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ABSTRACT

A methodology for optimized defect excursion (EXR) moni-
toring is proposed using an economic statistical process control
(SPC) model for defect limited yield. The cost of in-line defect
inspections is increasing at an exponential rate, particularly for
a 300mm fabrication facility. Therefore, optimized in-line in-
spection schemes have become more critical for controlling the
costs of semiconductor manufacturing. In order to minimize
the inspection costs while maintaining acceptable yield, a cost
function which incorporates the power of the inspection, the
interval between inspections, and the yield impact (cost) is
optimized for all inspection locations in a given process flow
with a fixed sampling budget. This methodology can be used
to allocate inspections based upon the risk of yield excursions
at defect limited process layers. This model can also be used
to establish quantitative estimates of return on investment
(ROI) of inspections to inform decisions regarding purchase
of in-line monitoring (ILM) tools or sampling adjustment.
A quality-cost model has been derived using the theory of
economic SPC, and has been implemented in a high volume
CMOS fabrication facility with a high degree of success.

[Keywords: Advanced SPC techniques, Defect Inspection,
Cost Reduction, Cost of Ownership, Yield Enhancement,
Defect-to-Yield correlation]

INTRODUCTION

The risk of adding or removing an inspection per unit time
at a specific point in the flow depends on the information
gained per inspection. If the inspection gives information about
an assignable cause of yield loss that has occurred on a tool
and the information can be used in a timely corrective action,
the inspection can be said to provide “excursion control.” If
the source of defects is an isolated event, such as certain
sources of CMP scratches, which only affects a single wafer
or lot and does not persist on further processing, then the
inspection only gives information about the defect when the
defect is caught. However, some isolated events may be
indicative of incipient problems of longer lasting character.
Thus, defects must be observed with care. As time progresses
the information obtained from in-line data can be used to
establish a pareto of defect sources which can be used to
determine yield models, monitor the health of the line, and

prioritize process engineering efforts based on defect-limited-
yield.

The major considerations for an ILM engineer in the sam-
pling allocation problem are: (1) the total number of layers
to be inspected and their locations in the flow; (2) the rigor
of the inspections; and, (3) the interval between inspections at
each layer (measured in time, or equivalently, material) .

The allocation of an inspection point in the flow is dictated
by engineering insight into possible failure modes, the amount
of time to the end of line sort or acceptance sub-sampling,
and other considerations. In this investigation the location of
sampling layers will be predetermined and fixed by previous
cycles of yield- learning.

The rigor of the inspections is determined by evaluating
the errors and the sensitivity in the inspections’ recipes which
includes the pixel size of a SEM review, the threshold sen-
sitivity, and the hypothesized minimal killer defect size. For
example, defects deposited on a metal resist pattern are only
of concern if they are large enough to cause a blocked metal
etch. However, even if these considerations are met, there may
still occur smaller than critical size that cluster to a degree
which still creates a metal bridge. There are also sources of
risk due to the control level, L, of the defect monitoring chart,
and other statistical sampling errors accounted for in terms
of Type I (α) and Type II (β) risk. In this investigation, it is
assumed that the ILM recipes are optimized to the degree that
defective material can be detected with high accuracy and the
main source of error is statistical.

The interval between inspections determines the risk due
to possible low yield on unmonitored material. This question
is answered by addressing the relative risk of yield-limiting
defects, and the value of the information gained from standard
inspections’ baseline defect rate. The relative risk is obtained
by using an Automated Defect Classification scheme (ADC)
and a yield-to-defect/kill-ratio methodology to calculate the
killer defect density (KDD) [1], [2]. Once this is done, differ-
ent inspection layers can be quantitatively ranked relative to
each other and a low-risk sampling allocation can be obtained.

Defect limited yield can be subdivided into categories of
yield-loss-risk as shown in Fig 1(a). Low frequency high
impact (LFHI) events are referred to as defect excursions
(EXR), and high frequency low impact (HFLI) events that are
the baseline defectivity. HFHI events are not indicative of a



Fig. 1. Impact vs. frequency matrix showing region of concern for ILM
sampling of a stable process. HFLI is the baseline defectivity and LFHI is
high impact defect excursions. (b) The EXR impact of various FEOL and
BEOL layers is plotted against frequency. Note that FEOL layers have low
impacts and frequencies, while BEOL layers are scattered at high frequencies
and impacts.

stable process, and LFLI events do not justify corrective action
are not considered.

Fig 1(b) shows various inspection layers ranked by KDD
and EXR frequency. BEOL layers are labeled B1-11 for
reference. As an example, one can readily see that for similar
frequency, B1 and B3 have very different KDD impacts, and
for similar KDD impacts, B1 and B5 have very different
frequencies. Even though it is evident which layers pose the
highest risk to yield impact, it is not readily apparent from
this picture how to allocate inspections in order to minimize
the exposure to all these risks at once. In order to answer
this question a model is derived which establishes the cost
of risk due to exposure to defect-limited yield excursions.
This function is then minimized to find the optimal sampling
allocation.

DEFECT DATA METHODOLOGY

Wafers are sampled at standard inspection points (called
“layers”) throughout the flow based on technology inspection
requirements established in early product development and
yield learning. Defect information found by inspection tools
is fed into an ADC (auto-defect classification) system which
determines the defect type. The defect is then binned by
category (i.e. particles, blocked etch, stringers, scratches etc.)
called a “fine-bin”. This data along with the defect images,
size and coordinates are stored in a DDMS (defect data
management system). The average kill-ratio is assigned to a
fine-bin based upon overlay analysis with respect to end of
line wafer-probe data.

Each defect inspection layer in the flow is under SPC
control, which is characterized by the control level, L, the
interval between inspections, I, the number of wafers/lot per
inspection, n, the review fraction of the ADC system, f,
and other factors. Defect excursion limits are established for
defect count, defect density, characteristics, or spacial patterns.
Multiple control levels for these different failure modes act
collectively to define an effective SPC control level. The
interval between inspections is controlled by a scheduler, in
order to maximize the utilization of the inspection tool. When

Fig. 2. In-line inspection flow schematic.

a lot violates the control level, immediate follow-up actions
are initiated to isolate the source of the defects, contain the
problem, determine root-cause, fix the problem, verify that the
defectivity level is no longer above established limits, and then
return to monitoring the layer for reoccurance. This process is
shown schematically in Fig 2.

When a defect excursion occurs, the event is recorded and
documentation is generated that gives the excursion visibility
throughout the organization, which is also associated with
the lot for follow-up correlation analysis. Several aspects of
the failure including at-risk material (uninspected lots since
last-known-good inspection), containment time, and inspection
point (layer), are recorded. Chronic failure modes are assigned
to case studies that are further investigated by engineering
groups, and receive more visibility and resources from the
organization for long-term corrective action and continuous
yield improvement.

An accurate yield-to-defect model is pre-supposed for the
following development of the cost-of-risk model. More refined
models will create better estimates of the cost-of-risk at a given
layer, however, as long as the yield model is consistent from
layer-to-layer, the sample allocation should be unaffected.
Errors in the sample allocation are caused mainly by large
errors in the relative impact of a layer in comparison to the
rest of the line. These errors can be reduced by pursuing an
iterative approach to the yield-to-defect correlations, reducing
the error through continuing refinement. There is a great deal
of literature on yield-to-defect, yield models and methodology
[1]–[4], so this aspect of the problem will not be treated here.



MODEL DEVELOPMENT

The following model development proceeds along the lines
of standard “economic” or cost-based models of optimized
SPC, as formulated by A. J. Duncan [5], Lorenzen & Vance
[6], and Moskowitz et al [7]. Further details can be found in
these references.

Each inspection layer is characterized by the control level,
L, the number of wafers/lot, n, and the interval between
inspections, I. The probability of an inspection not detecting
an EXR, given that one has occurred — known as the β risk—
is calculated as a function of the EXR magnitude, ∆, the
defect distribution, Φ(·), the control level, L, and the number
of wafers, n. The review fraction, f , is used in a calculation
of a β-risk specific to ADC, by Shindo et al [8]. Without loss
of generality, we will not be using the review fraction in the
demonstration of the model in this paper.

The β-risk is used to estimate the average number of
intervals which will pass before a defect control level is
violated given that an EXR has occurred. The number of
intervals is called the out-of-control average run length (ARL),
which is given by ARL = (1− β)−1. The in-control average
run length (ARL0) is the average length of time between false-
alarms and is calculated through the α risk, which is simply
a function of the in-control defect distribution and the limit,
L. Constraints on the α risk can help minimize false alarms.

The process shown in Fig. 2 can be modeled as a re-
generative system, with the estimated EXR frequency λ as
the generalized transition rate [6]. Thus, the renewal-reward
theorem states that the average cost per unit time is given
by the expected costs over a renewal cycle divided by the
renewal cycle time. The total cost includes the yield loss and
scrap loss costs, the variable costs of inspection, fixed cost
of equipment, the costs of false alarm, the cost of corrective
actions, engineering support and other fixed costs.

The optimal sampling allocation will not depend on additive
fixed costs as these will not change with the input parameters.
The inspection equipment is assumed to be fully utilized,
therefore the variable costs of inpection become fixed to a
reasonable appoximation. The cost of corrective action will not
be considered in calculations due to the difficulty of defining
this cost objectively. Corrective action cost can be considered
another fixed cost burden which may consist of additional
inspection tool volume for ad hoc follow-up inspection(s), and
test wafers. The cost of false alarm will be kept small through a
constraint on the α risk. Due to these considerations, the cost
function will not contain these terms and will only contain
terms which pertain to the cost of yield loss. For this reason,
this simpler cost function will be called the cost-of-risk.

The expected cost is given by

E[C] = C0/λ + C1(∆)[I(ARL)− τ + γ + T ] (1)

where C0 is the baseline yield loss cost, C1 is the cost of
an EXR, which depends on the EXR magnitude ∆, τ is the
average time of EXR occurence, γ is the queue-time at the
inspection tool, and T is the average time until tool/process

shut-down for corrective action. The inspection interval,I , and
the ARL were explained earlier. The average time of EXR
occurence is calculated by A. J. Duncan [5]. For EXR control,
the baseline cost, C0 is not considered and so this term is left
out of the cost of risk.

The cycle-time is given by

E[T ] = λ−1 − τ + I(ARL) + γ + T (2)

and as an additional approximation the average queue-time at
the inspection tool, γ, is taken out of the cycle time since it is
assumed to be constant from layer-to-layer and will not affect
the allocation.

The full expression for the cost of a production cycle is
given in Lorenzen & Vance [6]. The cost of risk (as defined
above) is then given by

C = C1(∆)
e−λI + λIARL + (1−ARL)λIe−λI

λI(e−λI + ARL(1− e−λI))
(3)

This equation gives the total defect limited yield loss risk
given an EXR of ∆ standard deviations above baseline for
a given layer. To obtain the total risk across all layers, we
will add the risk from each layer. Given its complexity, a
linear combination of equation 3 is difficult to optimize. A
first approximation is to assume the statistical uncertainty is
vanishingly small (ARL = 1, or β = 0). This leads to the
expression, for the ith layer:

C(β = 0) = Ci(e−λiIi + λiIi − 1)/λiIi (4)

which is a standard result for the material at risk cost for
an inspection monitored system with certain detectibility of
failure [9], [10]. In what follows, this approximation will be
called the certain detection approximation (CDA). To second
order, this function can be written as

Ci(β = 0) ∼= 1
2
CiλiIi +O(λI)2 (5)

This a linear model of the cost, EXR frequency, and interval
between inspections. This model will be called the linearized
certain detection approximation (LCDA). Equation 5 will be
fairly accurate for EXRs with large ∆, however, it will deviate
greatly from the “exact” model (equation 3) at intermediate
EXR levels. These intermediate EXR levels have a greater
contribution to the cost (in frequency of occurence) than
the extreme levels, so they must be accounted for. As an
approximation in this intermediate zone, we set

Ci
∼= 1

2
CiλiIi(ARLi) (6)

This form will be used as the cost-of-risk model for a given
layer. The cost, C1, is estimated using a yield model of the
defect event. In this investigation, the Poisson yield model is
used (with unclustered defect density).

The three approximations are plotted in Fig. 3, as a function
of EXR level. As can be seen, for large ∆, CRM is higher
than the exact model by 10%. For intermediate ∆, the CRM
follows the exact model better than the other approximations,



Fig. 3. (LHS) The defect limited yield loss cost as a function of the EXR
magnitude ∆ (standard deviations). The bold line is the exact model as given
in Lorenzen & Vance (LV) [6]. For comparison is shown the certain detection
approximation (4), the linearized certain detection approximation (◦), and
the cost of risk model (¦). (RHS) The deviation (error) from LV for the three
approximations: CDA, LCDA, and CRM.

and toward small ∆ all approximations diverge. As a weight-
ing function for the EXR distribution, the CRM provides a
reasonable risk metric which has the added benefit of being
linear.

In order to compare different layers, the cost-of-risk func-
tion must be averaged over the distribution of ∆ beginning
at some high threshold ∆th which is consistent from layer to
layer. Once this averaging is done, the cost of risk of all layers
is given by

CR =
1
2

N∑

i=1

〈ARLiCi〉λiIi (7)

where 〈·〉 stands for an average over the historical EXR
distribution.

The linear form of CR allows for optimization by the
Lagrange multiplier method. In order to facilitate this opti-
mization, the layer level wafers/lot are fixed at n0 which is
the same for all layers. With the layer-level constraint that the
interval be no less than the average inspection queue time,
and no greater than the time-to-sort, the total constraint that
the production inspection volume is constant, the total number,
ni, of inspections per layer per unit time is given by

ni =
(

nt

n0

) √
λi〈ARLiCi〉∑N

j=1

√
λj〈ARLjCj〉

(8)

where nt is the total available inspection tool volume (in
wafers per unit time).

DISCUSSION

The simple form of equation 7 allows for an analytic
expression for the sample allocation. Other allocations can be
derived by optimizing the exact model (eq. 3), the CDA (eq.4),
or the LCDA (eq. 5). However, these other formulations either

Fig. 4. ILM allocation (wafers / WW) comparing the prior (unoptimized)
allocation to the optimized allocation using the allocation model given by
Eq.. Due to low risk, FEOL layers have reduced sampling. Note the dramatic
reallocations in B5 and B7 reflecting their high frequency and impact, whereas
B9-B11 are reduced.

require a computerized search algorithm, or place too much
weight on the extremes of the distribution. It also may be
a case of diminishing returns for the added accuracy of the
non-linear model in equation 3.

The form of eq. 7 is also intuitive considering the fact
that it is comprised of frequency, detectibility, and impact.
Risk metrics such as the RPN are constructed similarly [10].
In the absence of ESPC theory, if we simply chose the
simplest function which contained the features of the problem
(Frequency, detectability, and impact), and which was also
of correct dimensions (Frequency has units of inverse time,
detectability is unitless, and impact has units of cost), the
immediate result would be eq. 7, however, the exact forms of
the terms would be uncertain and the model derivation sheds
light on what these terms should be.

Other risk metrics exist and these can be used to establish a
optimal allocation. Construction of an equation involving the
defectivity variance (as analogous to the cost) can provide sim-
ilar results. The reason ESPC was used was to investigate the
impact of detectibility on the cost, and find an approximation
that can take this feature into account.

Equation 8 gives the optimal allocation of inspections given
a minimized CRM. In order to compare yield loss costs
with the fixed (additive) costs of inspection, and engineering
support, the allocation should be used with a more accurate
model such as equation 3, or the full LV model [6]. The full
LV model also includes the queue-time, drill-down, and false
alarm costs. The total cost of the inspection scheme can be
integrated into a cost-of-ownership formulation [11], [12], in
order to establish estimates of the return on investment of
additional inspection capacity (ROI).

The queue-time of the inspection tool, and the drill-down
time can be re-incorporated into the cost-of-risk allocation
model by assuming that the average cost impact due to these
factors is on the order of Ciλ(γ + T ). If the estimated cost



Fig. 5. Initial allocation will be uniform in absence of prior information,
however, as more data is collected some layers will dominate the yield loss
risk, and thus will demand a higher inspection rate

includes these factors, the correspondence is very close using
this additional term. However, since the additional cost due to
queue-time does not include the interval, this term does not
contribute to the optimized sampling plan and this is not a
part of the CRM.

Implementation of Model

The CRM was used to optimize the inspection allocation for
a high volume CMOS manufacturing line. The value of λ is
obtained from the DDMS database, along with the distribution
of EXRs and their yield-impacts. The 〈ARL〉 is determined
from the individual SPC parameters at a given layer. The
results are shown in Fig. 4

The sampling allocation should be reviewed periodically
and adjustments should be made if the EXR distributions have
shifted significantly. One such time to make an evaluation is
after a major process improvement change. After an initial
proof test (extended observation) the additional data should be
used to re-evaluate the allocation, and free up volume for more
at-risk layers. This adaptive sampling process is illustrated in
Fig.5.

Modeling and Input Errors

Errors due to the assumptions that led to the CRM have
been discussed, however, there are other errors to consider
due to the uncertainty of the inputs (C, λ, and the form of the
β risk which leads to the ARL). The exact determination of
λ depends on a long lead time prior to optimization, however,
sometimes a decision must be made with very few (or zero)
failures. In this case, it may be advisible to use the lower
confidence limit for the MTBF given zero failures the values
of which are given in many reliability statistics textbooks.

The cost depends on the type of yield model used, and
the accuracy of the yield to defect model—whether it is
an overlay analysis, critical area distribution, or some other
analysis methodology. A more accurate yield model will lead
to a better understanding of both the cost of risk, and the most
appropriate allocation of inspection volume.

It is well established that, for an a uniform failure rate λ, the
optimal distribution of inspections in time (t1, t2, . . .) is also
uniform and equal [13]. Thus, maintaining a fixed interval,
I , helps to keep the risk low. However, it is often difficult
to maintain such a uniform interval, and variations will occur.

The exact magnitude of this error is not known by the authors.
It suffices to say that keeping the variance of the sampling
interval to a minimum is a goal of the in-line manufacturing
systems.

These uncertainties and errors are unavoidable in a manu-
facturing environment. This implies that the linear form of the
CRM might be most robust against fluctuations of the input
parameters as compared to more non-linear models such as
eq. 3 or the full LV model. Future directions of research may
include a full sensitivity analysis comparing LV, eq. 3 and the
CRM.

SUMMARY & CONCLUSION

In summary, a linear cost of risk model (CRM) was derived
by approximating the full economic SPC of an in-line inspec-
tion layer. This model was compared with the exact model,
and other approximations. More precise functions may exist,
however, the CRM developed here has the attractive feature of
being linear in all inputs. This allows for easy optimization,
and gives an analytic form for the inspection allocation. This
allocation has been used to optimize inspection volume in a
high volume CMOS production line. The cost advantages to
this lie in the systematic reduction of exposure to the highest
risk layers based on historical data.

REFERENCES

[1] P. Mullenix, J. Zalnoski, and A. J. Kasten, “Limited yield estimation for
visual defect sources,” IEEE Trans. Semi. Manuf., vol. 10, no. 1, p. 17,
1997.

[2] L. S. Milor, “Yield modeling based on in-line scanner defect sizing and
a circuit’s critical area,” IEEE Trans. Semi. Manuf., vol. 12, p. 26, 1999.

[3] C. Stapper, “Lsi yield modeling and process monitoring,” IBM J. Res.
Devel., vol. 20, p. 112, 1976.

[4] A. Ferris-Prabhu, Introduction to Semiconductor Device Yield Modeling.
Artech House, 1992.

[5] A. J. Duncan, “The economic design of X̄-charts when there is a
multiplicity of assignable causes,” J. Amer. Stat. Assoc., vol. 66, p. 107,
1971.

[6] T. Lorenzen and L. Vance, “The economic design of control charts: a
unified approach,” Technometrics, vol. 28, p. 3, 1986.

[7] H. Moskowitz, R. Plante, and Y. H. Chun, “Effect of quality loss
functions on the economic design of x̄ process control charts,” European
J. Oper. Res., vol. 72, p. 333, 1994.

[8] W. Shindo, E.H. Wang, R. Akella, A.J. Strojwas, W. Tomlinson, and R.
Bartholomew, “Effective Excursion Detection by Defect Type Grouping
in In-line Inspection and Classification,” IEEE Trans. Semi. Manuf.,
vol. 12, no. 1, p. 3, 1999.

[9] J. Sarkar and S. Sarkar, “Availability of a periodically inspected system
under perfect repair,” J. Stat. Plan. Inf., vol. 91, p. 77, 2000.

[10] T. Bedford and R. Cooke, Probabilistic Risk Analysis. Cambridge Univ.
Press, 2001.

[11] R. Carnes and M. Su, “Long Term Cost of Ownership: Beyond Purchase
Price,” IEEE/SEMI Int’l Semi. Manuf. Sci. Symp., p. 39, 1991.

[12] D.L. Dance, T. DiFlorida and D.W. Jimenez, “Modeling the Cost of
Ownership of Assembly and Inspection,” IEEE Trans. Comp. Packag.
Manuf. Tech., vol. 19, p. 57, January 1996.

[13] J.B. Keller, “Optimum Inspection Policies,” Manage. Sci., vol. 28, no. 4,
p. 447, 1982.


