

InterPACK '07

USING LINEAR SUPERPOSITION TO SOLVE MULTIPLE HEAT SOURCE TRANSIENT THERMAL PROBLEMS

Roger Stout, P.E. Senior Research Scientist

roger.stout@onsemi.com

David Billings, P.E. Associate Research Scientist <u>david.billings@onsemi.com</u> (Presenter)

InterPack 2007, Vancouver Canada, ASME-JSME Thermal Engineering and Heat Transfer Conference

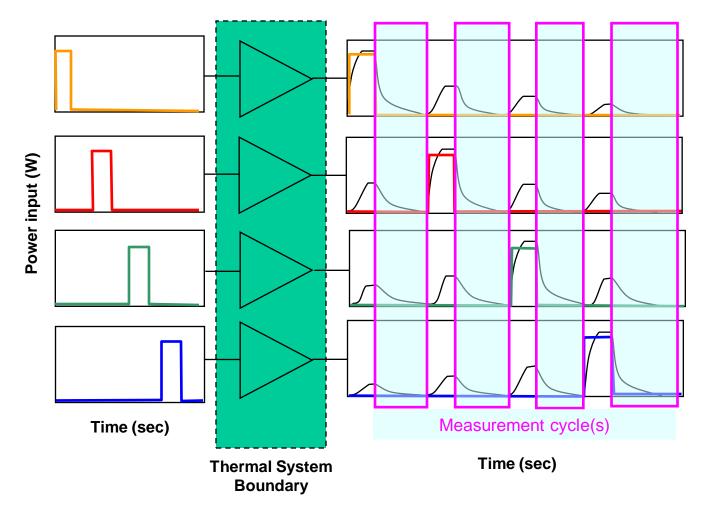
Stout & Billings• July 2007

Outline

- Setting up the Problem- Data collection
- Curve Fitting a R-Tau Model to Transient Data
- Using Linear superposition to solve Complex waveforms in Excel[™]
- Using Linear superposition to solve Complex waveforms in Electrical Spice
- Conclusion/ Recommendations
- References

Setting up the Problem- Data collection

- Each heat source needs to be independently heated.
- Each potential measurement location needs to be monitored.
 - Measurement techniques require high speed data acquisition for multiple inputs. A method of converting voltage from a device to a temperature from a calibrated source.
 - Simulation techniques require tracking temperature locations and storing the values for later processing.
- Transient temperature data must then be converted to a transient impedance curve and fit to a R-Tau net-list.


Temperature (°C)

ON Semiconductor®

Each heat source needs to be independently heated.

Each heat source needs to be independently measured based on the interaction of the others.

InterPack 2007, Vancouver Canada, ASME-JSME Thermal Engineering and Heat Transfer Conference

3

Converting Temperature data into Thermal resistance values for R-Tau model fit.

 Temperature correction for the first millisecond can be performed for a surface flux heat source input using the square-root of time estimate. (MIL-STD 883 method 1012, Heat Transfer, J.P Holman 5th edition)

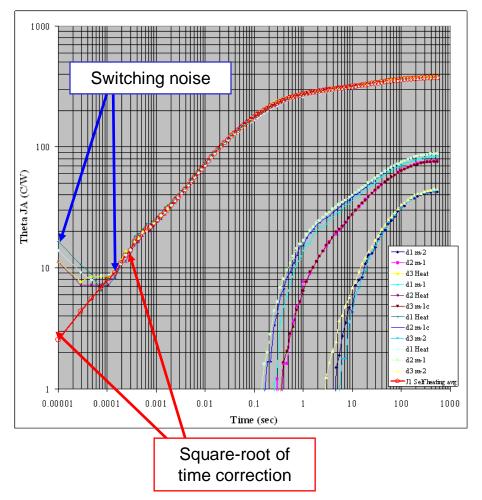
$$Csr = \frac{2}{\sqrt{\pi * \rho * Cp * K}} \frac{1}{A} \qquad \qquad \frac{1}{Csr_{-}eff} = \frac{1}{Csr_{1}} + \frac{1}{Csr_{2}}$$

[units °C-mm^2-√sec/W]

```
R(time) = Csr\_eff * \sqrt{time}
```

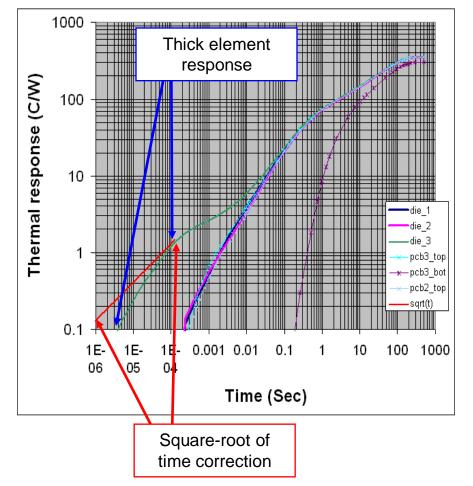
```
[units °C/W]
```

r	
Definitions:	
A	area of the surface being heated
L	thickness of the material
ρ	density of the material
Ср	Specific heat of the material
K	thermal conductivity of the material
Csr	square-root-of-time constant
Csr_eff	parallel combination of Csr constants
R(t)	thermal response as a function of time
sqrt(t)	square-root-of time abbreviation
C	thermal capacitance
t	time
Tau	thermal time constant

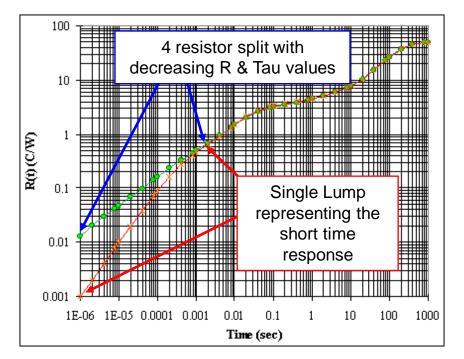

InterPack 2007, Vancouver Canada, ASME-JSME Thermal Engineering and Heat Transfer Conference

USING LINEAR SUPERPOSITION TO SOLVE MULTIPLE HEAT SOURCETRANSIENT THERMAL PROBLEMS (RPS & DTB)

Converting Temperature data into Thermal resistance values for R-Tau model fit. (Continued)

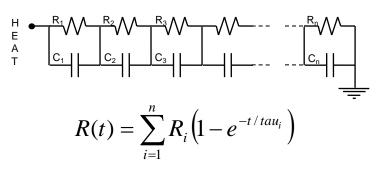

- Measured data typically is very noisy because of the switching from a heating condition to a measurement state. This can last up to 1 millisecond or longer depending on the device characteristics.
 - We heat to steady state then switch to measurement and watch the complete cooling curve to eliminate as much noise as possible. It limits our power input to a steady state value but enhances our measurement accuracy and noise reduction.

Converting Temperature data into Thermal resistance values for R-Tau model fit. (Continued)

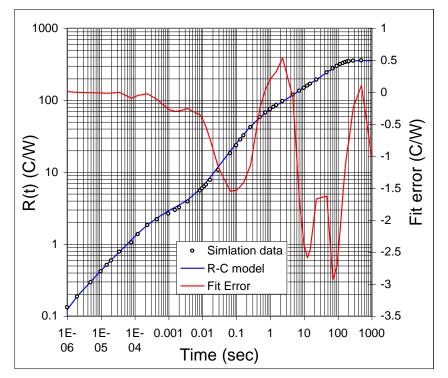

- Simulated data typically is affected by the short time response of the elements. Elements that are too thick relative to the heat flow direction will under predict the temperature rise.
- There is a trade off between model solution time and size and temperature response. As long as we understand where this limitation begins we can correct for the discrepancies using the square-root of time estimate

Converting Temperature data into Thermal resistance values for R-Tau model fit. (Continued)

- Understanding that the square-root of time estimates for a surface flux heat source improves the model, we can take it one step further to improve the curve fitting for a lumped parameter network.
- Lumped parameter models suffer the same problems of finite element models. A lump too large will respond too slowly to represent the actual system.
- Breaking the short time response lumps into smaller and faster responding lumps improves the accuracy of the model.
- This allows us to resize the model for quicker response if need be.


A Method of spliting the short time response:

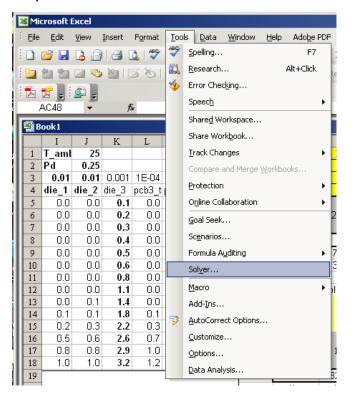
R1=Csr_eff*SQRT(Tau1) R2=Csr_eff* SQRT (Tau2)-R1 R3=Csr_eff* SQRT (Tau3)-R1-R2 R4=Csr_eff* SQRT (Tau4)-R1-R2-R3

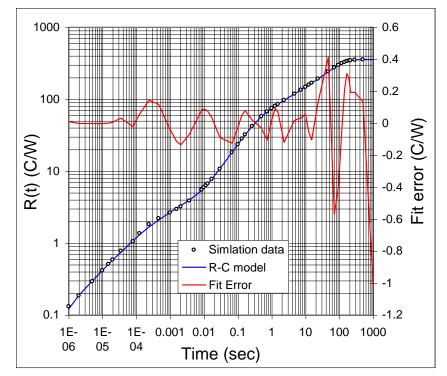

Converting Temperature data into Thermal resistance values for R-Tau model fit. (Continued)

- A Foster network can be easily represented in Excel as an array formula with a combination of a few key strokes. [Control+Shift+Enter] which add the braces {} to the formula.
- Adding a fit error function to show the difference between input data and fit data helps to visualize model fit overall.

{=SUM(R1:R10*(1-EXP(-*t*/Tau1:Tau10)))}

 $Tau_i = R_i * C_i$


Fit Error= delta between model and fit @ a particular time value


Fit error function=SQRT(SUMSQ(delta1:delta2)) Used to optimize the overall curve fit

Converting Temperature data into Thermal resistance values for R-Tau model fit. (Continued)

 Using the "solver" feature in Excel can also be used to minimize the error between input data and R-C model.

After optimization

Final R-Tau model fit.

- Although a little manual manipulation may be 1000 0.6 required to ensure convergence as well as 0.4 constraining the end points of the model. {=SUM(R1:R10*(1-EXP(-t/Tau1:Tau10)))} 0.2 100 R's Tau's (C/W) (C/W) Csr eff=130.9 0.13096 1.00E-06 1 -0.2 R1=Csr eff*SQRT(Tau1) 1.00E-05 2 0.28318 error R2=Csr eff* SQRT (Tau2)-R1 R(t) -0.4 R3=Csr eff* SQRT (Tau3)-R1-R2 1.00E-04 3 0.89549 -0.6 4 1.47 0.0008 Subject to these Constraints 5 4.93 0.036 Simlation data -0.8 R4:R9>0.01 R-C model 6 40.94 0.269 Tau4:Tau10>1e-6 Fit Error -1 7 33.27 1.348 0 1 -12 8 43.49 6.705 1E-1E- 0.001 0.01 0.1 1E-10 100 1000 05 9 06 04 0.010 20.604 Time (sec) 229.3 67.244 R10=Max R(t) from data – SUM(R1:R10) 10
- Highlighted values are allowed to be changed by the solver. The other values are fixed by definition.
- This is then repeated for every temperature heat source.
- Non heated elements do not require the sqrt(t) correction as the first three rows show in this example.

Assembling into blocks for Superposition solution

 Each block is assembled for each heat source self heating network and the networks interactions with the other heat sources.

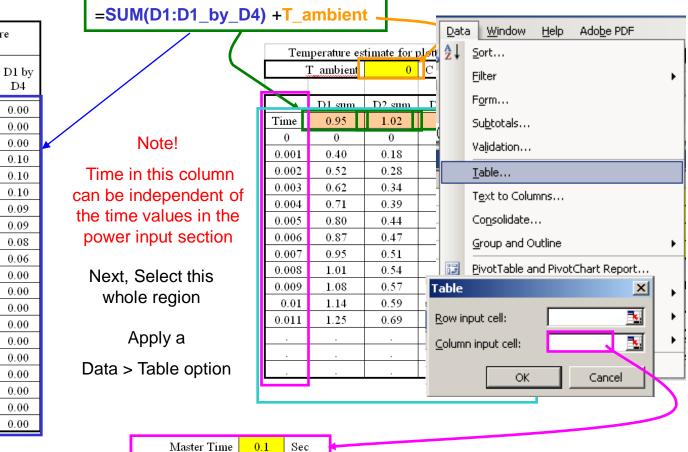
Thermal equivalent Resistor – Capacitor networks

Self Heating Network (R-Tau)

Thermal equivalent Resistor – Capacitor networks

Interaction Heating Networks (R-Tau)

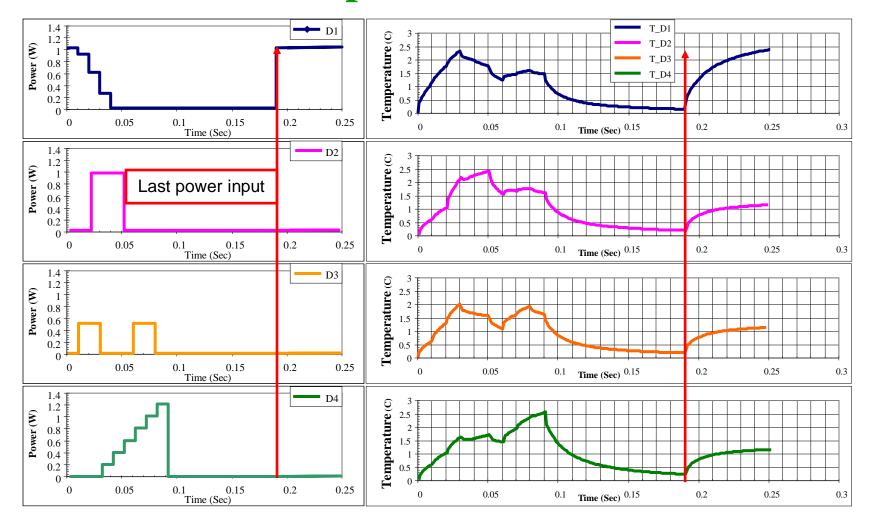
		\sim				
	\sim	D1		D1 by D2	D1 by D3	D1 by D4
		R(t) C/W		R(t) C/W	R(t) C/W	R(t) C/W
_	1/	0.014				
	73	0.030				
	3	0.095	$\mathbf{\Lambda}$			
	4	0.122				
	5	0.05		0.2	0.2	0.2
	6	0.8		0.5	0.5	0.5
	7	1.4		0.3	0.3	0.3
	8	0.4	7	0.4	0.4	0.4
	9	0.6	Γ	0.6	0.6	0.6
	10	22.6		21.93	21.93	21.93
		Tau (sec)		Tau (sec)	Tau (sec)	Tau (sec)
	1	1.0E-06				
	2	1.0E-05				
	3	1.0E-04				
	4	3.5E-04				
	5	1.0E-03	\mathbf{N}	0.001	0.001	0.001
	6	0.01	$\overline{\Lambda}$	0.01	0.01	0.01
	7	0.04		0.04	0.04	0.04
	8	0.5		0.5	0.5	0.5
		2.2		2.2	2.2	2.2
	10	150		150	150	150
		$\mathbf{\mathbf{\nabla}}$				
		R-Tau	FO	STER NET-I	LIST BLOCK F	OR D1 ONLY


Organizing the sheet for transient solution

A cell for		Master Time 0.1 Sec Operating conditions PD (a) time					Delta functions used for superposition calculation				Change in Temperature Responses						
keepir track of overall t	the	Time (sec)	Power D1 (W)	Power D2 (W)	Power D3 (W)	Power D4 (W)		Dtime (sec)	d₽- D1	dP- D2 (W)	dP- D3 (W)	dP- D4 (W)	D1	D1 by D2	D1 by D3	D1 by D4	
progress		0	1	0	0	0	W W	0.1	- =I	F(Ma	ster_	_Tim	e>Ro	w_Tir	ne,Ma	aster_	time-Row_time,0)
		0.01	0.9	0	0.5 0.5	0	W	0.09	-0.3	1	0	0	1 72	1.05	0.00	0.00	
of AL		0.02	0.25	1	<u> </u>	0.1	W	0.08	-0.35	0	-0.5		-0.82	0.00	-0.51	0.00	
blocks	S.	0.04	0	1	0	0.2	W	0.06	-0.25	0		0.1	-0.57	0.00	0.00	0.10	
		0.05	0	0	0	0.3	W	0.05	0	-1	0	0.1	0.00	-0.97	0.00	0.10	
Sel	f heati	na coli	umn (e	each ce	ell is a	senara	te a	rrav fo	rmula	a) 0	0.5	0.1	0.00	0.00	0.46	0.09	
		0	•			•					0.1	0.00	0.00	0.00	0.09		
{=u	F-D#			J (I-E/	∧r(-uu	me/ rau	11.1	au 10))]}	0	-0.5	A 1	0.00	0.00	-0.39	0.08	
		0.09	0	0	0	0.7	W	0.01	0	0	0	0.1	0.00	0.00	0.00	0.06	
		0.1	0	0	0	0.8	W		0	0	0	0.1	0.00	0.00	0.00	0.00	
		0.11	0	0	0	0.9	W	0	0	0	0	0.1	0.00	0.00	00	0.00	
		0.115	0	0	0	1	W	0	0	0	0	0.1	0.00	0.00	0.00	0.00	
		0.12	0	0	0	0	W	0	0	0	0	-1	0.00	0.00	0.00	0.00	
Inte	eractio	n heat	ed col	umns	(each d	cell is a	sei	oarate	array	form	ula)	0	0.00	8.00	0.00	0.00	
					•	ime/Tau					,	0	<u>0.00</u> 0.00	0.00	0.00	0.00	
							10. I		0	0	0		0.00	0.00	0.00	0.00	
		0.17	0	0	0	0	W	0	0	0	0	0	0.00	0.00	0.00	0.00	
		0.18	1	0	0	0	W	0	1	0	0	0	0.00	0.00	0.00	0.00	
	A section for power input A section						A	section	on fo	or		A se	ection	for			
	• •				Time		now	۵r		Temperature respor				<u>م</u>			
						anges								50			
						changes				calculation							
			•			-				. –							

UN

Table for plotting temperature output


	Change in Temperature Responses							
dP- D4 (W)	D1	D1 by D2	D1 by D3	D1 by D4				
0	2.51	0.00	0.00	0.00				
0	-0.25	0.00	0.54	0.00				
0	-0.72	1.05	0.00	0.00				
0.1	-0.82	0.00	-0.51	0.10				
0.1	-0.57	0.00	0.00	0.10				
0.1	0.00	-0.97	0.00	0.10				
0.1	0.00	0.00	0.46	0.09				
0.1	0.00	0.00	0.00	0.09				
0.1	0.00	0.00	-0.39	0.08				
0.1	0.00	0.00	0.00	0.06				
0.1	0.00	0.00	0.00	0.00				
0.1	0.00	0.00	0.00	0.00				
0.1	0.00	0.00	0.00	0.00				
-1	0.00	0.00	0.00	0.00				
0	0.00	0.00	0.00	0.00				
0	0.00	0.00	0.00	0.00				
0	0.00	0.00	0.00	0.00				
0	0.00	0.00	0.00	0.00				
0	0.00	0.00	0.00	0.00				
0	0.00	0.00	0.00	0.00				

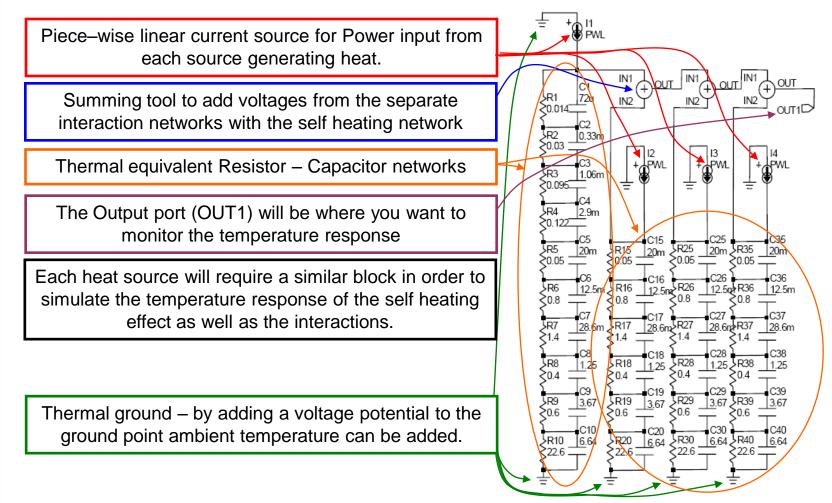
ON

Final plotted Results

InterPack 2007, Vancouver Canada, ASME-JSME Thermal Engineering and Heat Transfer Conference

USING LINEAR SUPERPOSITION TO SOLVE MULTIPLE HEAT SOURCETRANSIENT THERMAL PROBLEMS (RPS & DTB)

14



Spice Thermal Simulation

 Using an electrical analogy to do thermal analysis the following rules apply:

Electrical	Thermal
Voltage (V)	Temperature difference (°C)
Current (A)	Power (W)
Resistance (Ω)	Thermal resistance (°C/W)
Capacitance (forad)	Thermal capacitance
Capacitance (farad)	(W-sec/°C) [Tau/R]

Components of a Spice model

Conclusions

- With the right tools a Thermal R-C network can be generated from temperature data which is captured from measurements or Finite Element simulation.
- The method allows for generating complex compact transient thermal models with several heat sources.
- Many problems can be solved using a spread sheet tool like Excel[™] from Microsoft[®].
- The method can also be performed using Electrical tools such as SPICE or P-SPICE. (Assuming a voltage summing tools is available in the library.)

Recommendations

- Temperature dependences of power can be added but may cause solution instability in tools such as Excel.
- Model size can get to the point of overwhelming the computational capability of the computer.(>100 networks)
- Foster Networks can be used to simulate the thermal response of a system using commonly available software tools, where as Cauer networks (which are closer to a physical lumped system) are not.
- Cauer Networks are also harder to generate physically representative lumped parameters models.

References

1- D. E. Mix and A. Bar-Cohen, "Transient and Steady State Thermo-Structural Modeling of a PDIP Package", Proceedings of the ASME Winter Annual Meeting, Nov. 1992, ASME

2- "Accuracy and Time Resolution in Thermal Transient Finite Element Analysis," ANSYS 2002 Conference & Exhibition, April 2002, R.P. Stout & D.T. Billings
3- "A Conjugate Numerical-RC Network Prediction of the Transient Thermal Response of a Power Amplifier Module in Handheld Telecommunication," InterPACK 2005, July 2005, T.Y. Lee, V.A. Chiriac, R.P. Stout
4- AND8223-D Predicting Thermal Runaway. Roger Stout, Available at www.onsemi.com.
5- W.J. Hepp, C.F.Wheatley, "A New PSICE Subcircuit

For the Power MOSFET Featuring Global Temperature Options', IEEE Transactions on Power Electronics Specialist Conference Records, 1991 pp. 533-544

6- F Di Giocanni, G. Bazzabi, A. Grimaldi, "A New PSPICE Power MOSFET Subcircuit with Assoicated Thermal Model", PCIM 2002 Europe, pp. 271-276

7- M.Marz, P.Nance, "Thermal Modeling of Powerelectronics Systems", Infineon Technologies, Application Note, mmpn_eng.pdf. 8- A Laprade, S.Pearson, S. Benczkowsi, G. Dolny, F. Wheatley "A Revised MOSFET Model with Dynamic Temperature Compensation" Fairchild Semiconductor Application note 7533, Oct 2003. 9- "Model Transient Voltage Suppressor Diodes" Steve Hageman, MicroSim Application Notes, Version 8.0 June 1997, pp. 134-146 **10-** AND8214-D General Thermal RC Networks. Roger Stout, Available at www.onsemi.com **11-** AND8218-D How to Extend a Thermal-RC-Network Model, Roger Stout, www.onsemi.com 12- AND8219-D Duty Cycle and Thermal Transient Response, Roger Stout, www.onsemi.com 13- AND8221-D Thermal RC Ladder Networks, Roger Stout, www.onsemi.com