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Course outline

• Introduction
• Experimental Techniques
• Linear Superposition
• Thermal Runaway
• References
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Introduction

• Why This Course?
• Terminology and Basic Principles
• Facts and Fallacies
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Can this device handle 2W?
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I’m putting 5A into this part. What’s its 
junction temperature going to be?
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I’m putting a 60W, 800ns pulse into this rectifier.  
How much copper area do I need to make this 

part work in my system?
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I’m putting together a data sheet for this new 
device.  What’s theta-JA for this package? 
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I’m putting together a data sheet for this new 
device.  What’s theta-JA for this package? 
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What’s the maximum power rating on this part 
going to be? 
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What’s the maximum power rating on this part 
going to be? 
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Why is our SOT-23 thermal number so much worse 
than our competition?

• Us
– SOT-23 package
– 60x60 die
– solder D/A
– copper leadframe
– min-pad board
– still air

• Them
– SOT-23 package
– 20x20 die
– epoxy D/A
– alloy 42 leadframe
– 1” x 2oz spreader
– big fan
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Why θJA doesn’t belong in the 
“Maximum Ratings”* table

*let alone the “Absolute Maximum Ratings”
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It’s like trying to sell your car (some bureaucrat 
says you must list its gas mileage in the ad)

1 20% grade uphill, 75mph, back seat and trunk full of bricks

mpg4Gas Mileage (Note 1)

UnitsValueSymbolDescription

MAXIMUM RATINGS

For sale:
Geo Metro, 1999 model, excellent condition!
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Gee, we’d better not be so “worst case,” should we?

1 20% grade uphill, 75mph

mpg10Gas Mileage (Note 1)

mpg/brick0.002Mileage derating factor

UnitsValueSymbolDescription

MAXIMUM RATINGS

For sale:
Geo Metro, 1999 model, excellent condition!
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Wait, they said “maximum”.  Maybe we’re 
thinking about this all wrong …

1 20% grade downhill, empty vehicle (no bricks, not even a driver!), coasting

mpg/%2IDF (incline derating factor)

mpg/brick0.002BDF (brick derating factor)

mpg110Gas Mileage (Note 1)

mpg/mph0.07SDF (speed derating factor)

UnitsValueSymbolDescription

MAXIMUM RATINGS

For sale:
Geo Metro, 1999 model, excellent condition!
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Frankly, Tj-max is the only 
“thermal” specification that I 

think belongs in the Maximum 
Ratings table.
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Terminology and 
basic principles
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“Junction” temperature?

Historically, for discrete devices, the “junction” was literally the 
essential “pn” junction of the device.  This is still true for basic 

rectifiers, bipolar transistors, and many other devices.

More generally, however, by “junction” these days we mean 
the hottest place in the device, which will be somewhere on 

the silicon (2nd Law of Thermodynamics).

This gets to be somewhat tricky to identify as we move to 
complex devices where different parts of the silicon do 

different jobs at different times.
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Thermal/electrical analogy

temperature <=>   voltage

power <=>   current

∆temp/power <=>   resistance

energy/degree <=>   capacitance
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Theta (θ) vs. psi (Ψ)

• JEDEC <http://www.jedec.org/> terminology
– ZθJX , RθJA older terms ref JESD23-3, 23-4
– θJA ref JESD 51, 51-1
– θJMA ref JESD 51-6
– ΨJT, ΨTA ref JESD 51-2
– ΨJB, ΨBA ref JESD 51-6, 51-8
– RθJB ref JESD 51-8
– Great overview, all terms: JESD 51-12
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A generic thermal system

Heat in
put
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“Theta” (Greek letter θ)

Heat in
put

Tx

Ty

We know actual heat flowing along path of interest

true “thermal resistance”

path

yx
xy q

TT −
=θ
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“Psi” (Greek letter Ψ)

Heat in
put

Tx

Ty??

We don’t know actual heat flowing along path of interest

All we know is total heat input

total

yx
xy q

TT −
=Ψ
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When Ψ becomes θ

Heat in
put

ambient

ambient

ambient

ambient

Tj

Either or both “points”
of interest are 

isotherms

All heat flowing 
between them is 

known

jx TT =

ambientTy =

devicepath PowerPower =

(a point)

(an isotherm)

xyJA Power
TT

Ψ=
−

=
total

ambientjθ
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An example of a device with two 
different “Max Power” ratings

• Suppose a datasheet says:
– Tjmax = 150°C
– θJA = 100°C/W
– Pd = 1.25W (Tamb=25°C)

• But it also says:
– ΨJL = 25°C/W
– Pd = 3.0W (TL=75°C)

Where’s the “inconsistency”?

15012525
25.1*10025
=+=

+

1507575
3*2575
=+=

+
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Where’s the inconsistency?

What’s TL?

25°C/W 
(ΨJL)

100°C/W
(θJA)

TJ =150°C

TA =25°C

Not 75°C !!

(try about 119°C)

…¾ of the way from 
ambient to Tj
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Facts and fallacies
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Facts and fallacies
• Basic idea:

– temperature difference is proportional to heat input
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twice the heat, twice the temperature rise

Tf

To

Tf

To

PowerT ∝∆

( )tRPT *=∆

P=power heating P2power heating =

( )tRPT *2=∆

time time

ju
nc

tio
n 

te
m

pe
ra

tu
re

ju
nc

tio
n 

te
m

pe
ra

tu
re
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Facts and fallacies
• Basic idea:

– temperature difference is proportional to heat input
• There are three modes of heat transfer

– conduction
– convection
– radiation (electromagnetic/infrared)
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Facts and fallacies

• Basic idea:
– temperature difference is proportional to heat input

• Flaws in idea:
– conduction effects (material properties)

• depend on temperature

– convection effects (esp. “still air”)
• depend on temperature

– radiation effects
• depend on temperature
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Facts and fallacies, cont’

• Basic idea:
– “thermal resistance” is an intrinsic property of a package
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back in the good old days ...

metal can --
fair approximation of 
“isothermal” surface

axial leaded device --
only two leads, heat 

path fairly well defined
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Facts and fallacies, cont’
• Basic idea:

– “thermal resistance” is an intrinsic property of a package
• Flaws in idea:

– there is no isothermal “surface”, so you can’t define a 
“case” temperature
• Plastic body (especially) has big gradients

– different leads are at different temperatures
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Which lead?  Where on case?
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Facts and fallacies, cont’
• Basic idea:

– “thermal resistance” is an intrinsic property of a package
• Flaws in idea:

– there is no isothermal “surface”, so you can’t define a 
“case” temperature
• Plastic body (especially) has big gradients

– different leads are at different temperatures
– multiple, parallel thermal paths out of package
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OH of GPM 1
C25
W50

C/W2.1

2

°=
=

°=Ψ −

c

d

tabJ

T
P

air still
C25
W5.1

C/W8.0

°=
=

°=Ψ −

c

d

tabJ

T
P

Same ref, different values
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Archetypal package

silicon 

die attach 

wire/clip

flag/leadframe 

case 

circuit board 

convection 

60%
10%

20%

10%
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Then we change things …

optional 
heatsink 

mold 
compound/

case 

flag/leadframe 

application board 

silicon 

die attach 

wire/clip 

optional 
heatsink 

optional 
“case” 

application board 

silicon 
die 

attach 

optional 
underfill 

pads/
balls 

add an external heatsink … flip the die over …

40%

20%

60%

20% 20%40%
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A bare “flip chip”

application board 

silicon 

underfill

pads/
balls 

90%

10%
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Even when it’s constant, it’s not!

0
100
200
300
400
500
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700
800
900
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1 10 100 1000
board

rstnc. [C/W]

thetaJA - var brd only
thetaJA - var airflow

0

5
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25

1 10 100 1000
board

rstnc. [C/W]

psi-JL - var brd only
psi-JL - var airflow

theta-JA

psi-JT

psi-JL

R1 (path down 
to board)

constant at 20

R2 (board 
resistance) vary 

from 1 to 1000

R3 (path through 
case top)
constant at 80

R4 (case to air path 
resistance) constant 
at 500, or 20x R2

TCTL

Tj

Tamb

total

LJ
JL Q

TT −
=Ψ total

CJ
JT Q

TT −
=Ψ

total

ambJ
JA Q

TT −
=θ

package
environment
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Typical thermal test board types

min-pad board
minimum metal area to attach 
device (plus traces to get 
signals and power in and out)

1-inch-pad board
device at center of 1”x1” metal 
area (typically 1-oz Cu); 
divided into sections based on 
lead count
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Experimental
Techniques
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Experimental Techniques

• Temperature Sensitive Parameters (TSPs)

• Different Device Types and How to Test Them

• Heating vs Cooling Curve Techniques

• Test Conditions
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Temperature Sensitive Parameters

• JEDEC 51-1 good synopsis

• Basic diode physics (pg 5 of JESD 51-1)

– At constant current, forward voltage goes down 
(linearly) with increasing temperature

• In principle, any device which has repeatable (not 
necessarily linear) voltage vs. temperature 
characteristics can be used

• Commercial thermal test equipment typically requires 
linear TSP behavior
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Typical TSP Behavior

Vf

T

125°C

25°C

0.7 V0.5 V

1 ma

increasing current

Vf

sense 
current

calibrate forward voltage at controlled, 
small (say 1mA) sense current 
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DUT

true const. current supply

(1 mA typical)

DUT

10KΩ

If Vf-0.7V, then 
I-1mA

10.7V

How to measure Tj

OR

approximate const. current supply
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DUT

10KΩ
heating
power
supply

10.7V10.7V

DUT

10KΩ
heating
power
supply

10.7V

How to heat

OR

sample current is off 
while heating current on

sample current 
is always on
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Superposition and TSP “self heating”

• Common warning:
– Keep the TSP power low!  “self heating is bad!”

• But is this really a problem?
– If the “sample” power is always there, the “self heating” is 

the same during calibration as during test, so they cancel 
out

• You might unwittingly overheat the junction
• You might not be able to keep the “measurement”

current on during the heating
– But if this is a serious issue, reduce the effective “test”

power by the amount of “measurement” power
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0.90 W
0.70 W
0.64 W

The Importance of 4-wire measurements

Power
supply

+(1.00 V)

-(0 V)

1 A

0.18 V 0.82 V

0.95 V0.05 V 0.85 V0.15 V

Output = 1 W
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Which raises an interesting question:

0.3 W

Power
supply

+(1.00 V)

-(0 V)

3 A

0.45 V 0.55 V

0.98 V0.02 V

Output = 3 W

Is this a fair characterization of a low-Rds-on device?

1.3 W 1.3 W
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Bipolar transistor
• TSP is Vce at designated 

“constant” current
• Heating is through Vce
• Choose a base current 

which permits adequate 
heating

bias supply

TSP=Vce
bias resistor

TSP supply

switch

heating supply

10KΩ
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Schottky diode

• TSP is forward voltage at “low” current
• Voltages are typically very small (especially 

as temperature goes up)
• Highly non-linear, though maybe better as 

TSP current increases; because voltage is 
low, higher TSP current may be acceptable

• Heating current will be large



Corporate R&D • 8-Jul-200754 Electronics System Thermal Design and Characterization (RPS)

MOSFET / TMOS

• Typically, use reverse bias 
“back body diode” for both 
TSP and for heating

• May need to tie gate to 
source (or drain) for 
reliable TSP characteristic

TSP=Vsd

TSP supply

switch

heating 
supply

10KΩ

+

-
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+

MOSFET / TMOS method 2

• If you have fast switches and 
stable supplies

• Forward bias everything and use 
two different gate voltages

TSP=Vds

TSP supply

close 
switch 
to heat

heating 
supply

10KΩ

-

+

-

V-gate 
for 

heating
-

V-gate 
for 

measure

+

close 
switch 
to heat

close 
switch to 
measure
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RF MOS

• They exist to amplify high frequencies (i.e. noise)!

TSP supply

close 
switch 
to heat

heating 
supply

10KΩ

-

+
V-gate 

for 
heating

-

+

close 
switch 
to heat

close 
switch to 
measure

• Feedback resistors may keep 
them in DC

+

-

TSP = 
body 
diode

TSP 
supply
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IGBT

• Drain-source channel used 
for both TSP and heating

• Find a gate voltage which 
“turns on” the drain-source 
channel enough for heating 
purposes

• Use same gate voltage, but 
typically low TSP current for 
temperature measurement TSP=Vds

gate 
voltage

TSP supply

switch

heating supply

10KΩ
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Thyristor

• Anode--to-cathode voltage path 
used both for TSP and for heating

• typical TSP current probably 
lower than “holding” current, so 
gate must be turned on for TSP 
readings; try tying it to the anode 
(even so, we used 20mA to test 
SCR2146)

• Hopefully, with anode tied to gate, 
enough power can be dissipated 
to heat device without exceeding 
gate voltage limit

TSP supply

switch10KΩ

heating 
supply

TSP
=Vac

cathode

anode
gate
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Logic and analog

• Find any TSP you can
– ESD diodes on inputs or outputs
– Body diodes somewhere

• Heat wherever you can
– High voltage limits on Vcc, Vee, whatever
– Body diodes or output drivers
– Live loads on outputs

• (be very careful how you measure power!)
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Heating curve method
vs.

cooling curve method
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DUT

10KΩ
heating
power
supply

10.7V

Quick review:
Basic Tj measurement

DUT

10KΩ
heating
power
supply

10.7V

first we heat then we measure
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Question

• What happens when you switch from 
“heat” to “measure”?

Answer: stuff changes

• More specifically, while the electrical 
signal is stabilizing, the junction starts 
to cool down
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Vf

Vf

T

125°C

25°C

.7V.5V

calibrate forward voltage 
@ 1mA sense currrent

po
w

er
-o

ff 
co

ol
in

g 

high-
current 
heating 

measurements

convert cooling 
volts to 

temperature

Basic
“Heating Curve”
Transient Method vo

lta
ge

cu
rre

nt

1 ma

st
ea

dy
 s

ta
te

 re
ac

he
d

Te
m

pe
ra

tu
re

Time

po
w

er
-o

ff 
co

ol
in

g 

high-
current 
heating 
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w
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-o

ff 
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g 

high-
current 
heating 
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w

er
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ff 
co
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g 

high-
current 
heating 

measured 
temperatures
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po
w
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ff 
co
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high-
current 
heating 
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nt
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Te
m
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Time
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heating 
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ff 
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heating 
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ff 
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high-
current 
heating 

measured temperatures

Heating curve method #2

Time
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Basic
“Cooling Curve”

Transient Method
Vf

Vf

T

125°C

25°C

.7V.5V

calibrate forward voltage 
@ 1mA sense currrentpower-off 

cooling
high-

current 
heating

vo
lta

ge cu
rre

nt

1 ma

measurements

heating 
period

transient cooling 
period (data taken)

st
ea

dy
 s

ta
te

 re
ac

he
d

Te
m

pe
ra

tu
re

Time

convert cooling 
volts to 

temperature

Te
m

pe
ra

tu
re

Time (from 
start of cooling)

subtract cooling curve from 
peak temperature to obtain
“heating” curve equivalent
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Whoa!
… that last step, there ...

• Heating vs. cooling
– Physics is symmetric, as long as the material and 

system properties are independent of temperature
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Heating vs. cooling symmetry

(all the same 
curves, flipped 

vertically)

flag

lead

back of board

edge of board

Start of (constant) 
power off

junction

Start of constant 
power input
(“step heating”)
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• For a theoretically valid cooling curve, 
you must begin at true thermal 
equilibrium (not uniform temperature, 
but steady state)

• So whatever your θJA, max power is 
limited to:

JA

j TT
power

θ
ambientmax −=

(cooling)
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By the way …

• Since you must have the device at steady state in 
order to make a full transient cooling-curve 
measurement, steady-state θJA is a freebie.

(given that you account for the slight cooling which 
took place before your first good measurement 
occurred)

(cooling)
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Effect of power on heating curve

< steady-state max power

Tj-max

Tamb

steady-state max power

2x steady-state power
6x steady-

state power

10x steady-
state power

3x steady-
state power

time

ju
nc

tio
n 

te
m

pe
ra

tu
re
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Some initial uncertainty

heating period transient cooling period 
(data taken)

st
ea

dy
 s

ta
te

 re
ac

he
d

Te
m

pe
ra

tu
re

Time

power-off 
cooling

high-current 
heating

but once we’re past 
the “uncertain” range, 
all the rest of the 
points are “good”

a few initial points 
may be uncertain

(cooling)
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Heating vs. cooling tradeoffs

starting 
temperature

heating
power

temperature of 
fastest data

error
control

HEATING

ambient

limited by 
tester

closer to 
ambient

all points 
similar error

COOLING

?

limited to 
steady-state

closer to
Tj-max

error limited to 
first few points
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•Still air, moving air
•Various mounting configurations

– Min-pad board
– 1” heat spreader board

•Coldplate testing
– Single, dual, “ring”

Test Conditions
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• Varying the air speed is mainly varying the 
heat loss from the test board surface area, 
not from the package itself

• You just keep re-measuring your board’s 
characteristics

Still air vs. moving air
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total system thermal resistance

0
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• min-pad board
• 1” heat spreader board
• you’re mainly characterizing how copper 

area affects every package and board, 
not how a particular package depends 
on copper area

Different boards
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1" pad vs min-pad
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overall linear fit is:
1" value = [0.51*(min-pad value) - 7]
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TSOP-6
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Source:
Un-derated thermal data 
from old PPD database

Roger Stout  5/2
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Standard coldplate testing

• “infinite” heatsink (that really isn’t) for 
measuring theta-JC on high-power devices

• If both power and coldplate temperature are 
independently controlled, “two parameter”
compact models may be created
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Standard coldplate testing

• Detailed design and placement of “case” TC can have 
significant effect on measured value

TC in 0.025” well, 
0.25” from surface

DUT

.375”

.75”

Vleer pin assy

2.0”

TC on Vleer pin measures 
temperature at interface

Liquid Coolant Flow
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“Dual” coldplate testing

• Alternative method for “two-parameter”
characterization methods where two independent 
“isothermal” boundary conditions are desired

T1

T2
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“Ring” coldplate

• For making somewhat higher-power board-mounted 
measurements; “ring” coldplate is clamped around 
outer edge of test board to constrain board 
temperature
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2-parameter data reduction

heat in, Q

R1

R2

T1

Tj

T2

21 QQQ +=

( ) ( )2
2

1
1

11 TT
R

TT
R

Q jj −+−=

bxmxmy ++= 2211

( )11
1

1
1 TTx
R

m j −==
0≡b

( )22
2

2
1 TTx
R

m j −==

where:

heat up, Q1

heat down, Q2

This has the form of a two-variable linear equation:
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adJAJ TPT +⋅= θ

What’s wrong with theta-JA?

d

aJ
JA P

TT −
=θ

d

tabJ
Jtab P

TT −
=Ψ

tabdJtabJ TPT +⋅Ψ=

2
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Theta-JA vs copper area
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Linear superposition
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Ta

Tj
θJA
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Facts and fallacies redux
• Basic idea:

– “thermal resistance” is an intrinsic property of a package
• Flaws in idea:

– there is no isothermal “surface”, so you can’t define a 
“case” temperature
• Plastic body (especially) has big gradients

– different leads are at different temperatures
– multiple, parallel thermal paths out of package
– other heat sources change everything
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Our case-study will be this 
6-component thermal system

Tj3 Tj2

Tj1Tj4

Tj5Tj6

Tref1

Tref5

Tref3

TB

Tamb
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• The total response of a point within 
the system, to excitations at all 
points of the system, is the sum of 
the individual responses to each 
excitation taken independently.

Linear superposition
– what is it?

nsource2source1sourcecomposite TTTT ∆++∆+∆=∆ L
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DCBA q21q3q2T ⋅+⋅+⋅=∆ .

• The system must be “linear” – in brief, 
all individual responses must be 
proportional to all individual excitations.

Linear superposition
– when does it apply?

DACABAAnet TTTT ←←← ∆+∆+∆=∆
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Linear superposition doesn’t 
apply if the system isn’t linear.

( ) ( ) L+⋅+⋅=∆ 2211 qqTbqqTaT ,,

L+⋅+⋅=∆ 2n
2

1n
1 qbqaT
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Linear superposition
– when would you use it?

When you have multiple heat sources
(that is, all the time!)
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Linear superposition
– how do you use it?

Tj3 Tj2

Tj1Tj4

Tj5Tj6

Tref1

Tref5

Tref3

TB

Tamb
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Temperature direct contributions and totals
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Normalized responses at each 
location due to each source
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a
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a
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visualizing theta and psi

(idle heat 
source “x”)

thermal ground

measurements 
here are    s

Ψ

xAΨ
yAΨ

AJ1
θ

BJ1
θ

BAθ

θ
measurements 

here are    s

(idle heat 
source “y”)

heat in here
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• What is it?
• When does it not apply?

The reciprocity theorem
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Electrical reciprocity

I
V

-

+
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Electrical reciprocity

5 V
+

-

? V
+

-
0.3 V

-

+

2 A0.3 V
-

+
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Thermal reciprocity

heat input here

same 
response 

here

response 
here
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Another thermal reciprocity example

heat input here

same 
response 

here

response 
here

(s)

(s)

(r)

(r)



Corporate R&D • 8-Jul-2007105 Electronics System Thermal Design and Characterization (RPS)

(square part of) matrix is symmetric
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When does reciprocity NOT Apply?

A
D

C
airflow

Heat in at “A” will raise temperature 
of “C” more than heat in at “C” will 
raise temperature of “A”

• Upwind and downwind in forced-convection 
dominated applications

“B” and “D” may 
still be roughly 
reciprocal

B
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A linear superposition example

(unequivocal proof that a published 
theta-JA is virtually meaningless)
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Superposition example

Tj3 Tj2

Tj1Tj4

Tj5Tj6

Tref1

Tref5

Tref3

TB

Tamb
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Device 1 heated, 1.1 W

Tj3=85.5 Tj2=96.5

Tj1=107.5Tj4=91.0

Tj5=49.2Tj6=36.0

Tref1=105.3

Tref5=47.0

Tref3=85.5

TB=96.5

Tamb=25
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Reduce the data

65Ψ BA

20Ψ r5A
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Collect the θ/Ψ values in the matrix

65

20

55

73

10

22

60

55

65

75

B

R5

R3

R1

J6

J5

J4

J3

J2

J1



Corporate R&D • 8-Jul-2007112 Electronics System Thermal Design and Characterization (RPS)

Device 2 heated, 1.2 W

Tj3=97.0 Tj2=110.2

Tj1=103.0Tj4=91.0

Tj5=55.0Tj6=38.2

Tref1=103.0

Tref5=53.8

Tref3=97.0

TB=100.6

Tamb=25

63Ψ BA

24Ψ r5A

60Ψ r3A

65Ψ r1A

11Ψ j6A

25Ψ j5A

55Ψ j4A

60Ψ j3A

71θ j2A

65Ψj1A
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Collect the θ/Ψ values

6365
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Device 3 heated, 1.3 W

Tj3=109.5 Tj2=103.0

Tj1=96.5Tj4=104.3

Tj5=52.3Tj6=44.5

Tref1=96.5

Tref5=43.2

Tref3=106.9

TB=105.6

Tamb=25

62Ψ BA

14Ψ r5A

63Ψ r3A

55Ψ r1A

15Ψ j6A

21Ψ j5A

61Ψ j4A

65θ j3A

60Ψ j2A

55Ψj1A
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Collect the θ/Ψ values
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Device 4 heated, 1.1 W

Tj3=92.1 Tj2=85.5

Tj1=91.0Tj4=105.3

Tj5=44.8Tj6=37.1

Tref1=89.9

Tref5=45.9

Tref3=92.1

TB=94.3

Tamb=25

63Ψ BA

19Ψ r5A

61Ψ r3A

59Ψ r1A

11Ψ j6A

18Ψ j5A

73θ j4A

61Ψ j3A

55Ψ j2A

60Ψj1A
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Collect the θ/Ψ values
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Device 5 heated, 0.7 W

Tj3=39.7 Tj2=42.5

Tj1=40.4Tj4=37.6

Tj5=112.5Tj6=34.8

Tref1=40.4

Tref5=91.5

Tref3=39.7

TB=39.7

Tamb=25

21Ψ BA

95Ψ r5A

21Ψ r3A

22Ψ r1A

14Ψ j6A

125θ j5A

18Ψ j4A

21Ψ j3A

25Ψ j2A

22Ψj1A
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Collect the θ/Ψ values
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Device 6 heated, 0.5 W

Tj3=32.5 Tj2=30.5

Tj1=30.0Tj4=30.5

Tj5=32.0Tj6=115.0

Tref1=30.0

Tref5=32.5

Tref3=32.5

TB=31.0

Tamb=25

12Ψ BA

15Ψ r5A

15Ψ r3A

10Ψ r1A

180θ j6A

14Ψ j5A

11Ψ j4A

15Ψ j3A

11Ψ j2A

10Ψj1A
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Collect the θ/Ψ values
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Now apply actual power

Tj3=134.9 Tj2=140.1

Tj1=140.0Tj4=135.8

Tj5=124.7Tj6=139.1

Tref1=138.8

Tref5=106.3

Tref3=134.1

TB=139.1

Tamb=25

.2qj6

.5qj5

.4qj4

.4qj3

.4qj2

.4qj1

Actual power 
in application
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Compute some effective θ/Ψ values

Take Tj1, for instance.  Remember when it was 
heated all alone, we calculated its self-heating 
theta-JA like this: 

75
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255107
q
TT

1

amb1j
A1j =

−
=

−
=

.
.θ

288
40

25140
q
TT

1

amb1j
A1j =

−
=

−
=

.
θ

Now let’s see: ≠
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And that’s not just a single aberration!

180
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Is the moral clear?

• You simply cannot use published theta-JA 
values for devices in your real system, even if 
those values are perfectly accurate and correct 
as reported on the datasheet and you know the 
exact specifications of the test conditions.

• Not unless your actual application is identical to 
the manufacturer’s test board – and uses just 
that one device all by itself.
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So is it really this bad?
Only sort-of.  Let’s revisit the math for one device …
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a1A1J1j TqT += θ

power, q

Ta
junction temperature , TJ1

Ta’ junction temperature , TJ1

′+=

+Ψ+= ∑

a1A1J

a

n

2
nn11A1J1j

Tq

TqqT

θ

θ

Ta

shift in effective
ambient

Device in a system

still the 
same slope

1

θJ1A

1

θJ1A

Isolated device

A graphical view
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when Q1 is zero, 
both of these 
will be zero

( ) a

n

2i
i1i1a1j1j TQQT +⋅Ψ+⋅= ∑

=
θ

How does effective ambient relate to board temperature?

temperature 
rise, board to J1

effective 
ambient

“system” slope for 
isolated device

temperature rise, 
ambient to board

a1a1B1B1j TQQ ′+⋅+⋅= θθ

aa1BB1j TTT ′+∆+∆=

( ) a1a1BB1j TQ ′+⋅+= θθ

if any of these are non-zero, 
will be higher thanaT′ aT

when Q1 is 
not zero, both 
of these will 
be non-zero
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How does effective ambient relate 
to local air temperature?

NOT. 
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What about that “system” theta we 
saw earlier that was so different?

junction temperature

power

Ta’

1

θJ1A

Ta

the “system”
theta-JA

the isolated-device 
theta-JA∑Ψ

n

2
nn1 q

1

θJ1A

device #1 
power/temperature 
perturbations will 
fall on this line

NOT this oneq1

TJ1
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System modeling
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• Handy formulas for quick estimates
• Utilizing symmetry

Filling in the theta-matrix
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Conduction resistance

L
TAk

dx
dTAkq ∆

⋅⋅≈⋅⋅=

basic heat transfer relationship for 1-D conduction

if we define

then
q
TR ∆

=

Ak
LR
⋅

=
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Convection resistance

TAhq ∆⋅⋅=

basic heat transfer relationship for surface cooling

if we define

then
q
TR ∆

=

hA
1R =
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( )
( )( )( )
( )( ) TTTTTAF

TTTTTTAF

TTAFq

a
2
a

2
aa

2
a

2

4
a

4

∆++⋅⋅⋅⋅=

−++⋅⋅⋅⋅=

−⋅⋅⋅⋅=

εσ

εσ

εσ

Radiation resistance

temperatures must 
be expressed in 

degrees “absolute”!

basic heat transfer relationship for surface radiation

if we define

then
q
TR ∆

=

( )( )a
2
a

2 TTTTFA
1R

++
=
σε
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Thermal capacitance and time constant

RC=τVcC pρ=

 
Ah

1R
⋅

= 
Ak

LR
⋅

=

capacitance is ability to store energy
specific heat is energy storage/mass

based on simple RC concept, 
relate rate of storage to rate of flux
result is

so if and if

and

thenthen

and( )ALcC p ⋅= ρ

α
ρ

τ
22

p L
k

Lc
==

( )ALcC p ⋅= ρ

h
Lcpρ

τ =
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Some useful formulas

• conduction resistance…………..………

• convection resistance…………...………

• thermal capacitance……………...……..

• characteristic time…………………..….
– (dominated by 1-D conduction)

• characteristic time……………………...
– (dominated by 1-D convection)

• short-time 1-D transient response……... t
A
Q2T

h
Lc

L

VcC
Ah

1R

Ak
LR

p

2

p

ηπ

ρ
τ

α
τ

ρ

=∆

=

=

=
⋅

=

⋅
=
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Terms used in preceding formulas
• L - thermal path length
• A - thermal path cross-sectional area
• k - thermal conductivity
• ρ - density
• cp - heat capacity
• V – volume of material (L·A)
• α - thermal diffusivity
• η - thermal effusivity
• h - convection heat-transfer “film coefficient”)
• ∆T - junction temperature rise
• Q - heating power
• t - time since heat was first applied

kcpρη =

pc
k
ρ

α =
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mainly package 

materials/conduction effects

mainly local 
application

board conduction 
effects

mainly environmental 
convection and radiation 

effects

When do these effects enter?

time

ju
nc

tio
n 

te
m

pe
ra

tu
re

typical heating curve 
for device on FR-4 

board in still-air

hundreds of seconds

a second or so

tens of seconds
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Utilize symmetry whenever possible
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if

then and

R⇒

R2≈

R4≈ 
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Cylindrical and spherical conduction (through 
radial thickness) resistance formulas

Lk2
r
r

R

Lk
r
r

R

i

o

i

o

⋅⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

⋅⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

π

π

ln

ln

• L – cylinder length
• ri – inner radius
• ro – outer radius

where

Half-cylinder

Full cylinder
k4
r
1

r
1

R

k2
r
1

r
1

R

oi

oi

⋅

−
=

⋅

−
=

π

π Hemisphere

Full sphere

[included angle]
[solid angle]
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• The device and system are 
equally important to get right

Predicting the temperature of 
high power components



Corporate R&D • 8-Jul-2007144 Electronics System Thermal Design and Characterization (RPS)

Using the previous board example …

12

15

15

10

180

14

11

15

11

10

21

95

21

22

14

125

18

21

25

22

63

19

61

59

11

18

73

61

55

60

62

14

63

55

15

21

61

65

60

55

6365

2420

6055

6573

1110

2522

5560

6055

7165

6575

B

R5

R3

R1

J6

J5

J4

J3

J2

J1

0.02qj6

0.2qj5

0.5qj4

0.5qj3

0.5qj2

0.5qj1

power 
vector

theta array
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Observe the relative contributions

=  (75 x 0.5)    + 
(65 x 0.5) + (55 x 0.5) + (60 x 0.5) + (22 x 0.2) + (10 x 0.02)

+   25

For junction 1 (a high power component) we have:

=       37.5     +   32.5 + 27.5 + 30 + 4.4 + 0.2     +     25

=   37.5   +        94.6             +    25

the device itself …
the other devices …
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Graphically, it looks like this:

junction temperature

power

1

75 C/W

25 C

q1=0.5 W

TJ1

∆=94.6 C ∆=37.5 C

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ψ∑

n

2
nn1 q

note the “embedded”
theta-JA looks like 
264 C/W

264 C/W

increasing 
power

decreasing 
power

( )1A1J qθ

1

157 C
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• The system is probably more 
important than the device

Predicting the temperature of 
low power components
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Using the previous board example …

12

15

15

10

180

14

11

15

11

10

21

95

21

22

14

125

18

21

25

22

63

19

61

59

11

18

73

61

55

60

62

14

63

55

15

21

61

65

60

55

6365

2420

6055

6573

1110

2522

5560

6055

7165

6575

B

R5

R3

R1

J6

J5

J4

J3

J2

J1

0.02qj6

0.2qj5

0.5qj4

0.5qj3

0.5qj2

0.5qj1

power 
vector

theta array



Corporate R&D • 8-Jul-2007149 Electronics System Thermal Design and Characterization (RPS)

Relative contributions to ∆TJ6

=  (10 x 0.5) + (11 x 0.5) + (15 x 0.5) + (11 x 0.5) + (14 x 0.2)
+      (180 x 0.02)

+   25

=    5.0 + 5.5 + 7.5 + 5.5 + 2.8   +   3.6         +   25

=   26.3   +                     3.6              +   25

the device itself …

the other devices …
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Graphically, low-power device #6 looks like this:

junction 
temperature

power

1

180 C/W

25 C

q6=0.02 W

TJ6

∆=26.3 C

∆=3.6 C

and just in case you were 
wondering, the “embedded”
theta-JA looks like 1495 C/W !

54 C



Corporate R&D • 8-Jul-2007151 Electronics System Thermal Design and Characterization (RPS)

How to harness this math in Excel®

Controlling the matrix



Corporate R&D • 8-Jul-2007152 Electronics System Thermal Design and Characterization (RPS)

3x3 theta matrix, 3x1 power vector Excel® math

theta 
matrix

power 
vector

Matrix MULTiply

{=array formula notation}

array reference 
to theta matrix

array reference 
to power vector

obtained by using 
Ctrl-Shift-Enter rather 
than ordinary Enter

multi-cell placement 
of array formula



Corporate R&D • 8-Jul-2007153 Electronics System Thermal Design and Characterization (RPS)

7x3 theta matrix, 3x1 power vector Excel® math

array formula now 
occupies 7 cells

theta matrix is no longer square –
# of columns still must equal

# of rows of power vector

don’t forget to use
Ctrl-Shift-Enter

to invoke array formula notation
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7x3 theta matrix, 3x2 power vector Excel® math
the single MMULT array formula now occupies 

7 rows and 2 columns (one column for each 
independent power scenario result)

power “vector” is now a 3x2 array –
each column is a different power 

scenario, yet both are still processed 
using a single array (MMULT) formula
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For instance, what if your cooling depends 
significantly on convection from the board 

surface (whether free or forced air)?

Package-shrink “gotcha”

TAhq ∆⋅⋅=
Th

qA
∆⋅

=

Often, much or even most of theta-JA 
depends on what isn’t the package?

So never mind the package resistance, the board
can only transfer a certain amount of heat to the air:

⇔
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SOT23 @ 0.25W, ∆T = 100°C, 4 packages per 1000 mm^2

SOT723 @ 0.25 W, ∆T = 100°C, 4 packages per 1000 mm^2

SOT723 @ 0.125 W, ∆T = 100°C, 8 packages per 1000 mm^2

Decrease 
size but not 

power 
dissipation 

Decrease size 
and reduce 

power dissipation 

(RDSON or other 
electrical 

performance)

Heat transfer 101
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• Theory
– What is it?
– When can it happen?
– A mathematical model of power-law runaway

• An actual device example
• The surrounding system

– A paradox and its resolution
– how other components in a complete system 

affect runaway in a susceptible device
• Review

Thermal runaway
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power 
goes up temperature 

rises

typical thermal response

nonlinear electrical response

Thermal 
runaway
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Thermal runaway

• System thermal resistance isn’t low enough to 
shed small perturbations of power

• Nonlinear power vs. junction temperature 
device characteristic
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equals 
power OUT

thermal 
system

temperature 
increases
temperature 

is fixed

power IN

power 
dissipation 

rises

input 
power 

increases

Balance of power

thermal 
system
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temperature 
increases

power 
dissipation 

rises

Device nonlinearity 
causes trouble

By design,
power is balanced 

and
temperature is fixed.
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A linear thermal cooling system

xJxJ TQT +⋅= θ

Jx

xJ TTQ
θ
−

=

Jx

1
dT
dQ

θ
=

junction temperature as function of 
power, theta, and ground

… solving for power

sensitivity (slope) of power with 
respect to temperature
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Operating point of thermal system with 
temperature-independent power

junction temperature

power does not change 
with temperature

device line

as temperature rises, more 
heat may be dissipated

power

Q

Tx

1

θJx

TJ

system line

at small increase in 
temperature, system 
dissipates more power 
than device produces, so 
temperature falls

tendency to cool

tendency to heat

a decrease in temperature 
means system dissipates 
less power than device 
produces, so temperature 
rises



Corporate R&D • 8-Jul-2007164 Electronics System Thermal Design and Characterization (RPS)

power

junction temperature

Q

Tx

1

TJ

power goes down 
with increasing 
temperature

device line

system line
as temperature rises, more 
heat may be dissipated

tendency 
to cool

tendency 
to heat

Operating point of thermal system where 
power decreases with temperature

θJx
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Operating point of thermal system where power 
increases with temperature, slopes favorable

power

junction temperature

Q

Tx

1

TJ

device line

system line

at small positive increase 
in temperature, system can 
still dissipate more power 
than device produces

tendency 
to cool

tendency 
to heat

θJx
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power

junction temperature

Q

Tx TJ

power goes way up with 
increasing temperature

device line

system line

as temperature rises, more 
heat may be dissipated

for a small positive increase in 
temperature, increased device 
power exceeds increased 
system dissipation capacity, so 
device “runs away”

tendency 
to cool

tendency to heat

Operating point of thermal system where power 
increases with temperature, slopes unfavorable
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Operating points of thermal system when 
device line has negative second derivative 

power

junction temperature

Q2

Tx

TJ2

power goes up with 
increasing temperature

device line

system line

the stable (that is, 
real) operating point

an unachievable 
operating point

tendency 
to cool

tendency 
to heat

tendency 
to cool

Q1

TJ1

but rate of increase 
falls with increase 
(negative second 
derivative)
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System with no operating point, negative 
second derivative, cannot be powered up 

power

junction temperature
Tx

device line

system line

tendency to cool 
everywhere
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Device with negative second derivative, 
system has unrealizable operating point, 

power

junction temperature
Tx

device line

system line tendency 
to cool

tendency 
to cool

an unachievable 
operating point
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Operating points of thermal system when 
device line has positive second derivative

power

junction temperature

Q

Tx TJ

power goes up with 
increasing temperature, 
but rate of increase rises 
with increase (positive 
second derivative)

device line

system line

the stable 
(that is, real) 
operating 
point

an unachievable 
operating point

tendency 
to cool

tendency 
to heat

tendency 
to heat
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System with NO operating point, 
overheats as soon as powered up

power

junction temperature
Tx

device line
system line

tendency to heat 
everywhere
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System with exactly one “runaway” operating point, 
device has positive second derivative 

power

junction temperature

Q

Tx TJ

device line
system line

the exact “runaway”
condition; slope of device 
line equals slope of system 
line at point of intersection

tendency 
to heat

tendency 
to heat

neutral 
tendency at only 
this point
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Let’s see how it works

device 
operating 

curve

25°C/W 
system

stable 
operating 

point

unstable operating point

10°C/W 
system

NO 
operating 

point!

40°C/W 
system

0.0

0.4

0.8

1.2

1.6

2.0

20 40 60 80 100
Junction Temperature [C]

D
ev
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e 
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w

er
 D

is
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tio

n 
[W
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Generic power law device and 
generic linear cooling system 

power

junction temperatureTx

device 
lineunstable 

operating 
point

system line B

Ty

stable 
operating 
point

runaway point for 
original theta

runaway point for 
original thermal ground

system 
line C

1

θJx1 θJx1

1

1
θJx2

system line A

TR2 TR1

Q

TJ
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Don’t get confused by the terms!

xay =

xey =

IVQ ⋅=

a mathematical 
“power law”device power

an “exponential”
power law (base is e)
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Definition of power law device

10
T

o 2II =

( ) ⎟
⎠
⎞

⎜
⎝
⎛

== 2
10
T

o
10
T2

o eIeII lnln

λ
T

oeII =

⎟
⎠
⎞⎜

⎝
⎛
−

=

2
1

21

I
I

TT

ln
λ

λλ
T

o

T

oR eQeIVQ ==

λ
λ

T
o eQ

dT
dQ

= λ

λ

T

2
o

2

2
eQ

dT
Qd

=

rule of thumb for leakage;
2x increase for every 10°C for constant voltage, power does 

the same

1st and 2nd derivatives

both always positive

defining:
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The mathematical essence

Jx

xTTQ
θ
−

=

λ
T

oeQQ =

λ
θ
λ xT

oJx
e

Q
k

−

=

zekz =

System line

Power law 
device line 

λ
xTTz −

=

Qe
Q
1q

xT

o ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

−
λ

Non-dimensionalizing

temperature

power

where:

zeq =
(power law device)

kzq =

Leads to:

(system)

Eliminating q:
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Perfect runaway transformed

ez

at point of tangency, 
slope equals height

zT1z0

k=ez

1zz 0T =−

λ
xTTz −

=
zT1z0

k=ez

zT1z0

k=ez

zT1z0

k=ez
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Transforming the nominal system

ez

at point of 
tangency, slope 
equals height

1

k=e

“operating”
points

k > e
(2 intersections)

k < e
(no intersections)

nominal 
system line A
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Everything transformed
non-dimensional 
power

device 
line

unstable, 
non-operating 
point

stable 
operating 
point

system line A

zR2

runaway point for 
original theta

runaway point for 
original thermal ground

system line B

system line C

non-dimensional temperature
zR1

k1

1 zx1

k2

1

( )11R kz ln=( ) 1kz 11x −= ln 1z 2R =

ek2 =

k1

1
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“Perfect runaway” results
in original terms

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

o1Jx
1R Q

T
θ

λλ ln

λ
θ

λλ −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

o1Jx
1x Q

T ln
⎟
⎠
⎞

⎜
⎝
⎛ +−

=
1T

o
2Jx

x

e
Q

λλθ

λ+= x2R TT

runaway temperature based on 
original slope

max ambient that goes 
with it

runaway temperature based on 
original ambient

system resistance that 
goes with it
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The “operating” points

ez

“operating”
points

1

kz

sz
s ekz =

uz
u ekz =

sz uz

stable

unstable
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Newton’s method for the intersections

i

i

1i

z
11

z
e
k

z
−

⎟
⎠
⎞

⎜
⎝
⎛

=+

ln( )
( )i

i
i1i zF

zFzz
′

−
−=+

zkz =ln

( ) kzzzF ln−=

For k/e ranging between 1.01 and 1000, convergence is 
to a dozen significant digits in fewer than 10 iterations.

zekz =

e
ke

1
k
1zo

⋅
== this initial guess 

converges to lower, 
stable point

⎟
⎠
⎞

⎜
⎝
⎛+==

e
k1kzo lnln

this initial guess 
converges to upper, 

unstable point

( )
z
11zF −=′
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Excel® implementation of Newton’s method
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And the intersection points come from …

stablexstable zTT ⋅+= λ

find the non-dimensional intersections first, then

unstablexunstable zTT ⋅+= λ
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1.02E-39.4E-5[W]

17.817.9[°C]

Real datasheet example

1.70E-35.20E-4Itref [A]

2.80E-28.50E-3Itmax [A]

7575Tref [°C]

125125Tmax [°C]

4012Vr [V]

λ
oQ

the device power curve parameters
@12V @40V

⎟
⎠
⎞⎜

⎝
⎛
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ref

ref
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I

TT

max

max

ln
λ

oR0 IVQ =λλ
refT

tref

T

t0 eIeII
−−

==
max

max

λ
T

0eII =
( ) 414
2

10 .
ln

==
rule of thumb 
gave us:

† MBRS140T3

raw device data†
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101.3

83.5

1.609

1.02E-39.4E-5[W]

17.817.9[°C]

92.892.9[°C]

96.61055max [°C/W]given
ambient

92.2135.1[°C]

74.4117.2max [°C]given
theta

0.9710.6(compare to unity)

Runaway analysis in nominal system

1.70E-35.20E-4Itref [A]

2.80E-28.50E-3Itmax [A]

7575Tref [°C]

125125Tmax [°C]

4012Vr [V] λ
oQ

e
k

xT

1RT

2Jxθ

2RT

3120z .=

raw device data†

computed results
@12V @40V @40V

3152z .=

These translate into:
a stable operating point at 80.6°C (and 0.09 W),
an unstable point at 116.3°C (0.69 W)

1001Jx =θ 601Jx =θ

75Tx =
1T

oJx

x

e
Qe

k −
−

= λ
θ
λ

† MBRS140T3
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How about the real thermal system?

• Is ambient really ambient?

• Is theta-JA what you think it is?
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A paradox

junction

thermal ground

50°C/W

lead

100°C/W

100°C

75°C

25°C

0.5 W

thermal runaway,
based on θJx=150°C/W,

calculated to be at 125°C

junction

thermal ground

50°C/W

lead

0.2°C/W

100°C

75°C

74.9°C

0.5 W

thermal runaway,
based on θJx=50.2°C/W,
calculated to be at 150°C

identical

Case A Case B
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Paradox lost

junction

50°C/W

lead

100°C/W

100 + 15°C

75 + 10°C

(fixed) 25°C

0.5 + 0.1 W

junction

50°C/W

lead

0.2°C/W

100 + 5.02°C

75 + 0.02°C

(fixed) 74.9°C

Case A Case B

raise the power by 0.1 W and see what happens
0.5 + 0.1 W
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Illustrating the paradox

100 C25 C 74.9C

common nominal 
operating point

0.5 W

Case A

Case B
device 
line
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Consider the following 6-component example of 
a complete system, using linear superposition to 

describe the thermal behavior

Tj3 Tj2

Tj1Tj4

Tj5Tj6

Tref1

Tref5

Tref3

TB

Tamb

This is the 
one we’re 

interested in
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Linear superposition math

aT+⋅= QθTj

temperature 
(vector) power 

(vector)
theta 

(matrix)

ambient 
(scalar)

matrix 
product
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Putting illustrative numbers on the problem:

12

15

15

10

180

14

11

15

11

10

21

95

21

22

14

125

18

21

25

22

63

19

61

59

11

18

73

61

55

60

62

14

63

55

15

21

61

65

60

55

6365

2420

6055

6573

1110

2522

5560

6055

7165

6575

B

R5

R3

R1

J6

J5

J4

J3

J2

J1

0.02Q j6

0.2Q j5

0.5Q j4

0.5Q j3

0.5Q j2

0.5Qj1

power 
vector

theta array
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Observe the relative contributions

=  (10 x 0.5) + (11 x 0.5) + (15 x 0.5) + (11 x 0.5) + (14 x 0.2)
+      (180 x 0.02)

+   25

=    5.0 + 5.5 + 7.5 + 5.5 + 2.8   +   3.6       +        25

=   26.3   +                   3.6          +    25

the device itself …

the other devices …

(ambient)
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Symbolically, for just Tj6, we’d write this:

( ) a6a6j

5

1i
i6i6j TQQT +⋅+⋅= ∑

=

θψ

+

temperature 
of device #6 power of 

other 
devices

“interaction” terms from 
theta matrix (off-

diagonal elements)

ambient 
(scalar)

device #6 “self heating”
term from theta matrix

power of 
device #6

effective ambient
“system” slope
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0.0

0.4

0.8

1.2

1.6

2.0
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Junction Temperature [C]
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n 
[W

]

Graphically, it looks like this

device 
operating 

curve

25°C/W 
system

system with 
“background 
heating” of 

other 
devices

real
runaway 
margin

( )∑
≠

⋅
ji

iij Qψ

what you 
thought

was your 
margin
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when Q6 is zero, 
both of these 
will be zero

( ) a

5

1i
i6i6a6j6j TQQT +⋅Ψ+⋅= ∑

=

θ

How does effective ambient relate to board temperature?

temperature 
rise, board to J6

effective 
ambient

“system” slope for 
isolated device

temperature rise, 
ambient to board

a6a6B6B6j TQQ ′+⋅+⋅= θθ

aa6BB6j TTT ′+∆+∆=

( ) a6a6BB6j TQ ′+⋅+= θθ

if any of these are non-zero, 
will be higher thanaT′ aT

when Q6 is 
not zero, both 
of these will 
be non-zero
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11:55
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