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ABSTRACT 

 
A real-time HMM-based isolated word recognition system 
is implemented on an ultra low-power miniature DSP 
system. The DSP system consumes less than 1 milliWatt, 
much less than what is considered today as "low-
resource". It has a very small footprint and requires only a 
single hearing aid sized 1 volt battery. The efficient 
implementation of HMM and MFCC feature extraction 
algorithms is accomplished through the use of three 
processing units running concurrently. In addition to the 
DSP core, an input/output processor creates frames of 
input speech signals, and a WOLA filterbank unit 
performs windowing, FFT and vector multiplications. A 
system evaluation using a vocabulary of 18 words shows 
a success rate of more than 99%. 
 
 
 

1. INTRODUCTION 
 
Speech recognition technology has recently reached a 
higher level of performance and robustness, allowing it to 
be deployed in a number of real-world environments, such 
as mobile phones and toys. As more applications are 
identified, the requirements for speech recognition 
algorithms also become more demanding: algorithms must 
run fast and use as little memory as possible so that they 
can be deployed in smaller and less expensive systems 
that use less space and less power. For example, Deligne 
et al [1] describe a low-resource continuous speech 
recognition system suitable for processors running at a 
minimum of 50 MIPS and having at least 1 MByte of 
memory, and Gong and Kao [2] describe a system running 
on a 30 MHz DSP with 64K words of memory. At the 
other end of the spectrum, J. Foks [3] presents a voice 
command system running on a 2.5 MHz CR16B processor 
and requiring only a few kilobytes of memory. The three 
systems are based on well-proven algorithms: all three use 
Mel Frequency Cepstral Coefficients (MFCC) to 
parameterize the input speech. For pattern matching, the 
first two use Hidden Markov Models (HMMs) and the 

third uses Dynamic Time Warping (DTW). In contrast, 
Phipps and King [4] describe a voice command system 
based on Time Encoded Signal Processing and 
Recognition (TESPAR) that inherently requires much less 
processing power than MFCC extraction, DTW and 
HMM algorithms. It runs on an 8-bit 30 MHz 8051-type 
processor with less than 5 KBytes of memory. This type 
of processor typically consumes between 10 and 50 
milliWatts of power. 
 

This paper presents an HMM and MFCC-based 
voice command system comparable in functionality with 
low-resource systems such as the DTW and TESPAR-
based systems mentioned above. However, it uses much 
less power due to the use of a DSP architecture designed 
specifically for speech processing in ultra low-resource 
environments. Consuming less than 1 milliWatt of power, 
the DSP system can run continuously for up to 100 hours, 
and whereas today's low-resource processors typically 
require AA batteries, the DSP system operates on a single 
hearing-aid sized battery, which is smaller than a penny. 
This allows voice command systems to be deployed in 
objects much smaller than before.  
 

In the following sections, we first present an 
overview of the DSP hardware and describe how voice 
commands algorithms are mapped to the hardware 
components. We then describe how feature extraction, 
word endpoint detection and word likelihood calculations 
are performed on the system. The results of an evaluation 
performed using a specific configuration of the system are 
then presented, followed by a conclusion and a 
description of the work that will be done in the future. 
 

2. THE DSP SYSTEM 
 
The DSP system is implemented on two ASICs: a digital 
chip on 0.18µ CMOS technology contains the DSP core, 
RAM, the weighted overlap-add (WOLA) filterbank, and 
the input-output processor (IOP). The mixed-signal 
portions are implemented on 1 µm CMOS. A separate off-
the-shelf E2PROM provides the non-volatile storage. The 
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RAM consists of two 4K-word data spaces and a 12K-
word program memory space. Additional shared memory 
for the WOLA filterbank and the IOP is also provided. 
The core provides 1 MIPS/MHz operation and has a 
maximum clock rate of 4 MHz at 1 volt. At 1.8 volts, 30 
MHz operation is also possible. The entire system 
operates on a single battery down to 0.9 volts and 
consumes less than 1 milliWatt. Prototype versions of the 
chipset are packaged into a 6.5 x 3.5 x 2.5 mm hybrid 
circuit. 
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Figure 1 - DSP Block Diagram 
 

Figure 1 shows a block diagram of the DSP [5]. The 
DSP communicates with the outside world through a 
UART (serial port), 16 general-purpose input/output pins 
and a channel dedicated to the speech signal coming from 
the mixed-signal chip. The 16 I/O pins can, of course, be 
used regardless of a whether a microcontroller is available 
or not. They have been used in the following functions: 
 

• Input. They can be connected to switches to 
allow commands to be sent to the DSP system. 

• Visual output. They can be connected to LEDs to 
inform the user of the current state of the system 
(training mode, recognition mode, etc.).  

• Action output. They can be connected to various 
output devices. When the system recognizes a 
word, it can activate one or a combination of 
these pins to drive an external device, such as a 
speech synthesizer or a lamp. 

Figure 2 illustrates the breakdown of the work 
between the three processors for the major voice 
command algorithm operations. The top five operations 

are parts of the feature extraction and endpoint detection 
processes. The data produced by these processes is stored 
in a circular buffer where it is retrieved during the training 
and the recognition phases. 
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Figure 2 - Work Breakdown 

 
3. FEATURE EXTRACTION 

 
The input-output processor (IOP) is responsible for 
management of incoming and outgoing samples. In the 
voice command application, it takes as input the speech 
signal sampled by the 14-bit A/D converter on the mixed-
signal chip at a frequency of 8 kHz. It creates frames of 
256 samples, representing 32 milliseconds of speech. The 
frames overlap for 128 samples (16 milliseconds). A 
Hanning window is applied to each frame before it is 
made available to the core and the WOLA co-processor 
for processing.  
 

The features most commonly used today in speech 
recognition systems are MFCCs and their first and second 
order differences. The number of coefficients and 
differences varies depending on the implementation; 
speech recognition systems running on fast processors 
typically use 12 or more coefficients and their first and 
second order differences for optimum recognition 
performance. The storage requirements for each word in 
the recognition vocabulary and the processing 
requirements are directly linked with the number of 
coefficients. Thus, this number has to be optimized based 
on the desired vocabulary size, response time and 
expected quality of the recognition.  
 



Figure 3 illustrates how the different steps of feature 
extraction are performed on the DSP system. The three 
columns describe the tasks performed by the three 
processors running in parallel. The blocks in bold indicate 
the operations performed sequentially on a single 256-
sample frame of data at the various stages of feature 
extraction. The blocks with dashed borders indicate the 
operations performed on the previous and next frames. 
 

The MFCC calculation is launched when the input-
output processor indicates that a new 256-sample frame is 
available for processing. This triggers a 256-point FFT on 
the WOLA co-processor. No data movement between the 
processors is necessary because the data resides in shared 
memory. When the 256-point FFT is complete, the DSP 
core determines the absolute value of each one of the 129 
FFT bands as well as the total frame energy.  
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Figure 3 - Feature Extraction Task Assignment 
 

The next step in the MFCC calculation consists in 
determining the log of the energy of L frequency bins, 
which are triangular bands spread non-linearly along the 
frequency axis. To do this, the DSP core launches the 
vector multiply function of WOLA co-processor, which 
multiplies the 129 FFT band energies by a vector of 
constants stored in RAM. When this operation is 
complete, the DSP core assigns the resulting values to the 
L frequency bins using a constant index table mapping the 

FFT bands to the frequency bin. Finally, the log of these L 
values is taken using a base-2 log function included in the 
on-chip math library. The function uses a 32-point look-
up table, executes in 9 cycles and has ± 3% accuracy. 
 

The final step consists in calculating the Inverse 
Discrete Cosine Transform (IDCT) of the L log energy 
bins. The IDCT operation is implemented as the 
multiplication of the L log energy bins by a constant 
matrix, whose dimensions are L by the desired number of 
MFCC coefficients. Included in all matrix entries is a bit-
shifting factor that prevents a sum overflow. Once 
calculated, the MFCC coefficients are stored in a circular 
buffer where they can be retrieved for training or 
recognition. 
 

4. ENDPOINT DETECTION 
 
Given the real-time needs of the system and the limited 
memory resources available, an endpoint detection 
algorithm based on energy thresholds was chosen. The 
algorithm is executed by the DSP core in parallel with the 
feature extraction function after the total frame energy is 
computed. The energy thresholds are regularly updated as 
function of a noise floor that is calculated during silence 
frames. 
 

5. PATTERN MATCHING 
 
The Viterbi algorithm is employed to find the likelihood 
of Gaussian mixture HMMs. One of the main difficulties 
encountered during the implementation was the fact that 
all model parameters, MFCC coefficients and temporary 
likelihoods maintained during the execution of the Viterbi 
algorithm had to be represented as 16-bit fixed-point 
values. There are three major issues linked with this 
representation: 
 
1. The fixed-point data format in which each value is 
represented must be chosen in a way such as to minimize 
the loss of information during calculations. Model 
parameters, MFCC coefficients and log likelihoods all 
have a different dynamic range. 
 
2. Information is lost during multiplications because the 
result must be truncated to 16 bits. The chip features a 
rounding instruction that reduces these quantization 
errors. 
 
3. Part of the Viterbi algorithm involves calculating a dot 
product between two vectors. The addition of the products 
may result in overflow if the representation of the values 
is not chosen properly. 
 



The characteristics of how the chip handles each 
arithmetic operation were modeled in a C++ simulation of 
the Viterbi algorithm. A study was then performed to 
determine an optimal way of representing model 
parameters, MFCC coefficients and temporary likelihoods 
as 16-bit fixed-point numbers. The study also produced 
the optimal bit shifts to apply at various places in the 
algorithm in order to avoid overflow. 
 

6. SYSTEM REALIZATION AND RESULTS 
 
As mentioned earlier, feature vectors and HMMs can be 
customized based on the final application. In order to 
determine the characteristics of the system in terms of 
memory usage, processing requirements and recognition 
quality, we have performed an evaluation of the system 
using a sample configuration and a corpus recorded in a 
quiet office environment. MFCCs up to the 8th coefficient 
were used, the number of states was set to 4, and for each 
state a single Gaussian mixture with a diagonal covariance 
matrix was used. In this configuration, the HMM model 
representing each word requires only 82 words of 
memory. Given that about 4K words are available for 
word models, the system is capable of handling a 
vocabulary of about 50 words. Measurements performed 
using the DSP's timer indicate that the likelihood 
estimation for one model given the above configuration 
takes about 1000 CPU cycles per frame of input speech. 
At a CPU clock frequency of 1.28 MHz, the likelihood 
estimation for a vocabulary word takes on average 26 
milliseconds. 
 

The training and the recognition phase were both 
performed on-line and in real-time using a PC application 
that played recorded sound files through the sound card 
connected to the voice command system's audio input. For 
training, feature vectors calculated by the DSP system 
were retrieved by the PC application and the models 
calculated using a MATLAB application. The resulting 
models were then loaded to the voice command system 
for the recognition phase. 
 

System evaluation was performed on a vocabulary 
of 18 English words that included the 10 digits and 8 
commands. The corpus contained 68 instances of each 
word, for a total of 1224. The tests were performed using 
the cross-validation technique; that is, a number of 
iterations were executed in which the corpus was split 
randomly into a training set and a recognition set. The 
results showed an average recognition rate of 99.5% over 
50 cross-validation iterations. 
 

7. CONCLUSIONS AND FUTURE WORK 
 
This work has shown that voice command systems based 
on HMMs can be successfully deployed on DSP systems 
that are much smaller and use much less power that ever 
before. The system presented in this paper uses less than 1 
milliWatt; it is packaged in a 6.5 x 3.5 x 2.5 mm hybrid 
circuit and uses a very small hearing-aid type battery. 
Because the system is configurable in terms of features 
and HMM model characteristics, it will be able to support 
a large number of applications where HMMs are known 
to provide good results, such as speaker-independent 
voice command and speaker identification. For these 
applications, the characterization that we have performed 
will allow us to foresee the capabilities of the system in 
terms of latency, vocabulary size and accuracy.  
 

Because the DSP system was specifically designed 
for speech processing applications, it is also very well 
suited for noise reduction, speech enhancement and voice 
activity detection algorithms. We intend to deploy these 
algorithms, either on the same DSP as the voice command 
system or on a second DSP running in parallel, in order to 
produce robustness adapted to the environment in which 
the voice command application will be deployed. 
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