48

Make sure that SDCC finds all required header files. Check that the compiler's default

include paths contain SDCC's own includes, as well as the AX8052 convenience library (such

as libmf) includes.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
49

Check that the linker's default paths contain SDCC's own libraries path, as well as the

AX8052 convenience library (such as libmf) path.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
50

11.4. IAR PROJECT DOES NOT COMPILE

First, make sure that AxCode::Blocks finds the compiler executable. Open the compiler

settings window. Then select “IAR 8051 Compiler” in the “Selected Compiler” combobox.

Check that the Compiler's Installation directory points to IAR's installation location. Normally,

this is automatically set up correctly, but if you manually move the IAR directory, or re-install

it at another location, or update it to a new version, you must manually update the location.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
51

Make sure that IAR finds all required header files. Check that the compiler's default include

paths contain IAR's own includes, as well as the AX8052 convenience library (such as libmf)

includes.

Check that the linker's default paths contain IAR's own libraries path, as well as the AX8052

convenience library (such as libmf) path.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
52

Make sure the correct linker script appears under “Other linker options”; the correct entry is

–f "C:\Program Files (x86)\IAR Systems\Embedded Workbench 7.3\8051\config\devices_generic\

lnk51ew_plain.xcl"

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
53

11.5. GCC PROJECT DOES NOT COMPILE

First, make sure that AxCode::Blocks finds the compiler executable. Open the compiler

settings window. Then select “GNU GCC Compiler for ARM” in the “Selected Compiler”

combobox.

Check that GNU GCC Compiler for ARM is the default compiler and that the Compiler's

Installation directory points to compiler’s installation location. Normally, this is automatically

set up correctly, but if you manually move the compiler directory, or re-install it at another

location, you must manually update the location. Also make sure that the compiler’s

installation location is available in the system path. If it’s not available, add the same to the

system path.

Make sure that GCC compiler finds all required header files. Check that the compiler's default

include paths contain GCC compiler’s own includes, as well as the AXM0F243 convenience

library (such as libmf) includes.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
54

Check that the linker's default paths contain GCC compiler’s own libraries path, as well as the

AXM0F243 convenience library (such as libmf) path.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
55

11.6. PROJECT COMPILES , BUT DEBUGGING DOES NOT WORK

First check whether the ON Semiconductor Command Line Debugger, AXSDB, works. Start

AXSDB (the installer places a link into the program section of the start menu).

AXSDB should print the serial number of a target after the “Targets:” prompt. The top two

reasons for an empty line after “Targets:” are that no debug adapter is connected to a

working USB port, or that the USB drivers have not been correctly installed.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
56

To check whether the drivers are correctly installed, open the device manager (The driver

installation is common for both AX8052 and AXM0F243)

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
57

For the AXDBG debug adapter USB device, the Vendor ID (VID) is 0403 and the Product ID

(PID) is 6010 as shown below.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
58

If the drivers are not correctly installed, there will be a yellow exclamation marks on “USB

Serial Converter A” or “USB Serial Converter B” or “USB Composite Device” which indicates

that the driver has not been correctly installed. Right-click on the device with the

exclamation mark, and choose Update driver.

Newer Versions of Windows, if connected to the internet, offer the option to search Windows

Update for a suitable driver. You can choose this option; it is the easiest option, though may

take some time. As an alternative, the installer also puts suitable drivers into C:\Program

Files (x86)\ON Semiconductor\AXSDB\ftdi. You can choose to install from this directory and

its subdirectories as well.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
59

After successfully re-installing the drivers, there should not be any yellow exclamation marks

on “USB Serial Converter A” or “USB Serial Converter B” or “USB Composite Device”. After

installing the drivers, you should reboot Windows.

Check that AXSDB now recognizes the target.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
60

AX8052:

If the debugger plugin is not correctly configured, see below for how to configure it for AX8052

microcontroller.

Start AxCode::Blocks. Verify that the correct debugger plugin is selected. To do this, open

the compiler settings window.

Check that the debugger plugin named “AXSDB debugger: Default” is selected.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
61

Now check that the correct axsdb binary is configured in the plugin configuration. To do this,

open the debugger settings.

Select AXSDB debugger – default. Check that the Executable path is correct.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
62

AXM0F243:

Check that the OpenOCD.exe debug interface software is available in the installation directory

where the you have installed the AXSDB followed by “\bin” (“C:\Program Files (x86)\ON

Semiconductor\AXSDB\bin”)

Make sure that the name of the configuration file (.cfg) and the path to the file is given

correctly. By default, the configuration file for AXM0F243 microcontroller is available in the

directory “C:\Program Files (x86)\ON Semiconductor\AXSDB\share\openocd\scripts\board”

If the debugger plugin is not correctly configured, see below for how to configure it for

AXM0F243 microcontroller.

Start AxCode::Blocks. Verify that the correct debugger plugin is selected. To do this, open

the compiler settings window.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
63

Check that the debugger plugin named “GDB/CDB debugger : ARM” is selected.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
64

Now check that the correct binary is configured in the plugin configuration. To do this, open

the debugger settings.

Select GDB/CDB debugger: ARM. Check that the Executable path is correct.

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
65

12. HISTORY

Version Date Comments

1.00 28-Aug-18 Draft version

1.01 28-Aug-18 Added AX8052 and AXM0F243 details

1.02 24-May-19 Updated section 7.3 Open OCD commands

details

http://www.onsemi.com/

AxCode::Blocks User Manual ON Semiconductor

www.onsemi.com
66

13. CONTACT INFORMATION

ON Semiconductor

Oskar-Bider-Strasse 1

CH-8600 Dübendorf

SWITZERLAND

Phone +41 44 882 17 07

Fax +41 44 882 17 09

Email sales@onsemi.com

www.onsemi.com

For further product, related or sales information please visit our website or contact your

local representative.

http://www.onsemi.com/
mailto:sales@onsemi.com

	TABLE OF CONTENTS
	1. Introduction
	2. Installing AxCode::Blocks
	3. Connecting the Hardware
	4. Creating a New Project
	4.1. AX8052
	4.2. AXM0F243

	5. Adding and Editing Files
	6. Compiling the Project
	7. Programming and Debugging the Project
	7.1. Programming the project
	7.2. Debugging the project
	7.3. OPEN OCD Commands

	8. Debugging Windows
	8.1. Breakpoints
	8.2. CPU Registers
	8.3. Disassembly
	8.4. Memory dump
	8.5. Watches
	8.6. Pin Emulation
	8.7. Debug link
	8.7.1. General Serial terminal
	8.7.2. Windows power shell as Serial terminal

	8.8. Call stack
	8.9. Running threads

	9. Advanced Debugger Configuration
	9.1. AX8052
	9.2. AXM0F243

	10. Onsemi Project Wizard
	10.1. AX8052
	10.2. AXM0F243

	11. Troubleshooting Guide
	11.1. Compiler Auto-detection fails on first start
	11.2. Remove all saved User Settings
	11.3. SDCC Project does not compile
	11.4. IAR Project does not compile
	11.5. GCC Project does not compile
	11.6. Project compiles, but debugging does not work

	12. History
	13. Contact Information

